226 research outputs found

    Crystal Structure of a Human Single Domain Antibody Dimer Formed through VH-VH Non-Covalent Interactions

    Get PDF
    Single-domain antibodies (sdAbs) derived from human VH are considered to be less soluble and prone to aggregate which makes it difficult to determine the crystal structures. In this study, we isolated and characterized two anti-human epidermal growth factor receptor-2 (HER2) sdAbs, Gr3 and Gr6, from a synthetic human VH phage display library. Size exclusion chromatography and surface plasmon resonance analyses demonstrated that Gr3 is a monomer, but that Gr6 is a strict dimer. To understand this different molecular behavior, we solved the crystal structure of Gr6 to 1.6 Ã… resolution. The crystal structure revealed that the homodimer assembly of Gr6 closely mimics the VH-VL heterodimer of immunoglobulin variable domains and the dimerization interface is dominated by hydrophobic interactions

    Multivalent Anchoring and Oriented Display of Single-Domain Antibodies on Cellulose

    Get PDF
    Antibody engineering has allowed for the rapid generation of binding agents against virtually any antigen of interest, predominantly for therapeutic applications. Considerably less attention has been given to the development of diagnostic reagents and biosensors using engineered antibodies. Recently, we produced a novel pentavalent bispecific antibody (i.e., decabody) by pentamerizing two single-domain antibodies (sdAbs) through the verotoxin B subunit (VTB) and found both fusion partners to be functional. Using a similar approach, we have engineered a bispecific pentameric fusion protein consisting of five sdAbs and five cellulose-binding modules (CBMs) linked via VTB. To find an optimal design format, we constructed six bispecific pentamers consisting of three different CBMs, fused to the Staphylococcus aureus-specific human sdAb HVHP428, in both orientations. One bispecific pentamer, containing an N-terminal CBM9 and C-terminal HVHP428, was soluble, non-aggregating, and did not degrade upon storage at 4 °C for over six months. This molecule was dually functional as it bound to cellulose-based filters as well as S. aureus cells. When impregnated in cellulose filters, the bispecific pentamer recognized S. aureus cells in a flow-through detection assay. The ability of pentamerized CBMs to bind cellulose may form the basis of an immobilization platform for multivalent display of high-avidity binding reagents on cellulosic filters for sensing of pathogens, biomarkers and environmental pollutants

    Molecular imaging of glioblastoma multiforme using anti-insulin-like growth factor-binding protein-7 single-domain antibodies

    Get PDF
    BACKGROUND: Insulin-like growth factor-binding protein 7 (IGFBP7) is an abundant, selective and accessible biomarker of glioblastoma multiforme (GBM) tumour vessels. In this study, an anti-IGFBP7 single-domain antibody (sdAb) was developed to target GBM vessels for molecular imaging applications. METHODS: Human GBM was modelled in mice by intracranial implantation of U87MG.EGFRvIII cells. An anti-IGFBP7 sdAb, isolated from an immune llama library by panning, was assessed in vitro for its binding affinity using surface plasmon resonance and by ex vivo immunobinding on mouse and human GBM tissue. Tumour targeting by Cy5.5-labelled anti-IGFBP7 sdAb as well as by anti-IGFBP7 sdAb conjugated to PEGylated Fe3O4 nanoparticles (NPs)-Cy5.5 were assessed in U87MG.EGFRvIII tumour-bearing mice in vivo using optical imaging and in brain sections using fluorescent microscopy. RESULTS: Surface plasmon resonance analyses revealed a medium affinity (KD\ufffd40\ufffd50 nM) binding of the anti-IGFBP7 sdAb to the purified antigen. The anti-IGFBP7 sdAb also selectively bound to both mouse and human GBM vessels, but not normal brain vessels in tissue sections. In vivo, intravenously injected anti-IGFBP7 sdAb-Cy5.5 bound to GBM vessels creating high imaging signal in the intracranial tumour. Similarly, the anti-IGFBP7 sdAb-functionalised PEGylated Fe3O4 NP-Cy5.5 demonstrated enhanced tumour signal compared with non-targeted NPs. Fluorescent microscopy confirmed the presence of anti-IGFBP7 sdAb and anti-IGFBP7 sdAb- PEGylated Fe3O4 NPs selectively in GBM vessels. CONCLUSIONS: Anti-IGFBP7 sdAbs are novel GBM vessel-targeting moieties suitable for molecular imaging.Peer reviewed: YesNRC publication: Ye

    A rational engineering strategy for designing protein a-binding camelid single-domain antibodies

    Get PDF
    Staphylococcal protein A (SpA) and streptococcal protein G (SpG) affinity chromatography are the gold standards for purifying monoclonal antibodies (mAbs) in therapeutic applications. However, camelid VHH single-domain Abs (sdAbs or VHHs) are not bound by SpG and only sporadically bound by SpA. Currently, VHHs require affinity tag-based purification, which limits their therapeutic potential and adds considerable complexity and cost to their production. Here we describe a simple and rapid mutagenesis-based approach designed to confer SpA binding upon a priori non-SpA-binding VHHs. We show that SpA binding of VHHs is determined primarily by the same set of residues as in human mAbs, albeit with an unexpected degree of tolerance to substitutions at certain core and non-core positions and some limited dependence on at least one residue outside the SpA interface, and that SpA binding could be successfully introduced into five VHHs against three different targets with no adverse effects on expression yield or antigen binding. Next-generation sequencing of llama, alpaca and dromedary VHH repertoires suggested that species differences in SpA binding may result from frequency variation in specific deleterious polymorphisms, especially Ile57. Thus, the SpA binding phenotype of camelid VHHs can be easily modulated to take advantage of tag-less purification techniques, although the frequency with which this is required may depend on the source species

    Engineered Single-Domain Antibodies with High Protease Resistance and Thermal Stability

    Get PDF
    The extreme pH and protease-rich environment of the upper gastrointestinal tract is a major obstacle facing orally-administered protein therapeutics, including antibodies. Through protein engineering, several Clostridium difficile toxin A-specific heavy chain antibody variable domains (VHHs) were expressed with an additional disulfide bond by introducing Ala/Gly54Cys and Ile78Cys mutations. Mutant antibodies were compared to their wild-type counterparts with respect to expression yield, non-aggregation status, affinity for toxin A, circular dichroism (CD) structural signatures, thermal stability, protease resistance, and toxin A-neutralizing capacity. The mutant VHHs were found to be well expressed, although with lower yields compared to wild-type counterparts, were non-aggregating monomers, retained low nM affinity for toxin A, albeit the majority showed somewhat reduced affinity compared to wild-type counterparts, and were capable of in vitro toxin A neutralization in cell-based assays. Far-UV and near-UV CD spectroscopy consistently showed shifts in peak intensity and selective peak minima for wild-type and mutant VHH pairs; however, the overall CD profile remained very similar. A significant increase in the thermal unfolding midpoint temperature was observed for all mutants at both neutral and acidic pH. Digestion of the VHHs with the major gastrointestinal proteases, at biologically relevant concentrations, revealed a significant increase in pepsin resistance for all mutants and an increase in chymotrypsin resistance for the majority of mutants. Mutant VHH trypsin resistance was similar to that of wild-type VHHs, although the trypsin resistance of one VHH mutant was significantly reduced. Therefore, the introduction of a second disulfide bond in the hydrophobic core not only increases VHH thermal stability at neutral pH, as previously shown, but also represents a generic strategy to increase VHH stability at low pH and impart protease resistance, with only minor perturbations in target binding affinities. These are all desirable characteristics for the design of protein-based oral therapeutics

    Differential tumor-targeting abilities of three single-domain antibody formats

    Get PDF
    The large molecular size of antibody drugs is considered one major factor preventing them from becoming more efficient therapeutics. Variable regions of heavy chain antibodies (HCAbs), or single-domain antibodies (sdAbs), are ideal building blocks for smaller antibodies due to their molecular size and enhanced stability. In the search for better antibody formats for in vivo imaging and/or therapy of cancer, three types of sdAb-based molecules directed against epidermal growth factor receptor (EGFR) were constructed, characterized and tested. Eleven sdAbs were isolated from a phage display library constructed from the sdAb repertoire of a llama immunized with a variant of EGFR. A pentameric sdAb, or pentabody, V2C-EG2 was constructed by fusing one of the sdAbs, EG2, to a pentamerization protein domain. A chimeric HCAb (cHCAb), EG2-hFc, was constructed by fusing EG2 to the fragment crystallizable (Fc) of human IgG1. Whereas EG2 and V2C-EG2 localized mainly in the kidneys after i.v. injection, EG2-hFc exhibited excellent tumor accumulation, and this was largely attributed to its long serum half life, which is comparable to that of IgGs. The moderate size (~80 kDa) and intact human Fc make HCAbs a unique antibody format which may outperform whole IgGs as imaging and therapeutic reagents.Peer reviewed: YesNRC publication: Ye

    Production of in vivo biotinylated scFv specific to almond (Prunus dulcis) proteins by recombinant Pichia pastoris

    Get PDF
    The methylotropic yeast Pichia pastoris has demonstrated its suitability for large-scale production of recombinant proteins. As an eukaryotic organism P. pastoris presents a series of advantages at expression and processing of heterologous proteins when compared with Escherichia coli. In this work, P. pastoris has been used to express a scFv from a human synthetic library previously shown to bind almond proteins. In order to facilitate purification and post processing manipulations, the scFv was engineered with a C-terminal tag and biotinylated in vivo. After purification, biotinylated scFv were bound to avidin conjugated with HRP producing a multimeric scFv. The multimeric scFv showed to maintain their ability to recognize almond protein when assayed in ELISA, reaching a LOD of 470 mg kg−1. This study describes an easy method to produce large quantities of in vivo biotinylated scFv in P. pastoris. By substituting the enzyme or fluorochromes linked to avidin, it will be possible to generate a diverse number of multimeric scFv as probes to suit different analytical platforms in the detection of almond in food products

    Stabilisation of the Fc Fragment of Human IgG1 by Engineered Intradomain Disulfide Bonds

    Get PDF
    We report the stabilization of the human IgG1 Fc fragment by engineered intradomain disulfide bonds. One of these bonds, which connects the N-terminus of the CH3 domain with the F-strand, led to an increase of the melting temperature of this domain by 10°C as compared to the CH3 domain in the context of the wild-type Fc region. Another engineered disulfide bond, which connects the BC loop of the CH3 domain with the D-strand, resulted in an increase of Tm of 5°C. Combined in one molecule, both intradomain disulfide bonds led to an increase of the Tm of about 15°C. All of these mutations had no impact on the thermal stability of the CH2 domain. Importantly, the binding of neonatal Fc receptor was also not influenced by the mutations. Overall, the stabilized CH3 domains described in this report provide an excellent basic scaffold for the engineering of Fc fragments for antigen-binding or other desired additional or improved properties. Additionally, we have introduced the intradomain disulfide bonds into an IgG Fc fragment engineered in C-terminal loops of the CH3 domain for binding to Her2/neu, and observed an increase of the Tm of the CH3 domain for 7.5°C for CysP4, 15.5°C for CysP2 and 19°C for the CysP2 and CysP4 disulfide bonds combined in one molecule

    Antibody-mediated Prevention of Fusarium Mycotoxins in the Field

    Get PDF
    Fusarium mycotoxins directly accumulated in grains during the infection of wheat and other cereal crops by Fusarium head blight (FHB) pathogens are detrimental to humans and domesticated animals. Prevention of the mycotoxins via the development of FHB-resistant varieties has been a challenge due to the scarcity of natural resistance against FHB pathogens. Various antibodies specific to Fusarium fungi and mycotoxins are widely used in immunoassays and antibody-mediated resistance in planta against Fusarium pathogens has been demonstrated. Antibodies fused to antifungal proteins have been shown to confer a very significantly enhanced Fusarium resistance in transgenic plants. Thus, antibody fusions hold great promise as an effective tool for the prevention of mycotoxin contaminations in cereal grains. This review highlights the utilization of protective antibodies derived from phage display to increase endogenous resistance of wheat to FHB pathogens and consequently to reduce mycotoxins in field. The role played by Fusarium-specific antibody in the resistance is also discussed

    Toxin-Specific Antibodies for the Treatment of Clostridium difficile: Current Status and Future Perspectives †

    Get PDF
    Therapeutic agents targeting bacterial virulence factors are gaining interest as non-antibiotic alternatives for the treatment of infectious diseases. Clostridium difficile is a Gram-positive pathogen that produces two primary virulence factors, enterotoxins A and B (TcdA and TcdB), which are responsible for Clostridium difficile-associated disease (CDAD) and are targets for CDAD therapy. Antibodies specific for TcdA and TcdB have been shown to effectively treat CDAD and prevent disease relapse in animal models and in humans. This review summarizes the various toxin-specific antibody formats and strategies under development, and discusses future directions for CDAD immunotherapy, including the use of engineered antibody fragments with robust biophysical properties for systemic and oral delivery
    • …
    corecore