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a b s t r a c t

The large molecular size of antibody drugs is considered one major factor preventing them

from becoming more efficient therapeutics. Variable regions of heavy chain antibodies

(HCAbs), or single-domain antibodies (sdAbs), are ideal building blocks for smaller anti-

bodies due to their molecular size and enhanced stability. In the search for better antibody

formats for in vivo imaging and/or therapy of cancer, three types of sdAb-based molecules

directed against epidermal growth factor receptor (EGFR) were constructed, characterized

and tested. Eleven sdAbs were isolated from a phage display library constructed from the

sdAb repertoire of a llama immunized with a variant of EGFR. A pentameric sdAb, or pen-

tabody, V2C-EG2 was constructed by fusing one of the sdAbs, EG2, to a pentamerization

protein domain. A chimeric HCAb (cHCAb), EG2-hFc, was constructed by fusing EG2 to

the fragment crystallizable (Fc) of human IgG1. Whereas EG2 and V2C-EG2 localized

mainly in the kidneys after i.v. injection, EG2-hFc exhibited excellent tumor accumulation,

and this was largely attributed to its long serum half life, which is comparable to that of

IgGs. The moderate size (�80 kDa) and intact human Fc make HCAbs a unique antibody

format which may outperform whole IgGs as imaging and therapeutic reagents.

Crown Copyright � 2009 Published by Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Epidermal growth factor receptors (EGFRs) are over-

expressed and/or dysregulated in many tumor types

including head and neck, breast, non-small-cell lung and

pancreatic cancer to name but a few [1]. The EGFR family

contains four members: EGFR1 (ErbB1), HER2 (ErbB2),

HER3 (ErbB3) and HER4 (ErbB4) [2]. Targeting EGFR in

cancer cells was initially proposed by Sato et al. [3]. The

anti-EGFR antibody drug Cetuximab (ErbituxR) was

approved by the FDA in 2004 for the treatment of meta-

static colon cancer either in combination with Camptosar,

a chemotherapeutic, or as a single agent for patients who

cannot tolerate chemotherapy.

Despite the success of Cetuximab and other antibody

drugs, their large size (�150 kDa) is considered a major

limiting factor in tumor penetration [4] and in achieving

a higher therapeutic index. To generate antibodies with

improved tumor penetration, many antibody formats have

been engineered and tested. Single chain variable frag-

ments (scFvs) are often cleared rapidly from circulation

partly due to their low molecular weight (MW < 60 kDa,

the threshold of glomerular filtration) [5]. As a result, scFvs

usually have a serum half life of less than 10 min and a

peak tumor uptake of about 5% injected dose per gram tis-

sue (% ID/g) [4]. The performance of scFvs can be improved

by constructing divalent scFvs [6], tetravalent scFvs [6] and
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minibodies [7]. However, the overall performance of these

molecules is still less than optimal. In addition, most smal-

ler size antibody fragments lack intact fragment crystalliz-

able (Fc) domain and are therefore unable to induce

antibody-dependent cellular cytotoxicity (ADCC) and com-

plement-dependent cytotoxicity (CDC), two major mecha-

nisms involved in the eradication of tumor tissue upon

antigen binding [8].

By fusing a scFv to the Fc domain, a novel antibody mol-

ecule scFv-Fc, which self assembled into a dimer with a

molecular weight of about 105 kDa [9], was generated.

This antibody format, when incorporating Fc mutants with

different affinities for neonatal Fc receptor (FcRn), gener-

ated excellent tumor-targeting antibodies with tumor up-

take as high as 44% ID/g [10]. This makes scFv-Fc a

potentially better antibody platform for early tumor detec-

tion, radioimmunotherapy and therapy than intact IgG.

However, it is almost impossible to further reduce anti-

body size when combining an intact Fc with scFvs.

Single-domain antibodies (sdAbs), often referred to as

domain antibodies (dAbs) when based on either heavy

chain or light chain variable regions of human antibodies

[11,12] or nanobodies when derived from the variable re-

gions of HCAbs of camelids [13], are the smallest antigen

binding fragments with a size of 12–15 kDa. Single-domain

antibodies can also be derived from the new antigen recep-

tor antibodies (IgNARs) of nurse sharks [14]. Camelids such

as camels, llamas and alpacas have HCAbs naturally devoid

of light chains and consist only of VH, CH2 and CH3 domains

[13]. sdAbs derived from camelid HCAbs are excellent

building blocks for novel antibody molecules [15] due to

their high thermostability, high detergent resistance, rela-

tively high resistanceto proteases [16] and high production

yield [17]. They can be engineered to have very high affin-

ity by isolation from an immune library [18] or by in vitro

affinity maturation [19,20].

Despite the immense potential of sdAbs, tumor-target-

ing with sdAbs remains largely unexplored. Monomeric

(15 kDa) and bivalent (33 kDa) sdAbs targeting lysozyme,

which was expressed as an artificial target on the surface

of a tumor cell line, were isolated, constructed and tested

[21]. However, these molecules failed to show sufficient

tumor accumulation due largely to rapid blood clearance.

Anti-CEA sdAbs were isolated and fused to the b-lactamase

of Enterobacter cloacae. The fusion protein was shown to

efficiently activate prodrug in an in vitro study and induce

tumor regression in an established tumor xenograft model

[22]. A similar approach was used to link a sdAb against

Type IV collagenase with an anti-tumor drug, lidamycin,

and the fusion protein also demonstrated tumor growth

inhibition [23]. sdAbs against EGFR [24] and its Type III

variant [25] have been isolated. Some of these sdAbs were

found to be useful for tumor imaging despite of their high

renal uptake [26,27]. Although these studies demonstrate

the potential uses of sdAbs, establishment of a versatile

sdAb-based antibody platform, especially one that im-

proves circulating half life, would further stimulate devel-

opment of sdAb-based drugs.

We describe in this study the isolation of EGFR-specific

sdAbs and engineering of three types of sdAb-based mole-

cules: sdAb (one antigen binding site, �16 kDa), pentabody

(five antigen binding sites, �126 kDa) and chimeric HCAb

(cHCAb) (two antigen binding sites, �80 kDa without con-

sideration of glycosylation). We also present an evaluation

of the tumor-targeting ability of the molecules using mi-

cro-positron emission tomography (microPET).

2. Materials and methods

2.1. Cells and animals

The human pancreatic carcinoma cell line MIA PaCa-2

was kindly provided by Dr. I. Kazhdan and maintained in

DMEM (Gibco, Gaithersburg, MD) supplemented with

10% fetal bovine serum (Gibco). Six-week old female

BALB/c nude mice were obtained from Harlan Laboratories.

2.2. Construction and purification of the extracellular

domains of EGFR and EGFRvIII

Sub-cloning, production and purification of the extra-

cellular domains of EGFR (EGFR-ECD) was performed as

previously described [28]. Recombinant baculoviruses con-

taining the coding sequences for 6� Histidine (His)-tagged

extracellular domains EGFR and EGFRvIII [29] were used to

infect Sf9 (Invitrogen, Burlington, ON) cells growing in sus-

pension at 5–10 � 106 cells/ml. Purification of the secreted

proteins was performed by immobilized metal affinity

chromatography (IMAC) using Ni-NTA-agarose (Qiagen,

Mississauga, ON) following the manufacturer’s instruc-

tions. Purified EGFR-ECD and EGFRvIII-ECD were con-

firmed by SDS–PAGE.

2.3. Isolation of EGFR-specific sdAbs from a llama immune

phage display library

A male llama (Lama glama) was injected subcutane-

ously with 100, 75, 75, 50 and 50 lg EGFRvIII-ECD on days

1, 21, 36, 50 and 64, respectively [17]. Complete Freund’s

Adjuvant (Sigma, St. Louis, MO) was used for the primary

immunization and Incomplete Freund’s Adjuvant was used

for immunizations 2–4. Adjuvant was not used for the final

immunization. The llama was bled one week following

each immunization and heparinized blood was collected

for immediate isolation of the peripheral blood leukocytes,

which were then stored at �80 �C until further use.

Total RNA was isolated from 2 � 107 leukocytes using a

QIAamp RNA Blood Mini Kit (Qiagen). cDNA was synthe-

sized using pd(N)6 as primer and 566 ng total RNA as the

template. Three different sense primers (called J0 and

corresponding to the 50-end of IgG) including MJ1 (GCCCA-

GCCGGCCATGGCCSMKGTGCAGCTGGTGGAKTCTG-GGGGA),

MJ2 (CAGCCGGCCATGGCCCAGGTAAAGCTGGAGGAGTCTG-

GGGGA) and MJ3 (GCCCAGCCGGCCATGGCCCAGGCTCAGG-

TACAGCTGGTGGAGTCT) and two anti-sense primers,

corresponding to the CH2 domain DNA sequence, CH2

(CGCCATCAAGGTACCAGTTGA) and CH2b3 (GGGGTACCTGT-

CATCCACGGACCAGCTGA)wereused to amplify theVH-CH1-

Hinge-CH2 region of conventional IgG or VHH-Hinge-CH2.

Amplified VHH products of approximately 600 bp from the

primer combination J0-CH2 were extracted from a 1%
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agarose gel and purified with a QIAquick Gel Extraction Kit

(Qiagen) and the amplified products from primers J0-CH2b3

were PCR purified. In a second PCR reaction, two primers,

MJ7BACK (CATGTGTAGACTCGCGGCCCAGCCGGCCATGGCC)

and MJ8FOR (CATGTGTAGATTCCTGGCCGGCCTGGCCTGA-

GGAGACGGTGACCTGG), were used to introduce SfiI restric-

tion sites and to amplify the final sdAb fragments from the

combined J0-CH2 and J0-CH2b3 amplified products [17]. The

final PCR product was digested with SfiI and ligated into

pMED1, a derivative of pHEN4 [17], and transformed into

Escherichia coli TG1 (New England Biolabs, Ipswich, MA)

by electroporation. Phage were rescued and amplified with

helper phage M13KO7 (NEB).

The llama immune phage display library was panned

against 1 mg/ml EGFRvIII-ECD that was coated to a Reac-

ti-BindTM maleic anhydride activated microtiter plate well.

Approximately 1011 phages were added to the well and

incubated at 37 �C for 2 h for antigen binding. After dis-

posal of unbound phages, the wells were washed six times

with phosphate buffered saline supplemented with 0.05%

Tween 20 (PBST) for round one and the washes were in-

creased by one for each additional round. Phage were

eluted by 10 min incubation with 100 ll 100 mM triethyl-

amine and the eluate was subsequently neutralized with

200 ll 1 M Tris–HCl (pH 7.5). Phage were amplified as de-

scribed above but on a smaller scale. After four rounds of

panning, eluted phage were used to infect exponentially

growing E. coli TG1. Individual colonies were used in phage

ELISA.

For phage ELISA, a 96-well microtitre plate was coated

overnight with 5 lg/ml EGFRvIII-ECD or EGFR-ECD and

then blocked with 1% casein for 2 h at 37 �C. Phage from

individual clones were pre-blocked with 1% casein over-

night, added to the pre-blocked wells and incubated for

1 h. Phage ELISA was performed using the GE Healthcare

Detection Module Recombinant Phage Antibody System

(GE Healthcare, Uppsala, Sweden), and positive phage

clones were sequenced.

2.4. Expression of sdAbs and a pentabody

DNA encoding four representative clones (EG2, EG10,

EG31 and EG43) from each of the four groups (Fig. 1)

was cloned into the BbsI and BamHI sites of a periplasmic

expression vector pSJF2 [30], which added a c-Myc detec-

tion tag and a 5� His purification tag at the C-terminus

of the sdAbs (Fig. 2A). EG2 was sub-cloned into the BspEI

and BamHI sites of a pentamerization vector, pVT2 [31],

generating an expression vector for pentameric sdAb, or

pentabody, V2C-EG2 (Fig. 2A). EG2 and pV2C-EG2 were ex-

pressed periplasmically and purified by IMAC [32]. Briefly,

clones were inoculated in 25 ml LB-Ampicillin (Amp) and

incubated at 37 �C with 200 rpm shaking overnight. The

next day, 20 ml of the culture was used to inoculate 1 l of

M9 medium (0.2% glucose, 0.6% Na2HPO4, 0.3% KH2PO4,

0.1% NH4Cl, 0.05% NaCl, 1 mM MgCl2, 0.1 mM CaCl2) sup-

plemented with 0.4% casamino acids, 5 mg/l of vitamin

B1 and 200 lg/ml of Amp, and cultured for 24 h. 100 ml

of 10 � TB nutrients (12% Tryptone, 24% yeast extract and

4% glycerol), 2 ml of 100 mg/ml Amp and 1 ml of 1 M iso-

propyl-beta-D-Thiogalactopyranoside (IPTG) were added

to the culture and incubation was continued for another

65–70 h at 28 �C with 200 rpm shaking. E. coli cells were

harvested by centrifugation and lysed with lysozyme. Cell

Fig. 1. Amino acid sequences of 11 sdAbs specific for EGFR with CDR1, CDR2, and CDR3 underlined. Based on the sequence identity of their CDRs, the sdAbs

can be divided into four groups, which are separated by horizontal lines between the clone designations. The frequency of the sequences is indicated in

parentheses following the clone designations.
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lysates were centrifuged, and clear supernatant was loaded

onto High-TrapTM chelating affinity columns (GE Health-

care) and His-tagged proteins were purified.

2.5. Construction of cHCAb EG2-hFc

Human Fc (hFc) gene, a gift from Dr. M. Neuberger, was

inserted into a mammalian expression vector pTT5, a

derivative of the pTT vector [33], to generate hFc fusion

vector pTT5-hFc [34]. EG2 was amplified and inserted into

pTT5-hFc such that the C-terminus of the sdAb was linked

to the hinge region and Fc of human IgG1 without addition

of extra residues. The generated EG2-hFc was used in the

transient transfection of HEK293 cells.

Clone 6E of 293-EBNA1 (Y.D., unpublished data) was

maintained as a suspension culture in shake flasks in ser-

um-free F17 medium (Invitrogen, Burlington, ON). Cells

were inoculated at a density of 0.25 � 106 cells/ml in a

2.5 l shake flask (500 ml working volume) two days prior

to transfection. Cells (usually around 1.0–1.5 � 106 cells/

ml) were transfected with 1 lg/ml plasmid DNA and

2 lg/ml linear 25 kDa polyethyleneimine, as previously de-

scribed [33]. A feed with TN1 peptone (0.5%) was per-

formed 24 h post-transfection [35] and culture medium

was harvested at 120 h. EG2-hFc secreted into the medium

was purified by affinity chromatography on a Protein A col-

umn, MabSelect SuRe (GE Healthcare). Purified material

was desalted on a HiPrepTM 26/10 desalting column (GE

Healthcare) equilibrated with phosphate buffered saline

(PBS). Protein concentration was determined by absor-

bance at 280 nm using a molar extinction coefficient of

58,830 calculated from the EG2-hFc amino acid sequence

[36].

2.6. Surface plasmon resonance analysis

Experiments were performed using a BIACORE 3000

optical sensor platform and research grade CM5 sensor

chips (GE Healthcare). EGFR-ECD, sdAbs or multivalent

sdAb constructs were immobilized on the sensor chip sur-

face by standard amine coupling. All experiments were

carried out in HEPES buffer (10 mM HEPES (pH 7.4),

150 mM NaCl, 3.4 mM EDTA, 0.005% Tween 20) at 25 �C.

Antibodies were injected at serial dilutions ranging from

0.4 nM to 1 lM at a flow rate of 30 ll/min unless otherwise

indicated. The amount of bound analyte after subtraction

from the blank control surface is shown as relative reso-

nance units (RU). The double referenced sensorgrams from

each injection series were analyzed for binding kinetics

using BIAevaluation software (GE Healthcare). Dissociation

constants (KDs) were calculated from the on- and off-rates

(kon and koff, respectively), as determined by global fitting

Fig. 2. Antibody molecules constructed in this study. (A) Schematic representation of the primary structures of the sdAb (EG2), the pentabody (V2C-EG2)

and the cHCAb (EG2-hFc). (B) SDS–PAGE of 1 lg purified EG2, V2C-EG2, and EG2-hFc. EG2 and V2C-EG2 were expressed in E. coli, and EG2-hFc was

expressed in HEK293 cells. Proteins were separated on an 8–25% gradient PhastGel and Coomassie stained to visualize the proteins. (C) Size exclusion

chromatography of purified EG2, V2C-EG2, and EG2-hFc using a Superdex 200TM column. Superdex separations were carried out in PBS. The elution positions

of molecular mass markers are indicated. Data are normalized to a maximum 100 milliabsorbance units.
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of the experimental data to a 1:1 Langmuir binding model

(Chi2 < 1).

2.7. Size exclusion chromatography

Size exclusion chromatography (SEC) of EG2, V2C-EG2

and EG2-hFc was performed on Superdex 200TM (GE Health-

care). Superdex separations were carried out in PBS. Low

MW markers ribonuclease A (13.7 kDa), chymotrypsin A

(25 kDa) and ovalbumin (43 kDa) were used to calculate

the MW of EG2. High MW markers catalase (232 kDa), fer-

ritin (440 kDa), thyroglobulin (669 kDa) and blue dextran

(2000 kDa) were used to calculate the MW of V2C-EG2

and EG2-hFc.

2.8. 64Cu-labeling of antibodies

1,4,7,10-Tetraazacyclododecane-N,N0,N0 0,N0 0 0-tetraacetic

acid (DOTA) was activated by N-hydroxysulfosuccinimide

(sulfo-NHS) and 1-ethyl-3-[3-(dimethylamino)propyl]

carbodiimide (EDC) in a mixture solution (pH 5.5) at 4 �C

for 30 min. Purified antibody was reacted with a

1000:1000:100:1 M ratio of DOTA:sulfo-NHS:EDC:anti-

body in 0.1 M Na2HPO4 (pH 7.5) at 4 �C for 12–16 h. After

conjugation, the reaction mixture was centrifuged repeat-

edly through a YM-30 centricon with 30 mM ammonium

citrate buffer (pH 6.5) to remove unconjugated small mole-

cules. The purified conjugate was concentrated to 1 mg/ml

in 30 mM ammonium citrate buffer and stored at �20 �C

for further use. Typically, 150 lg of DOTA-conjugated anti-

body and 3.70 � 107 Bq of 64Cu (64CuCl2 in 0.1 MHCl; radio-

nuclide purity >99%, Washington University, St. Louis, MO)

were incubated in 30 mM ammonium citrate (pH 6.5) at

43 �C for 45 min. The reaction was terminated by addition

of 5 ll 10 mM diethylenetriaminepentaacetic acid solution.

Labeled antibody was separated by a size exclusion Bio-

SpinTM 6 column (Bio-Rad, Mississauga, ON).

2.9. Micro-positron emission tomography/computed

tomography (MicroPET/CT)

MIA PaCa-2 pancreatic cancer cells in 3 � 106 in sterile

saline were injected subcutaneously into the right flank of

the animals. The animal models were imaged when tumors

reached the size of 300–500 mm3. About 1.35 � 108 bq/

120 lg of 64Cu-DOTA-antibody was administered via tail

vain injection to mice under Metofane anesthesia. The ani-

mals were allowed free access to food and water. The mice

were re-anesthetized and imaged using microPET/CT scan-

ner for 10 min at 1 and 4 h, 15 min at 20 h and 20 min at

44 h. MicroPET/CT imaging of mice was performed using

a tri-modality microPET/CT/SPECT imager (Gamma Medica

FLEX Inc., CA) for functional and anatomical imaging. Mi-

croCT had an X-ray tube of 80 kVp, 0.5 mA fixed anode

with tungsten target to provide anatomical imaging with

spatial resolution of �100 lm. Images were acquired at a

fast scan time of 1 min and reconstructed using cone beam

filtered back-projection (modified Feldkamp) reconstruc-

tion algorithm with streak artifact reduction. Live animal

images were acquired at low radiation doses (1.2 cGy) for

1 min fly mode scan. Images were reconstructed using 2D

filtered back-projection (2D OSEM) and 3D filtered back-

projection (3D OSEM).

2.10. Quantification of microPET data

The calibration factor to convert PET image units of

counts/sec/voxel to Bq/cc was calculated from a mouse-

sized cylinder with a known concentration of 18F in water

assuming a tissue density of 1 g/cc. No additional attenua-

tion correction was applied. The conversion of positron

activity of 18F to that of 64Cu was carried out by the ratio

of the branching ratios of the positron decay of the iso-

topes. The calculated concentrations of radioactivity were

multiplied by the volume of each region of interest [37]

to determine total radioactivity present within regions.

ROI was analyzed using Analyzer AVW 3.0 software (Bio-

medical Imaging Resource, Mayo Foundation, Rochester,

MN).

2.11. EG2-hFc blood clearance in mice

A group of five 6-week old female BALB/c nu/nu mice

were i.v. injected with 150 lg EG2, V2C-EG2 or EG2-hFc

in 100 ll PBS into the tail vein. Blood was collected from

the facial vein at indicated time points. Sera were sepa-

rated and stored at �20 �C until further use. Concentra-

tions of the injected antibody molecules in the above

collected samples were measured by ELISA. For ELISA,

EGFR-ECD was coated on microtitre plates (Nunc) over-

night at 4 �C at a concentration of 2 lg/ml. After washing

three times with PBST, plates were blocked with 2%

skimmedmilk in PBS for one hour at 37 �C. Thousand times

or ten thousand times diluted sera were added to the wells

and incubated for another hour. Goat anti-llama antibody

(1:1000) (Bethyl Lab, Montgomery, Maryland), HRP labeled

anti-goat antibody (1:3000) (Cedarlane, Burlington, ON)

and peroxidase substrate were used to detect EG2-based

antibody molecules in the mouse sera. Serial dilutions of

pure EG2-hFc in mouse serum were used to make a stan-

dard curve for EG2-hFc concentration analysis.

3. Results

3.1. Isolation and characterization of sdAbs

Isolation of EGFR-specific sdAbs was achieved by llama immunization

with EGFRvIII-ECD, construction of an immune phage display library and

subsequent panning. Llama leucocytes (2 � 107) were used for the isola-

tion of mRNA, which was then used for the construction of a phage library

with a size of 5.5 � 107. Four rounds of phage display panning were per-

formed on immobilized EGFRvIII-ECD, and phage enrichment was ob-

served during panning (data not shown). Phage ELISA showed that 44

of the 45 analyzed clones bound to EGFRvIII-ECD as well as wild type

EGFR-ECD. Analysis of encoding sequences of the sdAbs displayed on

the phage clones revealed 11 different sdAb genes. The Genebank Acces-

sion Numbers for the 11 sdAb genes are EG2, EU153238; EG5, EU153239;

EG6, EU153240; EG7, EU153241; EG10, EU153242; EG16, EU153243;

EG28, EU153244; EG29, EU153245; EG30, EU153246; EG31, EU153247,

EG43, EU153248. The eleven sdAbs can be divided into four groups based

on their CDR sequence identity (Fig. 1).

One sdAb gene from each of the four groups was chosen and sub-

cloned into an E. coli periplasmic expression vector, pSJF2 [30], generating

four clones pEG2, pEG10, pEG31 and pEG43. The four sdAbs, each tagged

with a c-Myc detection tag and a 6� histidine (His) tag at their C-termini
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(Fig. 2A, represented by EG2), were produced in E. coli and purified by

IMAC. The yields of EG2, EG10, EG31 and EG43 were 11, 19, 8 and

43 mg per liter of TG1 culture, respectively.

The four anti-EGFR sdAbs were analyzed for binding to EGFR-ECD

using a surface plasmon resonance (SPR)-based biosensor. The on-rates

of the sdAbs range from 1 � 105 to 4 � 105 M�1 s�1 and the off-rates from

2.1 � 10�2 to 1.2 � 10�1 s�1. The dissociation constants (KDs) of the sdAbs

range from 55 nM (EG2) to 440 nM (EG31) (Fig. 3A, Table 1). EG2 was

chosen for construction of two other antibody formats, pentabody and

cHCAb, since this sdAb exhibited the highest affinity for EGFR.

3.2. Construction and characterization of EG2 pentabody and EG2 cHCAb

To construct EG2 pentabody, DNA encoding EG2 was amplified by

PCR and flanked with restriction sites BspEI and BamHI. The amplified

DNA was digested and ligated into the pentamerization vector pVT2

[31] digested with the same enzymes. The generated clone expresses pen-

tameric EG2, V2C-EG2 (Fig. 2A). The yield of V2C-EG2 was 44 mg per liter

of E. coli culture.

To generate EG2 cHCAb, the sdAb gene was amplified and cloned into

HCAb vector pTT5-hFc [34], which is designed to fuse a protein to the Fc

domain of human IgG1. Sequence analysis of the generated clone, EG2-

hFc, indicated that a Glu to Val mutation at position 5 of EG2 occurred

during PCR amplification of EG2 but this did not affect the binding of

EG2-hFc to EGFR (Fig. 3D). The generated construct (Fig. 2A) was used

to transiently transfect human embryonic kidney cells HEK293. EG2-hFc

was purified by Protein A affinity chromatography with a yield of

21 mg per liter of HEK293 culture.

EG2, V2C-EG2 and EG2-hFc were subjected to SDS–PAGE and size

exclusion chromatography to analyze their subunit molecular weights

and the molecular masses of the native proteins. Denatured EG2, V2C-

EG2 and EG2-hFc migrated at 14 kDa, 23 kDa and 45 kDa, respectively

(Fig. 2B). By size exclusion chromatography, the molecular masses of

EG2, V2C-EG2 and EG2-hFc were estimated as 14, 108 and 90 kDa, respec-

tively (Fig. 2C). These results demonstrate that EG2 exists as a monomer,

V2C-EG2 as a pentamer and EG2-hFc as a dimer. The measured size of

V2C-EG2 (108 kDa) is slightly smaller than the predicted size (126 kDa).

Nevertheless, it is still considered a pentamer based on the electropho-

retic and chromatographic data and the structure of the pentamerization

domain, the B subunit of shiga toxin 1 (Stx1B) [38].

To evaluate the impact of multivalency on the functional affinities of

V2C-EG2 and EG2-hFc, the binding profiles of these molecules were ana-

lyzed using the SPR-based biosensor by flowing them separately over the

same EGFR-ECD surface. Oligomerization of EG2 sdAb, in either dimeric or

pentameric format, resulted in higher apparent affinities (Fig. 3B and C).

Although both proteins showed a slightly slower kon compared to EG2

(data not shown), the main difference in apparent affinity is due to slower

koffs. This likely results from an avidity effect that occurs when a multiva-

lent binder interacts with an immobilized protein. The avidity effect for

the multivalent constructs, as reflected in a decrease in koff, appears to

increase with higher surface density of EGFR-ECD (comparing Fig. 3B

Fig. 3. Interactions between EGFR-ECD and various antibody constructs as monitored by surface plasmon resonance. (A) Sensorgrams showing 0.5 lM EG2,

EG10, EG31, and EG43, injected at a flow rate of 20 ll/min, interacting with 500 RUs immobilized EGFR-ECD. For calculation of sdAb affinities, data from at

least three independent experiments at sdAb concentrations ranging from 1 lM to 0.4 nM were fit to a 1:1 Langmuir binding model using BiaEvaluation

v4.1. (B) and (C) Sensorgrams showing EG2, V2C-EG2, and EG2-hFc interacting with different antigen densities. EGFR-ECD was immobilized at a density of

400 RU (B) and 1500 RU (C) on the same sensor chip in different flow cells. EG2, V2C-EG2, and EG2-hFc interacting with antigen at different concentrations

(1 lM to 0.4 nM) were analyzed; only the sensorgrams for the 0.5 lM injections are shown for clarity. The data in (B) and (C) were normalized to a

maximum RU of 100 to allow better comparison of the dissociation phases between the antibody constructs. (D) Sensorgrams showing EGFR-ECD

interacting with EG2, V2C-EG2, and EG2-hFc. The three antibodies were immobilized at a density of 300 RU. Concentrations of EGFR-ECD ranging from 1 lM
to 0.4 nM were injected at a flow rate of 20 ll/min. The data at 0.5 lM were normalized to 100 RUs to show the near identity of the three interactions.

Table 1

Kinetic rate constants and equilibrium rate constants of anti-EGFR sdAbs

interacting EGFR-ECD.

sdAbs EG2 EG10 EG31 EG43

kon (M�1 s�1) 3.7 � 105 2.5 � 105 3.2 � 105 1.7 � 105

koff (s
�1) 2.1 � 10�2 3.2 � 10�2 1.4 � 10�1 3.7 � 10�2

KD (nM) 55 126 440 316
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and C), as expected. In contrast, the KD for EG2, the monomeric sdAb, was

not affected by surface density. Although it is not possible to calculate

accurate KD values for V2C-EG2 and EG2-hFc due to their multivalency,

fitting to 1:1 Langmuir binding model revealed an apparent KD in the

low nanomolar range (data not shown). It is expected that the pentava-

lent V2C-EG2 would have a slower dissociation rate than the bivalent

EG2-hFc. However, the opposite was observed (Fig. 3B and C). A likely

explanation is that not all five sdAbs are able to access immobilized anti-

gen simultaneously.

To confirm that the higher apparent affinities of V2C-EG2 and EG2-

hFc were indeed due to avidity effects resulting from multivalency, the

experimental format was inversed such that EGFR-ECD binding to immo-

bilized EG2, V2C-EG2 and EG2-hFc was analyzed by SPR. Sensorgrams of

the interactions showed that EGFR-ECD binds to all three proteins, either

monomer, dimer or pentamer, with nearly identical association and dis-

sociation profiles (Fig. 3D). This result confirms that the improvements

in apparent affinity of V2C-EG2 and EG2-hFc are due to their higher

valency.

3.3. MicroPET/CT imaging of human pancreatic carcinoma model in nude

mice

EG2, V2C-EG2 and EG2-hFc were labeled with 64Cu and used for imag-

ing a human pancreatic carcinoma model, MIA PaCa-2, established in one

nude mouse for each construct. MicroPET/CT fused images suggested that

the majority of EG2 and V2C-EG2 localized in the kidneys 1 h after injec-

tion (Fig. 4A and B). Both proteins were barely detectable in the tumor at

Fig. 4. Fused microPET/CT images of human pancreatic carcinoma model MIA PaCa-2. Mice bearing established tumors were i.v. injected with 64Cu-DOTA-

EG2 (A), 64Cu-DOTA-V2C-EG2 (B), and 64Cu-DOTA-EG2-hFc (C). For EG2 and V2C-EG2, the mice were imaged at 1 h, 4 h and 20 h post-injection (20 h data

not shown). For EG2-hFc, the mouse was imaged at 1 h, 4 h, 20 h and 44 h post-injection. The top row in each sub-figure contains either surface rendering

images performed using AmiraTM (Mercury Computer System Inc.) to show relative tumor location (arrows) (Fig. 4A–C at 1 h) or fused microPET/CT images

(Fig. 4C at 4, 20 and 44 h). The bottom row in each sub-figure contains either fused microPET/CT images (Fig. 4A and B) or microPET images (Fig. 4C). The

images were acquired by FLEX Trimodality micro CT/PET/SPECT system (Gamma Medica-Ideas Inc.).
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1 h and 4 h. In contrast, microPET/CT images of the mouse administered

with EG2-hFc revealed gradual accumulation in tumor and gradual reduc-

tion in other organs for the observed period (up to 44 h). No obvious kid-

ney uptake was noticed (Fig. 4C). In addition, good tumor:muscle contrast

was observed after 20 h, and the contour of the tumor in the PET image

matches the true tumor shape.

3.4. Serum stability and serum clearance of the antibodies

The differential tumor-targeting ability of EG2, V2C-EG2 and EG2-hFc

may relate to differences in stability in serum or serum half life of these

molecules. sdAbs and pentabodies were found stable in serum [32]. To

prove that EG2 and V2C-EG2 are stable as well and to evaluate the serum

stability of EG2-hFc, all three proteins were incubated in serum for 24 h

and assessed by ELISA after the incubation. All three proteins were found

relatively stable in serum (data not shown).

An ELISA was then used to measure the concentrations of EG2, V2C-

EG2 and EG2-hFc in mouse blood taken at different time points after

injection. EG2 was cleared from the circulation relatively rapidly

(Fig. 5). The circulating level of EG2 detected 1 h post-injection was only

about 0.1% of the initial level observed at 0 h (this value is not visible due

to the scales used in Fig. 5). This is in agreement with reports on other

sdAbs [22]. V2C-EG2, despite its relatively large size of approximately

126 kDa, has only a slightly longer circulating half life (Fig. 5). Four hours

after the injection, the amount of circulating V2C-EG2 was below the level

of detection.

In contrast, EG2-hFc has a relatively long serum half life. The rate of

removal of circulating EG2-hFc fits nicely into a two-phase clearance

model (Fig. 5). The concentration of EG2-hFc 96 h post-injection was

approximately 10% of its initial level. Comparing this result with that

from a chimeric IgG targeting the same antigen in a similar animal mod-

els [39], it can be concluded that chimeric HCAb and chimeric IgG have

similar serum half lives.

4. Discussion

The purpose of this study was to identify an appropriate

sdAb-based antibody format which can be broadly used in

targeting solid tumors as well as other disease states. We

describe the isolation of eleven sdAbs targeting EGFR and

the construction of pentabody (V2C-EG2) and cHCAb

(EG2-hFc) versions of one of these sdAbs (EG2). These three

versions of EG2 were radiolabeled with 64Cu andmicroPET/

CT imaging was used to analyze their in vivo distribution in

a MIA PaCa-2 human pancreatic carcinoma xenograft mod-

el. As expected, the sdAb was cleared from the circulation

rapidly after injection, and did not achieve significant

tumor accumulation (Fig. 4A). The pentabody, despite its

relatively large size (126 kDa), behaved similarly as the

sdAb (Fig. 4B). Similar results were observed from other

pentabodies used in tumor-targeting (J.Z. unpublished

data), suggesting that pentabody is not an efficient tu-

mor-targeting format. In contrast, the cHCAb achieved very

good tumor accumulation over time. These results demon-

strate that of the three formats, the cHCAb is by far the

most suitable for tumor imaging and possibly cancer ther-

apy. Similar results were obtained when the three formats

were tested in a different EGFR-expressing tumor model

and using a different contrast reagent (A. Abulrub, personal

communication).

The tumor-targeting ability of an antibody is influenced

predominantly by two rates: serum clearance rate and tu-

mor penetration rate [40], which in turn are primarily

influenced by affinity, size and the Fc region of the anti-

body. Intact Ig molecules are most frequently used in ther-

apy due to their prolonged serum half lives. Truncated

antibodies with a complete Fc domain, such as a scFv fused

to CH2–CH3 (Fc), are cleared at a rate slightly faster than

the original mAb [41,42]. By comparison, antibody frag-

ments lacking the Fc domain, such as scFv and Fab, are rap-

idly cleared from the circulation by glomerular filtration,

and have a much shorter serum half life [43].

Like scFvs, sdAbs including those reported by others

[22] and described in this study also have short serum half

lives, on the order of minutes. Our strategy of fusing sdAbs

to either a pentamerization domain or an Fc domain was

designed to increase not only the size of the sdAb to over

60 kDa, the glomerular filtration limit, but also its avidity.

As expected, both pentamerized EG2 (V2C-EG2) and Fc-

fused EG2 (EG2-hFc) exhibited avidity effects, albeit not

to the same extent. It therefore follows that the slow blood

clearance rate, rather than the avidity, of EG2-hFc is the

characteristic that primarily accounts for its in vivo perfor-

mance (Fig. 5).

Some data suggest that smaller antibody fragments

penetrate into deeper areas of tumor tissue [44] but the

loss of the Fc domain made them less attractive as imag-

ing/therapeutic reagents. The challenge is to retain an in-

tact Fc while satisfying the moderate size requirement

for good tumor penetration. The small size (�14 kDa) of

sdAbs makes it possible to fulfill both requirements. EG2-

hFc, described here, has a complete human Fc domain

and yet is only approximately 80 kDa. We refer to this type

of molecule as a chimeric HCAb because it combines hu-

man Fc and camelid sdAb domains. Fully human HCAbs

(hHCAbs) can be constructed if human sdAbs [11,45] are

used. In addition, expression of cHCAbs in a mammalian

expression system was tested by fusing six sdAbs to the

Fc domain of human IgG1 with good yields [34]. Glycopat-

terns of these cHCAbs were found to be similar to human

IgGs expressed in similar systems [34].

In summary, we propose that HCAbs warrant further

investigation as alternatives to conventional IgGs for imag-

ing and therapeutic applications because of (1) their poten-

tially better tumor penetration; (2) their potentially higher

production yield due to a simpler two-chain molecular

structure; (3) their lower dose requirements due to lower

molecular weight (�80 kDa vs. 150 kDa for IgG) and (4)

Fig. 5. Blood clearance profile of EG2, V2C-EG2, and EG2-hFc in BALB/c

nu/nu mice. After i.v. injecting 150 lg different antibody constructs into

the tail vein of the mice, concentrations of the molecules in the sera at

indicated time points were measured by ELISA. EG2-hFc concentrations

were fitted into a two-phase clearance model, as shown by the solid line.
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versatility, i.e. ease of construction of fusions to other effec-

tor entities.
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