680 research outputs found
Signatures of rocky planet engulfment in HAT-P-4. Implications for chemical tagging studies
Aims. To explore the possible chemical signature of planet formation in the
binary system HAT-P-4, by studying abundance vs condensation temperature Tc
trends. The star HAT-P-4 hosts a planet detected by transits while its stellar
companion does not have any detected planet. We also study the Lithium content,
which could shed light on the problem of Li depletion in exoplanet host stars.
Conclusions. The exoplanet host star HAT-P-4 is found to be ~0.1 dex more metal
rich than its companion, which is one of the highest differences in metallicity
observed in similar systems. This could have important implications for
chemical tagging studies, disentangling groups of stars with a common origin.
We rule out a possible peculiar composition for each star as lambda Boo, delta
Scuti or a Blue Straggler. The star HAT-P-4 is enhanced in refractory elements
relative to volatile when compared to its stellar companion. Notably, the
Lithium abundance in HAT-P-4 is greater than in its companion by ~0.3 dex,
which is contrary to the model that explains the Lithium depletion by the
presence of planets. We propose a scenario where, at the time of planet
formation, the star HAT-P-4 locked the inner refractory material in
planetesimals and rocky planets, and formed the outer gas giant planet at a
greater distance. The refractories were then accreted onto the star, possibly
due to the migration of the giant planet. This explains the higher metallicity,
the higher Lithium content, and the negative Tc trend detected. A similar
scenario was recently proposed for the solar twin star HIP 68468, which is in
some aspects similar to HAT-P-4. We estimate a mass of at least Mrock ~ 10
Mearth locked in refractory material in order to reproduce the observed Tc
trends and metallicity.Comment: 5 pages, 6 figures, A&A Letters accepte
VALES: IV. Exploring the transition of star formation efficiencies between normal and starburst galaxies using APEX/SEPIA Band-5 and ALMA at low redshift
In this work we present new APEX/SEPIA Band-5 observations targeting the CO
() emission line of 24 Herschel-detected galaxies at .
Combining this sample {with} our recent new Valpara\'iso ALMA Line Emission
Survey (VALES), we investigate the star formation efficiencies (SFEs =
SFR/) of galaxies at low redshift. We find the SFE of our sample
bridges the gap between normal star-forming galaxies and Ultra-Luminous
Infrared Galaxies (ULIRGs), which are thought to be triggered by different star
formation modes. Considering the as the SFR and the
ratio, our data show a continuous and smooth increment as a function of
infrared luminosity (or star formation rate) with a scatter about 0.5 dex,
instead of a steep jump with a bimodal behaviour. This result is due to the use
of a sample with a much larger range of sSFR/sSFR using LIRGs, with
luminosities covering the range between normal and ULIRGs. We conclude that the
main parameters controlling the scatter of the SFE in star-forming galaxies are
the systematic uncertainty of the conversion factor, the gas
fraction and physical size.Comment: 9pages, 7 figures, 1 table, accepted for publication in MNRA
The ALMA Frontier Fields Survey - IV. Lensing-corrected 1.1 mm number counts in Abell 2744, MACSJ0416.1-2403 and MACSJ1149.5+2223
[abridged] Characterizing the number counts of faint, dusty star-forming
galaxies is currently a challenge even for deep, high-resolution observations
in the FIR-to-mm regime. They are predicted to account for approximately half
of the total extragalactic background light at those wavelengths. Searching for
dusty star-forming galaxies behind massive galaxy clusters benefits from strong
lensing, enhancing their measured emission while increasing spatial resolution.
Derived number counts depend, however, on mass reconstruction models that
properly constrain these clusters. We estimate the 1.1 mm number counts along
the line of sight of three galaxy clusters, i.e. Abell 2744, MACSJ0416.1-2403
and MACSJ1149.5+2223, which are part of the ALMA Frontier Fields Survey. We
perform detailed simulations to correct these counts for lensing effects. We
use several publicly available lensing models for the galaxy clusters to derive
the intrinsic flux densities of our sources. We perform Monte Carlo simulations
of the number counts for a detailed treatment of the uncertainties in the
magnifications and adopted source redshifts. We find an overall agreement among
the number counts derived for the different lens models, despite their
systematic variations regarding source magnifications and effective areas. Our
number counts span ~2.5 dex in demagnified flux density, from several mJy down
to tens of uJy. Our number counts are consistent with recent estimates from
deep ALMA observations at a 3 level. Below 0.1 mJy, however,
our cumulative counts are lower by 1 dex, suggesting a flattening in
the number counts. In our deepest ALMA mosaic, we estimate number counts for
intrinsic flux densities 4 times fainter than the rms level. This
highlights the potential of probing the sub-10 uJy population in larger samples
of galaxy cluster fields with deeper ALMA observations.Comment: 19 pages, 14 figures, 3 tables. Accepted for publication in A&
Obtención de vidrio a partir de residuos de la minería del estaño en Bolivia
Manufacturing of glass from tin mining tailings in Bolivia Tailings from mining activities in Bolivia represent an environmental problem. In the vicinity of the tin mines of Llallagua,Potosí department, there are large dumps and tailings. We present a study of the use of these wastes as raw materials for the manufacture of glass. This procedure aims to contribute to environmental remediation of mining areas through the vitrification, a process which offers an alternative for stabilization of hazardous waste. In addition, the marketing of the obtained product would provide an additional income to the mining areas. For this study three samples of mining waste, with grain size between sand and silt, were used. The chemical composition of these raw materials, determined by X-ray fluorescence, is granitic, with high contents of heavy metals. On the basis of its composition, glass were made from silica glass by adding CaCO3 and Na2CO3. The thermal cycle has been determined from TDA. Tg values of glass range from 626º to 709 °C. Leaching tests of the obtained glasses confirm their capacity to retain heavy metals
The ALMA Frontier Fields Survey
CONTEXT: Dusty star-forming galaxies are among the most prodigious systems at high redshift (z > 1), characterized by high star-formation rates and huge dust reservoirs. The bright end of this population has been well characterized in recent years, but considerable uncertainties remain for fainter dusty star-forming galaxies, which are responsible for the bulk of star formation at high redshift and thus play a key role in galaxy growth and evolution.
AIMS: In this first paper of our series, we describe our methods for finding high redshift faint dusty galaxies using millimeter observations with ALMA.
METHODS: We obtained ALMA 1.1 mm mosaic images for three strong-lensing galaxy clusters from the Frontier Fields Survey, which constitute some of the best studied gravitational lenses to date. The ≈2′ × 2′ mosaics overlap with the deep HST WFC3/IR footprints and encompass the high magnification regions of each cluster for maximum intrinsic source sensitivity. The combination of extremely high ALMA sensitivity and the magnification power of these clusters allows us to systematically probe the sub-mJy population of dusty star-forming galaxies over a large surveyed area.
RESULTS: We present a description of the reduction and analysis of the ALMA continuum observations for the galaxy clusters Abell 2744 (z = 0.308), MACS J0416.1-2403 (z = 0.396) and MACS J1149.5+2223 (z = 0.543), for which we reach observed rms sensitivities of 55, 59 and 71 μJy beam-1 respectively. We detect 12 dusty star-forming galaxies at S/N ≥ 5.0 across the three clusters, all of them presenting coincidence with near-infrared detected counterparts in the HST images. None of the sources fall close to the lensing caustics, thus they are not strongly lensed. The observed 1.1 mm flux densities for the total sample of galaxies range from 0.41 to 2.82 mJy, with observed effective radii spanning ≲0.̋05 to 0.̋37 ± 0.̋21 . The lensing-corrected sizes of the detected sources appear to be in the same range as those measured in brighter samples, albeit with possibly larger dispersion
Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico
Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m-2 d-1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets
Tunneling dynamics in exactly-solvable models with triple-well potentials
Inspired by new trends in atomtronics, cold atoms devices and Bose-Einstein
condensate dynamics, we apply a general technique of N=4 extended
Supersymmetric Quantum Mechanics to isospectral Hamiltonians with triple-well
potentials, i.e. symmetric and asymmetric. Expressions of quantum-mechanical
propagators, which take into account all states of the spectrum, are obtained,
within the N = 4 SQM approach, in the closed form. For the initial Hamiltonian
of a harmonic oscillator, we obtain the explicit expressions of potentials,
wavefunctions and propagators. The obtained results are applied to tunneling
dynamics of localized states in triple-well potentials and for studying its
features. In particular, we observe a Josephson-type tunneling transition of a
wave packet, the effect of its partial trapping and a non-monotonic dependence
of tunneling dynamics on the shape of a three-well potential. We investigate,
among others, the possibility of controlling tunneling transport by changing
parameters of the central well, and we briefly discuss potential applications
of this aspect to atomtronic devices.Comment: Latex, 28 pages, 7 Figs, 2 Tables; minor presentation changes,
journal versio
The ALMA Frontier Fields Survey. II. Multiwavelength Photometric analysis of 1.1 mm continuum sources in Abell 2744, MACSJ0416.1-2403 and MACSJ1149.5+2223
CONTEXT: The Hubble and Spitzer Space Telescope surveys of the Frontier Fields provide extremely deep images around six massive, strong-lensing clusters of galaxies. The ALMA Frontier Fields survey aims to cover the same fields at 1.1 mm, with maps reaching (unlensed) sensitivities of <70 μJy, in order to explore the properties of background dusty star-forming galaxies.
AIMS: We report on the multi-wavelength photometric analysis of all 12 significantly detected (>5σ) sources in the first three Frontier Fields clusters observed by ALMA, based on data from Hubble and Spitzer, the Very Large Telescope and the Herschel Space Observatory.
METHODS: We measure the total photometry in all available bands and determine the photometric redshifts and the physical properties of the counterparts via SED-fitting. In particular, we carefully estimate the far-infrared (FIR) photometry using 1.1 mm priors to limit the misidentification of blended FIR counterparts, which strongly affect some flux estimates in previous FIR catalogs. Due to the extremely red nature of these objects, we used a large range of parameters (e.g. 0.0 <Av< 20.0) and templates (including AGNs and ULIRGs models).
RESULTS: We identify robust near-infrared (NIR) counterparts for all 11 sources with Ks detection, the majority of which are quite red, with eight having F814W − Ks ≳ 4 and five having F160W − [ 4.5 ] ≳ 3. From the FIR point of view, all our objects have zphot ~ 1–3, whereas based on the optical SED one object prefers a high-z solution (z ≥ 7). Five objects among our sample have spectroscopic redshifts from the GLASS survey for which we can reproduce their SEDs with existing templates. This verification confirms the validity of our photometric redshift methodology. The mean redshift of our sample is zphot = 1.99 ± 0.27. All 1.1 mm selected objects are massive (10.0 < log [ M⋆(M⊙) ] < 11.5), with high star formation rates (⟨ log [ SFR(M⊙/ yr) ] ⟩ ≈ 1.6) and high dust contents (8.1 < log [ Mdust(M⊙) ] < 8.8), consistent with previous ALMA surveys
Speciation of common Gram-negative pathogens using a highly multiplexed high resolution melt curve assay
The identification of the bacterial species responsible for an infection remains an important step for the selection of antimicrobial therapy. Gram-negative bacteria are an important source of hospital and community acquired infections and frequently antimicrobial resistant. Speciation of bacteria is typically carried out by biochemical profiling of organisms isolated from clinical specimens, which is time consuming and delays the initiation of tailored treatment. Whilst molecular methods such as PCR have been used, they often struggle with the challenge of detecting and discriminating a wide range of targets. High resolution melt analysis is an end-point qPCR detection method that provides greater multiplexing capability than probe based methods. Here we report the design of a high resolution melt analysis assay for the identification of six common Gram-negative pathogens; Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Pseudomonas aeruginosa, Salmonella Sp, and Acinetobacter baumannii, and a generic Gram-negative specific 16S rRNA control. The assay was evaluated using a well characterised collection of 113 clinically isolated Gram-negative bacteria. The agreement between the HRM assay and the reference test of PCR and sequencing was 98.2% (Kappa 0.96); the overall sensitivity and specificity of the assay was 97.1% (95% CI: 90.1–99.7%) and 100% (95% CI: 91.78–100%) respectively
- …
