69 research outputs found

    inhibition of osteoclast activity by complement regulation with df3016a a novel small molecular weight c5ar inhibitor

    Get PDF
    Abstract Recent insights have indicated an active role of the complex complement system not only in immunity, but also in bone remodeling. Evidence from knockout mice and observations from skeletal diseases have drawn attention to the C5a/C5aR axis of the complement cascade in the modulation of osteoclast functions and as potential therapeutic targets for treatment of bone pathologies. With the aim to identify novel C5aR regulators, a medicinal chemistry program was initiated, driven by structural information on a minor pocket of C5aR that has been proposed to be a key motif for C5aR intracellular activation. The impact of the peptidomimetic orthosteric C5aR antagonist (PMX-53), of two newly synthesized allosteric C5aR antagonists (DF2593A, DF3016A), and of C5aR down-regulation by specific siRNAs, were examined for regulation of osteoclastogenesis, using a well-validated in-vitro model starting from RAW264.7 precursor cells. Both pharmacological and molecular approaches reduced osteoclast maturation of RAW264.7 cells induced by receptor-activator of nuclear factor kappa-B ligand (RANKL), which limited the transcription of several differentiation markers evaluated by real-time PCR, including nuclear factor of activated T-cell 1, matrix metalloproteinase-9, cathepsin-K, and tartrate-resistant acid phosphatase. These treatments were ineffective on the subsequent step of osteoclast syncytium formation, apparently as a consequence of reduction of C5aR mRNA levels in the course of osteoclastogenesis, as monitored by real-time PCR. Among the C5aR antagonists analyzed, DF3016A inhibited osteoclast degradation activity through inhibition of C5aR signal transduction and transcription. These data confirm the preclinical relevance of this novel therapeutic candidate

    A new synthetic dual agonist of GPR120/GPR40 induces GLP-1 secretion and improves glucose homeostasis in mice.

    Get PDF
    Abstract G-protein coupled receptors 40 and 120 (GPR40 and GPR120) are increasingly emerging as potential therapeutic targets for the treatment of altered glucose homeostasis, and their agonists are under evaluation for their glucagon-like peptide-1 (GLP-1)-mediated therapeutic effects on insulin production and sensitivity. Here, we characterized a new dual GPR40 and GPR120 agonist (DFL23916) and demonstrated that it can induce GLP-1 secretion and improve glucose homeostasis. Resulting from a rational drug design approach aimed at identifying new dual GPR120/40 agonists able to delay receptor internalization, DFL23916 had a good activity and a very high selectivity towards human GPR120 (long and short isoforms) and GPR40, as well as towards their mouse orthologous, by which it induced both Gαq/11-initiated signal transduction pathways with subsequent Ca2+ intracellular spikes and G protein-independent signaling via β-arrestin with the same activity. Compared to the endogenous ligand alpha-linolenic acid (ALA), a selective GPR120 agonist (TUG-891) and a well-known dual GPR40 and GPR120 agonist (GW9508), DFL23916 was the most effective in inducing GLP-1 secretion in human and murine enteroendocrine cells, and this could be due to the delayed internalization of the receptor (up to 3 h) that we observed after treatment with DFL23916. With a good pharmacokinetic/ADME profile, DFL23916 significantly increased GLP-1 portal vein levels in healthy mice, demonstrating that it can efficiently induce GLP-1 secretion in vivo. Contrary to the selective GPR120 agonist (TUG-891), DFL23916 significantly improved also glucose homeostasis in mice undergoing an oral glucose tolerance test (OGTT)

    A case of chronic thromboembolic pulmonary hypertension.

    Get PDF
    Chronic thromboembolic pulmonary hypertension (CTEPH) is a potentially fatal complication of pulmonary embolism (PE). Organized thrombus in the pulmonary artery causes a chronic obstruction, leading to a vascular system remodeling, an increase of pulmonary vascular resistance and a chronic pulmonary hypertension. Epidemiology is mostly unknown due to the difficult diagnostic process that often leads to a late diagnosis: findings of persistent pulmonary hypertension (PH), despite correct treatment of PE, lead to the diagnostic suspect. The first choice treatment is pulmonary endarterectomy (PEA) associated with lifelong anticoagulant therapy with vitamin K antagonist. We present the case of a 53-year-old male affected by dyspnea for months, admitted to a sub-intensive care unit for intermediate low-risk PE; echocardiography showed signs of PH persisting after anticoagulant therapy; after 2 months of specific treatment the diagnosis of CTEPH was confirmed and the patient was successfully treated with PEA

    Phenotypic, functional, and metabolic heterogeneity of immune cells infiltrating non–small cell lung cancer.

    Get PDF
    Lung cancer is the leading cancer in the world, accounting for 1.2 million of new cases annually, being responsible for 17.8% of all cancer deaths. In particular, non–small cell lung cancer (NSCLC) is involved in approximately 85% of all lung cancers with a high lethality probably due to the asymptomatic evolution, leading patients to be diagnosed when the tumor has already spread to other organs. Despite the introduction of new therapies, which have improved the long-term survival of these patients, this disease is still not well cured and under controlled. Over the past two decades, single-cell technologies allowed to deeply profile both the phenotypic and metabolic aspects of the immune cells infiltrating the TME, thus fostering the identification of predictive biomarkers of prognosis and supporting the development of new therapeutic strategies. In this review, we discuss phenotypic and functional characteristics of the main subsets of tumorinfiltrating lymphocytes (TILs) and tumor-infiltrating myeloid cells (TIMs) that contribute to promote or suppress NSCLC development and progression. We also address two emerging aspects of TIL and TIM biology, i.e., their metabolism, which affects their effector functions, proliferation, and differentiation, and their capacity to interact with cancer stem cells

    Inflammation-Independent Antinociceptive Effects of DF2755A, a CXCR1/2 Selective Inhibitor: A New Potential Therapeutic Treatment for Peripheral Neuropathy Associated to Non-Ulcerative Interstitial Cystitis/Bladder Pain Syndrome

    Get PDF
    Interstitial cystitis (IC)/bladder pain syndrome (BPS) is a chronic bladder disease of unknown etiology characterized by urinary frequency and episodic and chronic pain. Analgesic treatments for IC/BPS are limited, especially for patients with non-Hunner (non-ulcerative) type IC who usually have poor overall outcomes. Here, we demonstrate that oral treatment with DF2755A, a potent and selective inhibitor of chemokine receptors CXCR1/2, can prevent and reverse peripheral neuropathy associated to non-Hunner IC/BPS by directly inhibiting chemokine-induced excitation of sensory neurons. We tested DF2755A antinociceptive effects in a cyclophosphamide (CYP)-induced non-ulcerative IC rat model characterized by severe peripheral neuropathy in the absence of bladder inflammatory infiltrate, urothelial hyperplasia, and hemorrhage. Treatment with DF2755A prevented the onset of peripheral neuropathy and reversed its development in CYP-induced IC rats, showing a strong and long-lasting anti-hyperalgesic effect. Ex vivo and in vitro studies showed that DF2755A treatment strongly inhibited the expression of CXCR2 agonists, CXCL1/KC, and CXCL5 and of transient receptor potential vanilloid 1 (TRPV1) compared to vehicle, suggesting that its effects can be due to the inhibition of the nociceptive signaling passing through the CXCL1/CXCR1-2 axis and TRPV1. In conclusion, our results highlight the key pathophysiological role played by the CXCL1/CXCR1-2 axis and TRPV1 in the onset and development of peripheral neuropathy in non-Hunner IC and propose DF2755A as a potential therapeutic approach for the treatment of not only inflammatory painful conditions but also neuropathic ones and in particular non-Hunner IC/BPS

    Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm

    Get PDF
    Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs.The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species

    The linear sampling method and energy conservation

    No full text
    International audienc
    • …
    corecore