257 research outputs found

    Optically addressing interaction of Mg/MgO plasmonic systems with hydrogen

    Get PDF
    Magnesium-based films and nanostructures are being studied in order to improve hydrogen reversibility, storage capacity, and kinetics, because of their potential in the hydrogen economy. Some challenges with magnesium (Mg) samples are their unavoidable oxidation by air exposure and lack of direct in situ real time measurements of hydrogen interaction with Mg and MgO surfaces and Mg plasmonic nanoparticles. Given these challenges, the present article investigates direct interaction of Mg with hydrogen, as well as implications of its inevitable oxidation by real-time spectroscopic ellipsometry for exploiting the optical properties of Mg, MgH2 and MgO. The direct hydrogenation measurements have been performed in a reactor that combines a remote hydrogen plasma source with an in situ spectroscopic ellipsometer, which allows optical monitoring of the hydrogen interaction and results in optical property modification. The hydrogen plasma dual use is to provide the hydrogen-atoms and to reduce barriers to heterogeneous hydrogen reactions.European Commission under the H2020 grant TWINFUSYON (GA692034). Army Research Laboratory under Cooperative Agreement Number W911NF-17-2-0023. SODERCAN (Sociedad para el Desarrollo de Cantabria) through the Research Vicerrectorate of the University of Cantabria

    Discovery of macrocyclic inhibitors of apurinic/apyrimidinic endonuclease 1

    Get PDF
    Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential base excision repair enzyme that is upregulated in a number of cancers, contributes to resistance of tumors treated with DNA-alkylating or -oxidizing agents, and has recently been identified as an important therapeutic target. In this work, we identified hot spots for binding of small organic molecules experimentally in high resolution crystal structures of APE1 and computationally through the use of FTMAP analysis (http://ftmap.bu.edu/). Guided by these hot spots, a library of drug-like macrocycles was docked and then screened for inhibition of APE1 endonuclease activity. In an iterative process, hot-spot-guided docking, characterization of inhibition of APE1 endonuclease, and cytotoxicity of cancer cells were used to design next generation macrocycles. To assess target selectivity in cells, selected macrocycles were analyzed for modulation of DNA damage. Taken together, our studies suggest that macrocycles represent a promising class of compounds for inhibition of APE1 in cancer cells.This work was supported by grants from the National Institutes of Health (Grant R01CA205166 to M.R.K. and M.M.G. and Grant R01CA167291 to M.R.K.) and by the Earl and Betty Herr Professor in Pediatric Oncology Research, Jeff Gordon Children's Foundation, and the Riley Children's Foundation (M.R.K.). Work at the BU-CMD (J.A.P., L.E.B., R.T.) is supported by the National Institutes of Health, Grant R24 GM111625. D.B. and S.V. were supported by the National Institutes of Health, Grant R35 GM118078. (R35 GM118078 - National Institutes of Health; R01CA205166 - National Institutes of Health; R01CA167291 - National Institutes of Health; R24 GM111625 - National Institutes of Health; Earl and Betty Herr Professor in Pediatric Oncology Research; Jeff Gordon Children's Foundation; Riley Children's Foundation)Accepted manuscriptSupporting documentatio

    Gallium plasmonic nanoantennas unveiling multiple kinetics of hydrogen sensing, storage, and spillover

    Get PDF
    Hydrogen is the key element to accomplish a carbon-free based economy. Here, the first evidence of plasmonic gallium (Ga) nanoantennas is provided as nanoreactors supported on sapphire (α-Al2O3) acting as direct plasmon-enhanced photocatalyst for hydrogen sensing, storage, and spillover. The role of plasmon-catalyzed electron transfer between hydrogen and plasmonic Ga nanoparticle in the activation of those processes is highlighted, as opposed to conventional refractive index-change-based sensing. This study reveals that, while temperature selectively operates those various processes, longitudinal (LO-LSPR) and transverse (TO-LSPR) localized surface plasmon resonances of supported Ga nanoparticles open selectivity of localized reaction pathways at specific sites corresponding to the electromagnetic hot-spots. Specifically, the TO-LSPR couples light into the surface dissociative adsorption of hydrogen and formation of hydrides, whereas the LO-LSPR activates heterogeneous reactions at the interface with the support, that is, hydrogen spillover into α-Al2O3 and reverse-oxygen spillover from α-Al2O3. This Ga-based plasmon-catalytic platform expands the application of supported plasmon-catalysis to hydrogen technologies, including reversible fast hydrogen sensing in a timescale of a few seconds with a limit of detection as low as 5 ppm and in a broad temperature range from room-temperature up to 600 °C while remaining stable and reusable over an extended period of time.The authors thank all of the students and colleagues in their groups who were actively involved with nanoparticles research. M.L., Y.G., and F.M. have received funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement No. 899598—PHEMTRONICS. F.M. acknowledges MINECO (Spanish Ministry of Economy and Competitiveness, project PGC2018-096649-B-100)

    Fingerloop activates cargo delivery and unloading during cotranslational protein targeting

    Get PDF
    During cotranslational protein targeting by the signal recognition particle (SRP), information about signal sequence binding in the SRP's M domain must be effectively communicated to its GTPase domain to turn on its interaction with the SRP receptor (SR) and thus deliver the cargo proteins to the membrane. A universally conserved “fingerloop” lines the signal sequence–binding groove of SRP; the precise role of this fingerloop in protein targeting has remained elusive. In this study, we show that the fingerloop plays important roles in SRP function by helping to induce the SRP into a more active conformation that facilitates multiple steps in the pathway, including efficient recruitment of SR, GTPase activation in the SRP•SR complex, and most significantly, the unloading of cargo onto the target membrane. On the basis of these results and recent structural work, we propose that the fingerloop is the first structural element to detect signal sequence binding; this information is relayed to the linker connecting the SRP's M and G domains and thus activates the SRP and SR for carrying out downstream steps in the pathway

    Polymorphic gallium for active resonance tuningin photonic nanostructures: from bulk gallium totwo-dimensional (2D) gallenene

    Get PDF
    Reconfigurable plasmonics is driving an extensive quest for active materials that can support a controllable modulation of their optical properties for dynamically tunable plasmonic structures. Here, polymorphic gallium (Ga) is demonstrated to be a very promising candidate for adaptive plasmonics and reconfigurable photonics applications. The Ga sp-metal is widely known as a liquid metal at room temperature. In addition to the many other compelling attributes of nanostructured Ga, including minimal oxidation and biocompatibility, its six phases have varying degrees of metallic character, providing a wide gamut of electrical conductivity and optical behavior tunability. Here, the dielectric function of the several Ga phases is introduced and correlated with their respective electronic structures. The key conditions for optimal optical modulation and switching for each Ga phase are evaluated. Additionally, we provide a comparison of Ga with other more common phase-change materials, showing better performance of Ga at optical frequencies. Furthermore, we first report, to the best of our knowledge, the optical properties of liquid Ga in the terahertz (THz) range showing its broad plasmonic tunability from ultraviolet to visible-infrared and down to the THz regime. Finally, we provide both computational and experimental evidence of extension of Ga polymorphism to bidimensional twodimensional (2D) gallenene, paving the way to new bidimensional reconfigurable plasmonic platforms.F.M. acknowledges MICINN (Spanish Ministry of Science and Innovation) through project PGC2018-096649-B-100

    Queen Conch (Strombus gigas) Testis Regresses during the Reproductive Season at Nearshore Sites in the Florida Keys

    Get PDF
    BACKGROUND: Queen conch (Strombus gigas) reproduction is inhibited in nearshore areas of the Florida Keys, relative to the offshore environment where conchs reproduce successfully. Nearshore reproductive failure is possibly a result of exposure to environmental factors, including heavy metals, which are likely to accumulate close to shore. Metals such as Cu and Zn are detrimental to reproduction in many mollusks. METHODOLOGY/PRINCIPAL FINDINGS: Histology shows gonadal atrophy in nearshore conchs as compared to reproductively healthy offshore conchs. In order to determine molecular mechanisms leading to tissue changes and reproductive failure, a microarray was developed. A normalized cDNA library for queen conch was constructed and sequenced using the 454 Life Sciences GS-FLX pyrosequencer, producing 27,723 assembled contigs and 7,740 annotated transcript sequences. The resulting sequences were used to design the microarray. Microarray analysis of conch testis indicated differential regulation of 255 genes (p<0.01) in nearshore conch, relative to offshore. Changes in expression for three of four transcripts of interest were confirmed using real-time reverse transcription polymerase chain reaction. Gene Ontology enrichment analysis indicated changes in biological processes: respiratory chain (GO:0015992), spermatogenesis (GO:0007283), small GTPase-mediated signal transduction (GO:0007264), and others. Inductively coupled plasma-mass spectrometry analysis indicated that Zn and possibly Cu were elevated in some nearshore conch tissues. CONCLUSIONS/SIGNIFICANCE: Congruence between testis histology and microarray data suggests that nearshore conch testes regress during the reproductive season, while offshore conch testes develop normally. Possible mechanisms underlying the testis regression observed in queen conch in the nearshore Florida Keys include a disruption of small GTPase (Ras)-mediated signaling in testis development. Additionally, elevated tissue levels of Cu (34.77 ng/mg in testis) and Zn (831.85 ng/mg in digestive gland, 83.96 ng/mg in testis) nearshore are similar to reported levels resulting in reproductive inhibition in other gastropods, indicating that these metals possibly contribute to NS conch reproductive failure

    Resistive state of superconducting structures with fractal clusters of a normal phase

    Full text link
    The effect of morphologic factors on magnetic flux dynamics and critical currents in percolative superconducting structures is considered. The superconductor contains the fractal clusters of a normal phase, which act as pinning centers. The properties of these clusters are analyzed in the general case of gamma-distribution of their areas. The statistical characteristics of the normal phase clusters are studied, the critical current distribution is derived, and the dependencies of the main statistical parameters on the fractal dimension are found. The effect of fractal clusters of a normal phase on the electric field induced by the motion of the magnetic flux after the vortices have been broken away from pinning centers is considered. The voltage-current characteristics of fractal superconducting structures in a resistive state for an arbitrary fractal dimension are obtained. It is found that the fractality of the boundaries of normal phase clusters intensifies magnetic flux trapping and thereby increases the current-carrying capability of the superconductor.Comment: 15 pages with 8 figures, revtex3, alternative e-mail of author is [email protected]

    Low-frequency cortical activity is a neuromodulatory target that tracks recovery after stroke.

    Get PDF
    Recent work has highlighted the importance of transient low-frequency oscillatory (LFO; &lt;4 Hz) activity in the healthy primary motor cortex during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here, we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the local field potential and the related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in the perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Together, our results suggest that restoration or modulation of cortical oscillatory dynamics is important for the recovery of upper-limb function and that they may serve as a novel target for clinical neuromodulation

    Dynamics of the magnetic flux trapped in fractal clusters of normal phase in a superconductor

    Full text link
    The influence of geometry and morphology of superconducting structure on critical currents and magnetic flux trapping in percolative type-II superconductor is considered. The superconductor contains the clusters of a normal phase, which act as pinning centers. It is found that such clusters have significant fractal properties. The main features of these clusters are studied in detail: the cluster statistics is analyzed; the fractal dimension of their boundary is estimated; the distribution of critical currents is obtained, and its peculiarities are explored. It is examined thoroughly how the finite resolution capacity of the cluster geometrical size measurement affects the estimated value of fractal dimension. The effect of fractal properties of the normal phase clusters on the electric field arising from magnetic flux motion is investigated in the case of an exponential distribution of cluster areas. The voltage-current characteristics of superconductors in the resistive state for an arbitrary fractal dimension are obtained. It is revealed that the fractality of the boundaries of the normal phase clusters intensifies the magnetic flux trapping and thereby raises the critical current of a superconductor.Comment: revtex, 16 pages with 1 table and 5 figures; text and figures are improved; more detailed version with geometric probability analisys of the distribution of entry points into weak links over the perimeter of a normal phase clusters and one additional figure is published in Phys.Rev.B; alternative e-mail of author is [email protected]

    An Improved Canine Genome and a Comprehensive Catalogue of Coding Genes and Non-Coding Transcripts

    Get PDF
    The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog ∼175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional ∼3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to ∼20,700 high-confidence protein coding loci, we found ∼4,600 antisense transcripts overlapping exons of protein coding genes, ∼7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs) and ∼11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts
    corecore