
Discovery of macrocyclic inhibitors of Apurinic/apyrimidinic endonuclease 1

Richard Trilles¥, Dmitri Beglov†, Qiujia Chen§, Hongzhen He§, Randall Wireman‡, April Reed‡, Spandan 

Chennamadhavuni¥, James S. Panek, Lauren E. Brown¥, Sandor Vajda†, John A. Porco, Jr.¥, Mark R. 

Kelley* ‡, and Millie M. Georgiadis*§ 

¥Department of Chemistry and Center for Molecular Discovery (BU-CMD),Boston University, Boston,

Massachusetts, 02215, †Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 

02215 §Department of Biochemistry and Molecular Biology, ‡Department of Pediatrics and Herman B 

Wells Center for Pediatric Research, Indiana University School of Medicine, 46202 Department of 

Chemistry and Chemical Biology, Purdue School of Science, Indiana University-Purdue University 

Indianapolis, Indianapolis, Indiana 46202 

Page 1 of 64 Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

___________________________________________________________________

This is the author's manuscript of the article published in final edited form as:

Trilles, R., Beglov, D., Chen, Q., He, H., Wireman, R., Reed, A., … Georgiadis, M. M. (2019). Discovery of macrocyclic inhibitors of 
Apurinic/apyrimidinic endonuclease 1. Journal of Medicinal Chemistry. https://doi.org/10.1021/acs.jmedchem.8b01529

https://doi.org/10.1021/acs.jmedchem.8b01529


Abstract

Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential base excision repair enzyme that is 

upregulated in a number of cancers, contributes to resistance of tumors treated with DNA-alkylating or -

oxidizing agents, and has recently been identified as an important therapeutic target. In this work, we 

identified hot spots for binding of small organic molecules experimentally in high resolution crystal 

structures of APE1 and computationally through the use of FTMAP analysis (http://ftmap.bu.edu/). 

Guided by these hot spots, a library of drug-like macrocycles was docked and then screened for inhibition 

of APE1 endonuclease activity. In an iterative process, hot spot-guided docking, characterization of 

inhibition of APE1 endonuclease, and cytotoxicity of cancer cells were used to design next generation 

macrocycles. To assess target selectivity in cells, selected macrocycles were analyzed for modulation of 

DNA damage. Taken together, our studies suggest that macrocycles represent a promising class of 

compounds for the inhibition of APE1 in cancer cells.
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Introduction

Targeting of DNA repair proteins for cancer therapeutic development represents a recent area of 

interest in drug discovery (reviewed in 1).  It has long been known that DNA repair proteins including 

apurinic/apyrimidinic endonuclease 1 (APE1) are upregulated in cancer and can mediate resistance to a 

number of chemotherapeutic agents including those that target DNA directly through alkylation or 

indirectly by mechanisms such as the creation of reactive oxygen species that react with DNA.2-5 In its 

essential role in base excision repair (BER), APE1 catalyzes the Mg2+-dependent cleavage of the 

phosphodiester backbone 5 of abasic sites that result from removal of damaged bases by glycosylases 

(reviewed in 6). 

To date, a number of experimental and in silico high-throughput screens (HTS) to identify 

selective APE1 endonuclease inhibitors have been reported.7-13 These efforts have largely focused on the 

screening of commercially available libraries of small molecules that would be predicted to bind directly 

to APE1. In an alternative approach, macrocycles, unrelated to those reported here, have been identified 

that bind directly to an abasic site in duplex DNA preventing APE1 from binding its substrate.14 While a 

number of APE1-targeting compounds exhibit low micromolar activity, demonstrating selectivity has 

been challenging.15 Many of the existing inhibitors are negatively charged and disrupt other protein-DNA 

interactions as well as APE1-DNA interactions. Others, such as antimony-containing compounds, are not 

cell permeable.8  Reactive blue 2 dye or myricetin, which inhibit APE1, are also known to bind several 

cellular targets and are problematic in terms of chemical optimization. Most recently, a novel class of 

heterocyclic APE1 inhibitors with low micromolar IC50s resulting from a focused medicinal chemistry 

effort was reported.16 Existing ligands provide important information about the chemical structure and 

composition of APE1 endonuclease inhibitors. However, a limitation in the rational design and 

development of selective APE1 inhibitors remains a lack of structural information for APE1-inhibitor 

complexes. In this study, we used X-ray crystallography and computational solvent mapping to identify 

hot spots for binding of small organic molecules to APE1. Docking based on consideration of hot spot 

positioning suggested that macrocycles could bind to the active site of APE1.
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Among New Chemical Entities (NCE’s) approved as drugs during the period 1981-2006, 60% are 

natural products and their derivatives.17 Evolutionarily-driven biosynthesis differs from laboratory organic 

synthesis, leading to a difference in properties between natural and synthetic compounds.18 Natural 

products often violate the molecular weight limit of less than 500 Daltons set by Lipinski’s Rule of 

Five,19, 20 while remaining pharmacologically active. Many of these violators are macrocycles; it has been 

observed that macrocycles have an advantage over similarly sized acyclic compounds in terms of 

pharmacokinetics, solubility, cell permeability, and potency.21-24 These advantages have been attributed to 

features such as a diminished entropic penalty on binding, as well as the potential for the dynamic, 

environmentally-driven alteration of physiochemical properties (e.g. intramolecular hydrogen bond-

mediated burial of solubilizing polar groups allowing for the traversal of nonpolar membrane 

environments).21-23, 25 The main appeal of macrocycles as scaffolds for APE1 ligands is in their ability to 

provide a semi-flexible, soluble scaffold linking the structural elements able to interact with the distant 

binding hot spots on the DNA-binding protein surface. Advances in the synthesis of non-natural 

macrocycles and their extensive testing in drug discovery26 contributed to the creation of macrocyclic 

libraries, which are available both academically and commercially. 

In a novel approach, in silico modeling, guided by our solvent bound APE1 X-ray crystal 

structures as well as computationally docked solvents that defined “hot spots” for binding of organic 

molecules, suggested that our macrocyclic libraries could serve as starting points for the structure-based 

design of APE1 ligands. Accordingly, a library of macrocycles was tested for inhibition of APE1 

endonuclease activity, and four novel macrocycles with IC50 values in the low micromolar range were 

identified. Building on these hits, additional macrocycles were synthesized to establish initial structure 

activity relationship (SAR) contributing to the APE1 inhibitory properties of this newly identified 

chemotype.
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Results and Discussion

Crystallographic solvent mapping for APE1 

With a large number of inhibitors reported for APE1, we sought to provide a structural 

framework for understanding the nature of the interactions. While the inhibitor complex structures have 

proven elusive, the solvent used to solubilize the inhibitors, DMSO, was bound to the active site of APE1 

in numerous structures. We therefore prepared DMSO soaks and obtained a crystal structure of a DMSO-

APE1 (PDB ID: 6MK3) complex determined at 1.48 Å (Table 1). In this structure, DMSO binds to two 

distinct sites within APE1. We refer to the first location within the active site created through interactions 

with W280, F266, L282, and N174 as the “abasic site or AP (apurinic/apyrimidinic) site” (Figure 1A, B). 

The sulfoxide O atom of DMSO is hydrogen bonded to the side chain NH of N174 (N-O distance is 2.7 

Å) (Figure 1B). N174 is positioned through hydrogen-bonding of its side chain carbonyl to the main chain 

amide nitrogen of G176 in the repair active site. DMSO bound in the abasic site superimposes directly on 

the baseless sugar, which is flipped out into a shallow pocket in the structure of the substrate APE1-DNA 

complex (Figure 1C).27 The second DMSO binding site is located 35 Å away from the abasic site and 

involves interactions with D163, F162, L140, and Q137. In this site, the sulfoxide O atom is located 2.7 Å 

from the main chain N in D163 (Figure S1). This second binding site is an isolated small binding pocket 

on the surface of the protein. 

Table 1: Crystallographic Data

Dataset DMSO DMSO/

Mg2+

DMSO/

Tris

GLC

PDB ID 6MK3 6MKK 6MKM 6MKO

Data 

a (Å) 46.583   46.697   46.552   46.492   

b (Å) 137.789    141.487    136.601    137.815    

c (Å) 45.243    45.334    45.084    45.193    
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Space group P21212 P21212 P21212 P21212

Resolution limit (Å) 1.48 1.44 1.67 2.09

Completeness (%) 97.6 

(97.2)

98.4 

(74.3)

95.3

(79.4)

99.0 

(97.5)

Rmerge (%) 6.0 (41.0) 4.7 (34.0) 7.7 (63.9) 7.7 (21.2)

I/σ 22.8

(3.0)
31.3 (3.4)

16.5 (2.1) 30.4 (4.2)

Refinement 

R value (%) 19.1 18.4 20.5 17.6

R free   (%) 21.9 21.2 25.0 22.8

RMSD bonds (Å) 0.005 0.007 0.004 0.003

RMSD angles (°) 1.03 1.177 0.934 0.810

Average B-factor 20.2 18.4 24.1 21.3

Highest resolution shells in order of appearance in table: 1.51-1.48, 1.46-1.44, 1.7-1.67, 2.12-2.09.
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Figure 1. Crystallographic solvent mapping. (A) A molecular surface rendering of APE1, the DMSO 

bound structure (6MK3), with C, light gray, O, red, N, blue, and S, yellow. Superimposed on the 

molecular surface of APE1 is DNA (from 4IEM) in a stick rendering, C, cyan, P, orange, O, red, and N, 

blue with the abasic or AP residue in yellow. (B) DMSO bound to the abasic site of APE1. The initial Fo-

Fc electron density map contoured at 3 is shown for the crystal structure with DMSO bound to the AP 

site. A hydrogen bond between the O of DMSO and NH of N174 is indicated by a black dashed line. 

APE1 is shown as a semi-transparent molecular surface rendering. Residues W280, F266, L282 (not 

labeled, directly underneath the bound DMSO), and N174 line the shallow AP site pocket. (C) DMSO (C, 

green, S, yellow, O, red) is shown superimposed with the abasic substrate (C, cyan) in stick renderings. 

(D) DMSO and Mg2+ bound to the active site of APE1. The initial Fo-Fc electron density map of the 

DMSO/Mg2+ crystal structure (6MKK) is shown for DMSO and Mg2+ contoured at 3. Coordinating 

ligands for Mg2+ are shown in dashed black lines including D70, E96, and 4 water molecules. The DMSO 

is this structure is not hydrogen bonded to N174. (E) DMSO and DMSO/Mg2+ are shown superimposed in 
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the abasic site pocket on a surface rendering of APE1. In the presence of Mg2+, the DMSO (C, blue) 

position is slightly shifted relative to that in the structure with just DMSO (C, green) bound. (F) Tris and 

DMSO bound to the active site of APE1 (6MKM). The initial Fo-Fc electron density map for Tris and 

DMSO is shown contoured at 3. Tris is hydrogen bonded to D70 and E96, the Mg2+ coordinating 

ligands. (G) Tris/DMSO are shown in stick renderings superimposed on the DMSO bound structure. Mg2+ 

from the DMSO/Mg2+ structure is shown for reference. Tris binds to the Mg2+ site. DMSO binds very 

similarly in the two structures. (H) Glycerol bound to the active site of APE1 (6MKO). The initial Fo-Fc 

electron density map is shown contoured at 3. Hydrogen bonds between OH group in glycerol and NH 

in N174 and N212 are shown in dashed black lines. (I) Glycerol (C, blue) is shown superimposed with 

DMSO and Mg2+ from the DMSO/Mg2+ structure for reference. Glycerol binds deeper in the abasic site 

pocket than DMSO. 

Additional complexes with DMSO include a DMSO/Mg2+ complex (PDB ID: 6MKK) and a 

DMSO/Tris complex (PDB ID: 6MKM). These complexes were obtained by screening for APE1-small 

molecule complexes, the first with 4-(hydroxymethyl)-phenyl-acetic acid, a compound selected for its 

potential to bind to the abasic site and to Mg2+ in the active site, and the second with an arylstibonic acid 

derivative,  the APE1 inhibitor 13755,8 soaked in Tris pH 8.0  (See Materials and Methods). Neither 4-

(hydroxymethyl)-phenyl-acetic acid nor 13755 were evident in the electron density maps for these 

crystals. However, these structures, determined at 1.44 and 1.67 Å, respectively, provided additional 

insights on DMSO binding in the presence of other bound ligands in the active site, as Mg2+ and Tris in 

these structures are bound to the same site. Mg2+ exhibits an octahedral coordination geometry with 

oxygen atoms from D70 and E96, each 2.1 Å from the Mg2+ atom, serving as ligands as well as four water 

molecules (Figure 1D). DMSO is bound deeper within the abasic site pocket and is not hydrogen bonded 

to N174 (Figure 1E); its sulfoxide oxygen now faces the backbone carbonyl of A230. The NH3
+ group of 

Tris is hydrogen bonded to the O of D70 (2.7 Å) and to O of E96 (3.2 Å) (Figure 1F). DMSO binds 

slightly differently in the presence of bound Mg2+ than in the presence of Tris. In the DMSO/Tris 
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structure and DMSO only structures, DMSO is bound identically in the abasic site (Figure 1G). The 

second DMSO site is also identically occupied in these two structures, whereas in the DMSO/Mg2+ 

structure, the second DMSO site is not occupied. This finding suggests that the presence of Mg2+ 

modulates positioning and availability of small molecule binding sites in APE1.

Additional solvents that bind to the abasic sugar binding site within the repair active site of APE1 

include glycerol (PDB ID: 6MKO) and ethylene glycol. The basis for solvent binding within the repair 

active site of APE1 appears to rely on an interaction with the relatively small pocket designed to bind to 

the flipped out abasic sugar of substrate DNA. Binding of glycerol to the abasic site involves a hydrogen 

bonding interaction between a hydroxyl group in glycerol and the side chain carbonyl oxygen of  N212 

(2.79 Å) and a water-mediated hydrogen-bonding interaction between a second glycerol hydroxyl and the 

amide side chain group of N174 (Figure 1H).  The more polar glycerol binds a little deeper in the pocket 

than DMSO alone (Figure 1I). The second glycerol binding site is located between two molecules in the 

lattice and forms a hydrogen bond between one of its hydroxyl groups and the main chain carbonyl 

oxygen of E242 (3.08 Å) (Figure S1). Ethylene glycol was used as the cryoprotectant in all structures 

except for that of the glycerol structure. Hydrogen bonding occurs between the carboxylate oxygen atom 

of E216 and a hydroxyl of ethylene glycol bound to APE1 in all of the structures in which ethylene glycol 

was used as a cryoprotectant (Figure S1). Three additional ethylene glycol binding sites were identified in 

the DMSO structure and two additional sites in the previously reported Apo structure,28 including one 

bound to the abasic site (Figure S1). 

Computational solvent mapping

The crystallographic solvent mapping results provided a relatively small number of preferred 

binding sites within APE1. Therefore, it was of interest to use computational methods to further 

investigate possible binding sites. Results of computational solvent mapping for the magnesium-bound 

APE1 structure are shown in Figure 2. The primary binding region (Figure 2A) is composed of 7 

consensus sites with the total population of 50 probe clusters. The most populated site, site 1 (17 probe 
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clusters) is next to the magnesium ion position (shown in green). Site 2 (15 clusters) is the abasic DNA 

sugar binding site. We have experimentally validated binding of Tris near the Mg2+ site in the Tris/Mg2+ 

structure and binding to the abasic site by solvent probes such as DMSO, ethylene glycol, and glycerol as 

determined by multiple solvent crystal structures. The computational mapping also revealed a binding 

region consisting of a small hydrophobic cavity on the opposite side of the protein, formed by Leu 62, Ile 

91, Phe 162, Phe 165, and Leu 318 residues. Two clusters with a total of 21 probes are located in this 

region (Figure 2B).  The crystallographic experiments showed an ethylene glycol bound at this secondary 

region. Collectively, our crystallographic and computational solvent mapping provided the locations of 

preferred binding sites for small organic molecules in the active site of APE1 in the presence and absence 

of the APE1 cofactor, Mg2+, laying the foundation for a novel structure-based approach for the 

identification of APE1 inhibitors. 
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Figure 2. Computational solvent mapping with FTmap ((http://ftmap.bu.edu/). (A) Computational 

docking of small organic molecules reveals clustering of 50 probes (thin lines, C, cyan, O, red, N blue) 

into 7 consensus sites in or near the active site of APE1 (4QHE) shown as a molecular surface rendering 

(C, light gray, O, red, N, blue, and S, yellow). DMSO (stick model C, green, O, red, S, yellow) from the 

crystal structure is shown bound in consensus site 2. Probes at consensus site 1, the most populated site, 

are in close proximity to the Mg2+ ion, shown as a surface rendering in green. (B) A secondary site 

occupied by ethylene glycol in several crystal structures of APE1 is shown with a cluster of 21 probes 

shown in thin lines. Ethylene glycols bound in this site and in the vicinity are shown as stick renderings 

(C, magenta, O, red). This is a small pocket on the surface of the molecule. Thus, the major consensus 

sites for computational docking of probes in the active of APE1 and in another pocket have been 

validated in our crystallographic analysis. 

Identification of macrocycles that inhibit APE1 endonuclease activity 

Focusing on sites 1 and 2 as a key binding regions for potential APE1 inhibitors, we deduced that 

sites 3-7 show directions of possible ligand extensions. The distance between clusters 5 and 6 spanning 

the binding pocket is approximately 18 Å, suggesting that an optimal ligand for this binding region may 

be large in size. This observation of a large pocket size led us to consider the in silico evaluation of a 

small library of 15- and 16-membered macrocycles (105 compounds) from the BU-CMD screening 

collection as potential inhibitors (MC001-MC105, see Scheme 1 for general synthetic route). These 

macrocycles possess molecular weights ranging from 350-800 kDa and maximal projection radii ranging 

from 6-10 Å. The library was originally synthesized according to the protocol outlined in Scheme 1. 
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Specifically, enantioenriched homoallylic amines 5 were first prepared via asymmetric crotylation of 

imine carbamate substrates with enantioenriched crotylsilane 2. These acyl imines were generated in situ 

by condensation of allyl carbamate 1 with a variety of aldehydes 3a-e in a modified variant of our 

previously-reported procedure.29 While Scheme 1 depicts the stereochemical outcome achieved from the 

use of (S)-2, the screening library was also populated with macrocycles derived from the enantiomeric 

crotylsilane (R)-2, leading to macrocycles, which are epimeric at the crotylation-derived stereocenters.30 

Subsequent palladium-mediated allyl carbamate deprotection of 4 afforded homallylic amines 5, which 

were then further diversified via EDCI-mediated coupling to various commercial, Boc-protected amino 

acids 6a-d to afford 7. Following deprotection of 7, macrocycles MC001-MC105 were obtained via a tin-

mediated tandem, one-pot aminolysis/macrolactonization of amino esters 8 with various γ-butyro or δ-

valero lactone derivatives 9a-s.31
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Scheme 1: General design and synthetic route for macrocyclic lactone library.i,ii
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iReagents and conditions: (a) BF3-THF, -78 °C to -20 °C; (b) Pd(PPh3)4, 1,3-dimethylbarbituric acid, THF; (c) 

EDCI, i-Pr2EtNH, DMF or CH2Cl2; (d) HCl, dioxane; (e) Otera’s catalyst, PhCF3

ii Depicted stereochemistry corresponds to use of (S)-2 in Step a. Intermediates 4, 5, 7, 9, and 

macrocycles MC derived from crotylsilane (R)-2 are epimeric at the methyl- and R-substituted positions.
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We computationally docked this macrocyclic library, guided by hot spots identified by our 

crystallographic solvent mapping and FTMap analysis as described in Experimental Procedures. Docking 

yielded a series of high quality poses, suggesting that select BU-CMD macrocycles generally match the 

topological features of the APE1 binding site. The docked molecules were scored on the basis of the 

average ensemble energy for their lower energy poses as described in the Experimental Procedures. The 

top 25 docked molecules and their average ensemble energies are shown in Table 2. Notably, 

macrocycles derived from (S)-2 and tryptophan (6c) predominated among the top scored macrocycles.

Table 2. Average Autodock energy for the top 25 macrocycles

Code Crotylsilane Aldehyde 3 Amino acid 6 Lactone 9 Energy

MC042 (α-R) (S)-2 3b 6c (R)-9c -9.38

MC093 (α-S) (R)-2 3e 6c (S)-9d -9.19

MC048 (S)-2 3b 6c 9p -9.18

MC044 (S)-2 3b 6c 9f -9.08

MC042 (α-S) (S)-2 3b 6c (S)-9c -9.02

MC047 (α-S) (S)-2 3b 6c (S)-9k -8.95

MC043 (α-S) (S)-2 3b 6c (S)-9d -8.91

MC046 (S)-2 3b 6c 9j -8.87

MC030 (α-S) (S)-2 3a 6c (S)-9l -8.77

MC022 (α-R) (S)-2 3a 6c (R)-9h -8.76

MC047 (α-R) (S)-2 3b 6c (R)-9k -8.63

MC022 (α-S) (S)-2 3a 6c (S)-9h -8.63

MC045 (S)-2 3b 6c 9i -8.58

MC093 (α-R) (R)-2 3e 6c (R)-9d -8.58

MC032 (α-R) (S)-2 3a 6c (R)-9n -8.55

MC043 (α-R) (S)-2 3b 6c (R)-9d -8.50
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Based on favorable preliminary docking results, macrocycles available at the time of screening 

were then assayed as potential inhibitors of APE1 activity. Of the 66 compounds assayed, four (see below 

for codes) inhibited APE1 endonuclease activity by at least 45% and were further characterized for 

concentration dependent inhibition. Using this approach, 6.1% of the compounds screened were found to 

inhibit APE1, whereas in our previous HTS efforts, the success rate was approximately 0.1%.10 All four 

of the compounds, MC043, MC047, MC042 and MC019 exhibited concentration dependent inhibition 

with IC50 values ranging from 1.2 µM to 5.4 µM for the diastereomeric mixtures (Figure 3). 

MC030 (α-R) (S)-2 3a 6c (R)-9l -8.49

MC019 (α-R) (S)-2 3a 6c (R)-9e -8.48

MC061 (R)-2 3c 6c 9m -8.47

MC096 (R)-2 3e 6c 9m -8.45

MC033 (α-S) (S)-2 3a 6c (S)-9o -8.45

MC036 (α-R) (S)-2 3a 6c (R)-9s -8.45

MC019 (α-S) (S)-2 3a 6c (S)-9e -8.45

MC058 (α-R) (R)-2 3c 6c (R)-9d -8.44

MC058 (α-S) (R)-2 3c 6c (S)-9d -8.44
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Figure 3. Initial hits from high-throughput screen of the macrocycle library. The chemical structures of 

the four hits obtained from screening of 66 macrocycles in an in vitro endonuclease activity are shown 

along with the IC50 values. 

From the primary screen, nascent SAR emerged suggesting that APE1 endonuclease inhibition 

activity was confined to library members originating from crotylation of N-tosyl pyrrole 2-

carboxaldehyde (3b) or benzaldehyde (3a) with crotylsilane (S)-2, and Boc-L-tryptophan (6c) as the 

amino acid building block (Scheme 1). These results were highly consistent with the outcome of our 

docking studies, in which these modalities appeared frequently among the top 25 structures. In addition, 

both diastereomers of all active hits are represented in the top 25 structures (Table 2).

With active macrocycles in hand, we next revisited our docking results to identify consensus 

poses for the actives that might inform further docking studies and analog designs. In general, two distinct 

docking modes with comparable energies were observed for the active macrocycles. Figure 4 depicts low-

energy poses representing the two alternative binding modes of active macrocycle MC047 as an 
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illustrative example. MC047, which was screened as a mixture of diastereomers, was docked separately 

as the α-S (green) and α-R (cyan) diastereomers, which refers to stereochemistry at the position α- to the 

macrolactone carbonyl. The docking poses of Mode 1, shown in Figure 4A, occupy 6 out of 7 hot spots in 

the main binding site. The difference in binding for the two diastereomers is mainly due to a slight change 

in the positioning of the tryptophan indole as depicted in Figure 4A. Specifically, this heterocycle is 

parallel to the plane of the Met270 hydrophobic atoms in the pose for the α-S isomer, while the pose for 

the α-R isomer projects the indole N-H toward this plane. It is interesting to observe that bound DNA 

(PDB ID: 1DE9) shares a bicyclic heterocycle positioned below Met270, similar to the Mode 1 docking 

pose. (Figure 4B hotspot region 4).  The main feature of binding Mode 2, in contrast, is an interaction of 

the sulfonamide group with the magnesium ion, as shown in Figure 4C. This pose, which was only 

obtained for the N-tosylpyrrole-containing macrocycles, occupies 5 out of 7 hot spots in the main binding 

site. For MC047, the trifluoromethyl group of the α-S isomer extends toward an additional hot spot 

(number 5 in Figure 2A), while in the α-R pose this group interacts with the terminal carbon of Met270. 

In comparing this Mode 2 pose to the binding mode of DNA, the lactone oxygens are situated proximal to 

where the DNA phosphate group binds the Mg+2 ion (Figure 4 D, hotspot region 2).
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Figure 4. Docking of macrocycle hit MC047. (A) The two diastereomers of MC047 are shown as stick 

models with α-S (C, green) and α-R (C, cyan) for Mode 1 of the possible docking poses. APE1 (4QHE) is 

shown as a molecular surface rendering.  In docking Mode 1, MC047 diastereomers occupy 6 out of 7 hot 

spots in the main binding site. The difference in binding for the two diastereomers is mainly due to a 

slight change in positioning of the tryptophan indole. The orientation is similar to that shown in Figs. 1 

and 2 as can be seen by the relative positions of M270 and R177. (B) In binding Mode 1, the position of 

the bicyclic heterocycle of MC047 (C, green) coincides with that of a guanine nucleotide from DNA (thin 

lines, C, cyan) bound to APE1 (1DE9) superimposed on the apo APE1 structure. APE1 is shown as a 

molecular surface rendering. (C) The two diastereomers of MC047 are shown in Mode 2 as similar 

renderings to those in (A), α-S (C, green) and α-R (C, cyan). In this binding mode, the sulfonamide group 

is in close proximity to the Mg2+ ion (green on the molecular surface rendering). The Mode 2 pose was 

only obtained for the N-tosylpyrrole-containing macrocycles and occupies 5 out of 7 hot spots in the main 

binding site. For MC047, the trifluoromethyl group of the α-S isomer extends toward an additional hot 

spot (number 5 in Figure 2A), while in the α-R pose this group interacts with the terminal carbon of 

Met270. (D) MC047 α-S (C, green) is shown with superimposed DNA (1DE9). In this mode, the lactone 

oxygens are situated proximal to where the DNA phosphate group binds the Mg2+ ion near hotspot region 

2).

Synthesis and in vitro assessment of follow-on analogs 

As part of our initial validation of the chemotype, a small set of simplified analogs 10-13 were 

synthesized (Scheme 2). APE1 endonuclease activities for these lactones are shown in Table 3.  Among 

this set, the N-tosyl pyrrole-substituted analogs 12 and 13 displayed superior APE1 inhibition potencies 

for the macrocycles in comparison to their phenyl-substituted counterparts 10 and 11. Interestingly, the 

most potent macrolactone of this set, compound 13, also falls in the top 25 docked macrocycles from the 

virtual library (MC045, Table 2) These observations led us to focus on binding Mode 2 (cf. Figures 4C 

and D), which exhibits a key interaction between the sulfonamide and Mg2+ ion, for subsequent docking 

experiments. Following identification of the initial screening hits and simplified analogs, our subsequent 
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optimization efforts focused on exploring further modifications of the linker group connecting the L-

tryptophan/homoallylic amine core, with the parallel goals of improving both potency and drug-like 

properties of the chemotype. A liability of lactone- and ester-containing drugs (as exemplified in 

macrocyclic lactone drugs with bacterial resistance mechanisms toward macrolide antibiotics) is the 

potential for drug inactivation due to esterase-mediated hydrolysis.32, 33 To address this anticipated 

liability, we next targeted macrolactam analogs (Scheme 3). Substrates 7a and 7b were deprotected and 

coupled to various achiral unsubstituted (14a-14c) and chiral, nonracemic (14d-14k) Boc-protected β-, γ- 

and δ-amino acids (Scheme 3 and Table 4). Following coupling, tandem Boc- and methyl ester 

deprotections were followed by HATU-mediated macrolactamization to afford macrocyclic lactams in 

modest yields for the three-step sequence in most cases (Table 4). 

Scheme 2: Synthesis of simplified follow-on macrolactone analogs.
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9a, Otera’s catalyst,
PhCF3, Wave, 175 °C

9i, Otera’s catalyst,
PhCF3, Wave, 175 °C

NTs

NTs

10

11

12

13

37% (two steps)

30% (two steps)

HCl/
dioxane

HCl/
dioxane

32% (two steps)

31% (two steps)

Table 3. APE1 endonuclease activity of macrolactones 

10-13

Entry Compound
APE1 IC50 

(µM)

PaO2c 

EC50(µM)

1 10 >100 >100

2 11 63.5 >50

3 12 10.6 >100

4 13 9.3 >100

The structures and APE1 endonuclease activities of macrocycles 17-30 are shown in Table 4. 

Initially, the direct O- to N- replacement was probed using compounds 17 and 18, the direct lactam 

analogs of lactones 12 and 13, respectively, as well as the 14-membered macrolactam 19 derived from -

alanine. A drop in activity was observed for all unsubstituted compounds 17, 18, and 19. For follow-on 

substituted lactam analogs, a cohort of chiral amino acids 14d-k were selected based on additional 
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docking experiments. Specifically, a large virtual library comprised of lactams derived from 

commercially-available amino acid building blocks was docked and evaluated, and the macrocyclic 

lactams that produced the lowest energy poses in binding Modes 1 and 2 were selected for synthesis and 

evaluation. In addition to the tosyl pyrrole-substituted macrolactams 17-27, phenyl-substituted variants of 

select analogs (28-30) were also synthesized for comparison. 

Scheme 3: General synthetic route toward second-generation macrocyclic lactams.i

O
HN

CH3

NH

R
O

NH

O
X

H
N

17-30

BocHN CO2HX+

14a-k

R

NH
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O
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O
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X NHBoc

b

c, d, e

8a
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8b

15 R = Ph
16 R = TsPyr
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14a 14b

14f 14h14g

14d14c 14e

14i 14j 14k

Boc-Amino acids 14a-k

7a
or
7b

a

iReagents and Conditions: (a) HCl/dioxane; (b) HATU, i-Pr2EtNH, CH2Cl2; (c) 2.5M NaOH, THF; (d) HCl, 

dioxane; (e) HATU, i-Pr2EtNH, CH2Cl2

Similar to the macrolactone series, there appear to be key substitution patterns on the tethering β-

amino acid of the 14-membered macrolactam scaffolds that govern endonuclease activity. For example, 

substitution α- to the lactam carbonyl appears to impart enhanced potency in most cases, while the 

comparison of lactams 20 and 21 suggests that this position may not be sensitive to stereochemical 

inversion.  This result is generally consistent with our docking, wherein both epimers generally produced 

favorable docking poses. Much like the lactone series, the N-tosyl pyrrole-substituted lactams 23, 25, and 
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26 also all exhibited superior potencies to their phenyl-substituted counterparts 28, 29 and 30, 

respectively. Interestingly, the meta-(trifluoromethyl)phenyl macrolactam 22 exhibited a significant 

reduction in activity in comparison to its para-substituted phenyl and benzyl analogs 23-27. 
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Table 4. Synthetic yields and APE1 endonuclease activity of 14-16-membered macrolactams

Entry Compound
Trp-coupled

precursor

Cyclization

precursor

(yield from 7)

Cyclization 

yield 

(3 steps)

APE1 

IC50 (µM)

PaO2c 

EC50 (µM)

1 17 7b 16a (81%) 29% 29.2 35.0

2 18 7b 16b (74%) 22% >50 >100

3 19 7b 16c (93%) 41% 33.2 58.4

5 20 7b 16d (81%) 86% 2.6 >100

6 21 7b 16e (82%) 47% 2.7 >100

7 22 7b 16f (77%) 36% 52.6 6.7

8 23 7b 16g (70%) 46% 1.3 >100
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9 24 7b 16h (81%) 32% 2.5 >100

10 25 7b 16i (79%) 42% 5.7 >100

11 26 7b 16j (84%) 43% 12.1 >100

12 27 7b 16k (80%) 42% 1.9 >100

13 28 7a 15g (75%) 25% 26.5 58.5

14 29 7a 15i (77%) 33% 55.1 36.2

15 30 7a 15j (78%) 13% >100 22

In summary, the observed SAR is generally consistent with the consensus binding Mode 2 

observed in our docking studies. Figure 5 depicts an overlay of the consistent low energy Mode 2 binding 

poses of molecules MC047, 11, 26 and 27. Molecules MC047, 26 and 27 all demonstrate projection of 

halogen moieties toward the hotspot region 5, as well as the interaction of sulfonamide groups with the 

magnesium ion. Attempts to validate the computationally-obtained poses through soaking into preformed 

crystals or co-crystallization experiments employing the most potent APE1 inhibitors have thus far 

yielded only solvent bound structures as we obtained for other classes of APE1 inhibitors. Notably, the 

first glycerol-APE1 structure shown in Figure 1 was serendipitously obtained through soaking efforts 

with macrocycle 20.

Figure 5. Overlay of “Mode 2” docking poses obtained for stick renderings of MC047 (C, light gray), 11 

(C, teal), 25 (C, dark green) and 26 (C, pink) in the active site of APE1 (4QHE). Compounds MC047, 25 
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and 26 all display an interaction between the sulfonamide groups and the magnesium ion (light green 

sphere), as well as a projection of their halogenated aryl rings toward hotspot region 5, left hand side.

Effect of macrocycles on viability and repair of DNA damage in cancer cells 

With a series of validated biochemical APE1 inhibitors in hand, we next sought to understand the 

effects of these inhibitors in a cellular context. Knock-down of APE1 arrests the growth of ovarian cancer 

cells in a xenograft mouse model;34 thus, compounds that specifically inhibit APE1 might be expected to 

have low cytotoxicity in cancer cell culture models. In contrast, compounds that exhibit high cytotoxicity 

may have off-target effects. Most of the macrocycles tested exhibit low cytotoxicity with the exception of 

17, 19, 22, 28, 29, and 30 (Tables 1 and 2). However, low cytotoxicity cannot be distinguished from low 

cell permeability in cell viability assays. 

To determine whether the compounds inhibit APE1 endonuclease activity in the cell, DNA 

damage in cells treated with selected macrocycles was assessed by comet assays35, 36 done in the presence 

and absence of the DNA-damaging agent, methyl methanesulfonate, MMS, which alkylates DNA. The 

comet assay was selected as a cell-based assay that reliably reports single-strand and double-strand breaks 

in DNA. In this assay, following exposure to MMS, alkylated bases are removed by DNA glycosylases 

creating abasic sites. APE1 then cleaves the DNA 5 of the abasic sites leading to single strand breaks (or 

potentially double-strand breaks if single-strand breaks are produced proximally in both strands). The 

breaks produce a long tail in the alkaline comet assay analyzed 1 h after adding MMS; this time point is 

short enough to ensure that the first two steps of base excision repair, removal of the damaged base by a 

DNA glycosylase and processing by APE1, have occurred. It is, however, insufficient time for the cell to 

have completed repair of the DNA through the base excision repair pathway. If the macrocycle inhibits 

APE1 preventing cleavage of the DNA backbone, then the length of the DNA tail in the comet assay is 

expected to be shorter than that observed for treatment with MMS alone.  An inherent assumption for the 

comet assay is that only compounds that exhibit some level of cell permeability have the potential to 

affect the tail length of the DNA. 
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Macrocycles chosen for the alkaline comet assay include non-cytotoxic APE1 inhibitors of 

varying potency (Tables 3 and 4): 13 (IC50 9.3 M, EC50 > 100 M), 21 (IC50 2.7 M, EC50 > 100 M), 

23 (IC50 1.3 M, EC50 > 100 M), and 24 (IC50 2.5 M, EC50 > 100 M), as well as low-potency APE1 

inhibitors with moderate cytotoxicities 19 (IC50 16.9 M, EC50 58.4 M) and 28 (IC50 26.5 M, EC50 58.5  

M). Malignant peripheral nerve sheath tumor ST8814 cells were treated with the macrocycles in the 

presence and absence of MMS at either 100 µM or, in the case of cytotoxic compounds, the EC30 value, 

and then assessed for comet tail length (Figure 6). The concentrations were selected to deliver the highest 

possible concentration of macrocycle to the cells without causing significant cell death. Alkaline comet 

assay results for 19 and 23 are similar to those obtained for MMS alone suggesting that these macrocycles 

do not effectively inhibit APE1 endonuclease activity in the cell.  Macrocycle 28 had a very modest effect 

on tail length consistent with its modest IC50 value for APE1 inhibition.  Macrocycles 21 and 24 appear to 

reduce comet tail length, while macrocycle 13 had the largest impact on tail length. These results suggest 

that despite having EC50 values for cell killing of greater than 100 M, these compounds appear to 

permeate cells.
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Figure 6. Macrocycle treatment alone and in combination with DNA damaging agent Methyl 

methanesulfonate (MMS) in Malignant peripheral nerve sheath tumor cell line ST8814 in Alkaline Comet 

Assay. APE1 Repair inhibitor candidates (Macrocycles) and APE1 Repair inhibitor control, APE1 Repair 

Inhibitor III (ARiIII; Calbiochem), were tested in ST8814 at a single dose (100 uM; or EC30) and in 

combination with a single dose of MMS (1.0 mM) for a 1.0 hour treatment. Cells were seeded in 6-well 

tissue culture plates at 130,000 cells/well in DMEM + 10% FBS and grown overnight at 37 ºC, 5% CO2. 

Media was exchanged with Opti-MEM™ (Gibco™) media containing macrocycle alone or spiked with 

1.0 mM MMS. Cells were then incubated for 1.0 hour at 37 ºC, 5% CO2. Media was exchanged with PBS, 

and cells were treated with 0.25% Trypsin (HyClone™), collected, and washed with PBS. Cells were then 

counted by hemacytometer. DNA damage was evaluated by CometAssay® (Trevigen®) performed under 

alkaline conditions. Cells were resuspended in PBS at 1 x 105/mL, and then added to pre-melted and 

cooled (37 °C) agarose at a 1:10 ratio. Cells were gently mixed, and then 50 uL of the agarose cell mix 

was transferred to pre-warmed comet slides (37 °C; CometSlideTM). After solidifying at 4 °C, slides were 

placed in lysis solution for 60 minutes, and then placed in freshly prepared alkaline unwinding solution 

(NaOH; pH 13) for 20 minutes. Slides were then subjected to electrophoresis under alkaline conditions 

(NaOH; pH 13) at 1 Volt/cm (300 mA) for 30 minutes. Slides were washed in H2O, placed in 70% 

ethanol, and allowed to dry at 37 ºC for 30 minutes. Slides were stained with 100 μL of 1:10,000 diluted 

SYBR® Gold (Invitrogen™) in TE pH 7.5, and incubated for 30 minutes. Slides were then rinsed in H2O 

briefly, and comets were captured by Fluorescent microscope (Leica DMIL) and quantified by 

CometScore™ Pro (TriTec Corp®). DNA damage measured by percent Tail DNA for controls and 

selected macrocycles is shown in (A) in two independent experiments. Representative images of comet 

slide DNA damage are shown in (B) for controls and selected macrocycles. Average of 20 comet 

readings/compound. 

Conclusion

We have employed a novel computational and structure-based approach to predict and identify 

new macrocyclic inhibitors of the DNA repair protein APE1. From screening of a library of 66 
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macrocyclic scaffolds, four compounds were identified with micromolar APE1 inhibition values. The 

chemotype was further explored and preliminary structure-activity relationships were determined. Our 

preliminary characterization of the effects of the compounds on cellular activities indicates that at least 

three of the macrocycles (13, 21, and 24) are effective in a cellular context (with 13 being the most 

effective) as assessed by comet analysis following treatment with MMS while retaining reasonable 

potency for inhibition of endonuclease activity in vitro. These results are promising and support further 

development of these chemotypes as APE1 inhibitors.  

Experimental Methods

Preparation of APE1 protein. For crystallization, a single amino-acid substitution (C138A) was 

introduced within the N-terminally truncated protein lacking the first 40 amino acids (Δ40APE1). DNA 

encoding residues 40-318 of APE1 was inserted within the PET28A vector by using the NheI and XhoI 

restriction sites.  Site-directed mutagenesis was then used to introduce a C138A mutation and confirmed 

by DNA sequencing. This protein was expressed as an N-terminal hexa-His tagged protein and purified as 

previously described for the C65A and wild-type Δ40APE1 proteins.37 In brief, the cells were lysed by 

using a French press, and the crude extract was subjected to purification by Ni-NTA and SP-Sepharose 

ion-exchange chromatography. The affinity tag was then removed by treatment with thrombin, and the 

protein was further purified by SP-Sepharose ion-exchange chromatography. 

Crystallization and data collection. Crystals were obtained by mixing equal parts (1 l each) of 

microseeds with a precipitant solution containing 100 mM MES, pH 6.0, 200 mM NaCl and 18-21% 

PEG4000 and Δ40 hAPE1 C138A (10 mg/ml) buffered in 10 mM HEPES pH 7.5. Self-nucleated crystals 

of APE1 were obtained under similar conditions and used to produce microseeds.

Solvent-bound complexes: Solvents including dimethylsulfoxide (DMSO), ethylene glycol (EG), or 

glycerol (GLC) were trapped in bound complexes with APE1. The DMSO complex (PDB ID: 6MK3) 

was obtained by soaking preformed crystals in 5% DMSO overnight and then cryocooled in 100 mM 
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MES, pH 6.0, 200 mM NaCl, 22% PEG4000, 20-22% ethylene glycol, and 5% DMSO. The GLC 

complex (PDB ID: 6MKO) was obtained by soaking preformed crystals overnight in 1 mM macrocycle 

20 and then cryocooling in the solvent above with 20% glycerol in place of ethylene glycol.  All of the 

crystal cryocooled in ethylene glycol had multiple binding sites for this cryosolvent. 

Other complexes: Two additional complexes were obtained from soaks.  One including Tris and DMSO 

(PDB ID: 6MKM) was obtained from a soak that also included a reported arylstibonic acid inhibitor, 

compound 13755 from the NCI Diversity Set. In this case, the crystals were grown as described above 

and then soaked in 100 mM Tris pH 7.5, 200 mM NaCl, 1 mM 13755 (dissolved in DMSO resulting in a 

final concentration of 4% DMSO), and 20% PEG 3350. Crystals were cryocooled in 100 mM Tris-Cl, pH 

7.5, 200 mM NaCl, 20% PEG 3350, 1 mM 13755, 4% DMSO, and 20% ethylene glycol. The second 

complex included Mg2+ and DMSO (PDB ID: 6MKK), obtained from a soak including 20 mM 4-

hydroxymethyl phenyl acetic acid (Sigma Aldrich) along with 1 mM MgCl2. Crystals were cryocooled in 

100 mM MES, pH 6.0, 200 mM NaCl, 22% PEG4000, 20-22% ethylene glycol, 20 mM 4-

(hydroxymethyl)-phenyl-acetic acid, and 4% DMSO. In each of these complexes, the inhibitor was not 

evident in the difference electron density map but DMSO was bound to the abasic sugar site with either 

Mg2+ or Tris in the metal binding site. 

Data collection and processing: Data for all complexes except the GLC with C138A APE1 were 

collected at the GM/CA 23ID-D and SBC 19-BM beamlines at the Advanced Photon Source, Argonne 

National Laboratory and processed with HKL2000.38 The GLC dataset was collected on our Bruker X8 

Prospector (Bruker Corporation, Billerica, MA) with Cu Kα radiation (1.5418 Å) at 100 K by using an 

Oxford Cryosystem. Data were integrated using SAINT39 and scaled with SADABS.39 XPREP39 was used 

to determine the space group and analyse the data. All of the crystals except the EG complex belong to 

P21212 space group with cell dimensions as shown in Table 1. The EG complex crystal following the 

overnight soak belongs to space group P21. Apo, Mg2+ and Mn2+ bound structures have been previously 

reported.28 
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Structure Determination and Refinement. Phasing for the structures was obtained by molecular 

replacement (MOLREP) using the coordinates of C138A Δ40 hAPE1 as the search model. Several rounds 

of initial refinement were carried out using REFMAC5, accompanied by iterative model building using 

COOT. Following placement of well-ordered water molecules, excluding those in the repair active site of 

the enzyme, the bound solvent or metal was identified as a strong Fo-Fc difference peak. Final rounds of 

refinement for all of the structures were carried out by using PHENIX with isotropic temperature factor 

refinement. Statistics for refinements are compiled in Table 1. 

Computational Methods. Computational mapping and binding site identification. Computational solvent 

mapping was performed using the FTMap algorithm through its online server (http://ftmap.bu.edu/) using 

magnesium bound (4QHE) and apo (4QHD) crystal structures of APE1, solved recently.28 In brief, 

FTMAP simulates the interaction of the input protein structures with a library of 16 small organic probe 

molecules, with varying aromaticity, hydrophobicity and hydrogen bonding properties. For each probe in 

the library, the algorithm identifies 6 clusters, with lowest mean energy. Those clusters from different 

probes are further clustered into Consensus Sites (CS). Consensus sites are ranked by the number of its 

probe clusters. A detailed description of the method is provided in (40). It was observed experimentally 

that probes bind to the major binding sites of the protein. A detailed description of the method is provided 

in (40, 41). It was observed experimentally that probes bind to the major binding sites of the protein. We 

have also reported the FTSite approach, which uses FTMap results for binding site identification.42 The 

method calculates percentage contact score for each consensus cluster. The method calculates the 

percentage contact score for each consensus cluster. The cluster having highest percentage contact score 

is considered core of the main site. The binding site is identified as all the consensus clusters within 12A 

from the core consensus site.

Docking and scoring of the compounds

Molecular docking of 105 macrocyclic compounds selected from the BU-CMD small molecule screening 

collection (http://cmd.bu.edu/) was performed on both the apo and Mg2+ bound structures using the 

Autodock program.43 Initial conformations of macrocycles were generated with the Marvin program of 
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ChemAxon.44 The Marvin Conformer plugin was used for generating 3D conformers of the macrocycles, 

and the Charge plugin was used for calculating partial charges prior to docking. The protein was held 

rigid during docking experiments. The docking box was selected to cover all mapping hot spots present in 

the site around largest consensus cluster. Initial conformations of macrocycles were generated with the 

Marvin program of ChemAxon. From the set of 100 conformations generated for each isomer, 10 lowest 

energy conformers were chosen. Preference was given to trans conformers of the peptide bond in the 

cycle. Cis conformers were only chosen if a set of 100 has less than 10 trans conformers. Conformer 

generation led to 1440 Autodock runs. Autodock was set to generate up to 10 clusters of docking poses. 

We chose the B site from two alternative positions of magnesium present in the 4QHE pdb structures. 

Ranking of the compounds was based on the average ensemble energy of the 50 lowest Autodock energy 

poses. 

Apurinic/apyrimidinic endonuclease 1 assay. Macrocycles were tested for APE1 inhibition using a well 

characterized APE1 DNA repair activity assay performed in our laboratory and others.45 The APE1 repair 

activity assay was performed in a 96-well plate assay using purified full-length APE1 enzyme and an AP 

site mimic consisting of two annealed oligonucleotides (5′-6-FAM-

GCCCCC*GGGGACGTACGATATCCCGCTCC-3′ and 3′-Q-

CGGGGGCCCCCTGCATGCTATAGGGCGAGG-5′) custom synthesized by Eurogentec Ltd. 

(Belgium).  The oligonucleotides contained a quencher on one strand and a fluorescent 6-FAM label with 

an AP site mimic, tetrahydrofuran (*), on the complementary strand.  The AP site mimic is a direct target 

of APE1’s endonuclease function.  Cleavage of the oligo at this site results in the release of the 6-FAM 

portion of the oligo from the complementary strand with the quencher.  The amount of fluorescence due 

to this cleavage is directly proportional to APE1’s endonuclease activity. Each macrocycle was tested in 

triplicate by a 1:2 serially diluted, 10-point dose scheme with 100 µM maximum concentrations in 200 

µL final volume.  A master mix was used providing a final amount of 50 nM annealed oligo, 50 mM Tris, 

1 mM MgCl2, and 50 mM NaCl, pH7.5. Due to the rapid enzymatic activity, 0.25-1.25 nM of full-length 
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APE1 was added to the wells at once and then immediately assayed.  The fluorescence was read 

kinetically at five, one-minute intervals using a Bio-Tek Synergy H4Ⓡ (Herman B Wells Center, Indiana 

University School of Medicine).  The rate of the reaction was used to determine the change in APE1 

repair activity as compared to the vehicle control (DMSO). 

Cell cytotoxicity assays. Low passage patient-derived pancreatic cells (Pa02c)46, 47 maintained in 10% 

FBS DMEM growth medium were plated at 2000 cells per well in poly-D-lysine treated 96-well clear 

bottom black plates and grown overnight in 5% CO2 at 37 °C. Cells were then treated with 100 L of 

macrocycle in doses made up in 5% FBS DMEM medium at 100 M concentration and serially diluted 

1:2 in a 5-point dose scheme. Wells dedicated to drug background and vehicle control (DMSO) were also 

included. Cells were grown for 48 hours in 5% CO2 at 37 °C. Fresh 5% FBS DMEM medium was 

exchanged, and a fluorescent metabolic indicator, Alamar BlueⓇ was added to each well at 10% final. 

After a 4 hour incubation in 5% CO2 at 37 °C, plates were read on a Synergy H4™ (Bio-Tek). For each 

drug dose, background was subtracted and then further normalized to media alone. Data presented is 

percent normalized to media with mean standard error and includes vehicle (DMSO) response. 

Alkaline comet assays. APE1 repair inhibitor candidates and APE1 repair inhibitor control, APE1 Repair 

Inhibitor III (ARiIII; Calbiochem), were tested in ST8814 at a single dose (100 µM or EC30) and in 

combination with a single dose of MMS (1.0 mM) for a 1.0 hour treatment. Cells were seeded in 6-well 

tissue culture plates at 130,000 cells/well in DMEM + 10% FBS and grown overnight at 37 ºC, 5% CO2. 

Media was exchanged with Opti-MEM™ (Gibco™) media containing Macrocycle alone or spiked with 

1.0 mM MMS. Cells were then incubated for 1.0 hour at 37 ºC, 5% CO2. Media was exchanged with PBS, 

and cells were treated with 0.25% Trypsin (HyClone™), collected, and washed with PBS. Cells were then 

counted by hemacytometer. DNA damage was evaluated by CometAssay® (Trevigen®) performed under 

alkaline conditions. Cells were resuspended in PBS at 1 x 105/mL, and then added to pre-melted and 
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cooled (37 °C) agarose at a 1:10 ratio. Cells were gently mixed, and then 50 L of the agarose cell mix 

was transferred to pre-warmed comet slides (37 °C; CometSlideTM). After solidifying at 4 °C, slides were 

placed in lysis solution for 60 minutes, and then placed in freshly prepared alkaline unwinding solution 

(NaOH; pH 13) for 20 minutes. Slides were then subjected to electrophoresis under alkaline conditions 

(NaOH; pH 13) at 1 Volt/cm (300 mA) for 30 minutes and then washed in H2O, placed in 70% ethanol, 

and allowed to dry at 37 ºC for 30 minutes. Slides were stained with 100 μl of 1:10,000 diluted SYBR® 

Gold (Invitrogen™) in TE pH 7.5, and incubated for 30 minutes. Slides were then rinsed in H2O briefly, 

and comets were captured by fluorescent microscope (Leica DMIL) and quantified by CometScore™ Pro 

(TriTec Corp®). DNA damage was measured by percent Tail DNA, and average values were obtained for 

20 comet readings/macrocycle.

Chemistry. 

General Methods: 1H NMR spectra were recorded at 400 MHz or 500 MHz at ambient temperature with 

CD3COCD3 as the solvent unless otherwise stated. 13C NMR spectra were recorded at 100 MHz or 125 

MHz at ambient temperature with CD3COCD3 as the solvent unless otherwise stated. Chemical shifts are 

reported in parts per million. Data for 1H NMR are reported as follows: chemical shift, multiplicity 

(app=apparent, br = broad, s = singlet, d =doublet, t = triplet, q = quartet, sxt = sextet, m = multiplet, 

ovrlp = overlap) coupling constants and integration. All 13C NMR spectra were recorded with complete 

proton decoupling. High resolution mass spectra were obtained in the Boston University Chemical 

Instrumentation Center using a Waters Q-TOF mass spectrometer. Optical rotations were measured on all 

compounds for which sufficient material was available using a Rudolph Autopol II polarimeter. 

Analytical thin layer chromatography was performed using 0.25 mm silica gel 60-F plates. Flash 

chromatography was performed using 200-400 mesh silica gel (Sorbent Technologies, Inc.) or pre-pack 

column (SI-HC, puriFlash®) by Interchim puriFlash®450 or Yamazen Smart Flash EPCLC W-Prep2XY 

system. Isolated yields refer to chromatographically and spectroscopically pure compounds, unless 

otherwise stated. All reactions were carried out in oven-dried glassware under an argon atmosphere unless 

otherwise noted. Analytical LC-MS experiments were performed using a Waters Acquity UPLC (Ultra 
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Performance Liquid Chromatography) with a Binary solvent manager, SQ mass spectrometer, Waters 

2996 PDA (Photo Diode Array) detector, and Evaporative Light Scattering Detector (ELSD). All 

microwave experiments were performed on a CEM Discover microwave reactor, using a sealed 10 or 35 

mL vessel with temperatures monitored by an external sensor. All compounds tested in biological assays 

were determined to be >95% pure by UPLC-MS-ELSD analysis. 

Tosyl-1H-pyrrole-2-carbaldehyde (3b): In a flame-dried, 250 mL round-bottomed flask equipped with 

an addition funnel under N2, a suspension of sodium hydride (1.89 g, 47.33 mmol, 60% purity) was 

stirred in THF (24 mL).  The reaction was cooled to 0 °C in an ice bath.  A solution of 1H-pyrrole-2-

carbaldehyde (3.00 g, 31.55 mmol) in THF (8 mL) was added steadily, dropwise, via addition funnel.  An 

additional 4 mL THF was used to rinse the aldehyde solution vial and addition funnel.  The ice bath was 

removed and the reaction was allowed to stir at room for 60 min.  The tan suspension was then recooled 

to 0 °C, and a solution of 4-methylbenzenesulfonyl chloride (7.22 g, 37.86 mmol) in THF (12 mL) was 

added steadily, dropwise, via the addition funnel, which was then rinsed with an additional 12 mL THF.  

The resulting reddish-tan suspension was stirred at room temperature overnight. The reaction was 

quenched with water and poured into a separatory funnel containing ethyl acetate and water.  The layers 

were separated and the organic layer was washed first with water, then brine. The organic layer was dried 

over Na2SO4, filtered and concentrated.  The crude product was purified via silica plug, eluting with 15% 

ethyl acetate in hexanes (300 mL) and 30% ethyl acetate in hexanes (300 mL).  The eluent was condensed 

and the resulting residue was recrystallized from ethyl acetate/hexanes to give off-white solid (3.69 g). 1H 

NMR (400 MHz, CDCl3) δ 9.97 (s, 1H), 7.80 (d, J = 8.2 Hz, 2H), 7.62 (dd, J = 2.9, 1.8 Hz, 1H), 7.32 (d, 

J = 8.2 Hz, 2H), 7.16-7.14 (m, 1H), 7.16 (dd, J = 3.5, 1.8 Hz, 1H), 6.40 (t, J = 3.2 Hz, 1H), 2.42 (s, 3H);  

13C NMR (101 MHz, CDCl3) δ 145.9, 130.1,129.4, 127.4, 124.4, 112.4, 21.6; HRMS (ESI) m/z calcd. for 

C12H12NO3S [M+H]+, 250.0538; found, 250.0537.  
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General procedure for the synthesis of enantioenriched Alloc-protected homoallylic amines 4: To a 

flame-dried, nitrogen-purged flask equipped with a stir bar was added allyl carbamate (1.0 equiv). 

Anhydrous dichloromethane was added, followed by the requisite aldehyde 14-18. The reaction mixture 

was cooled to -78 °C and BF3-diethyl etherate was slowly added via syringe. The reaction was stirred at -

78 °C for 30 minutes. Crotylsilane 13 was added and the reaction vessel was transferred to a chiller set to 

-35 °C. The reaction was stirred at this temperature for 48-72 hours, tracking by TLC. Upon completion, 

the reaction mixture was carefully quenched with the addition of saturated aqueous sodium bicarbonate and 

extracted three times with dichloromethane. The combined organic fractions were washed with brine, dried 

over sodium sulfate, and condensed to give a crude product that was then purified by flash column 

chromatography. 

Methyl (5S,6R,E)-6-(((allyloxy)carbonyl)amino)-5-methyl-6-phenylhex-3-enoate (4a). Obtained as a 

clear oil (90% yield, 10:1 dr) from aldehyde 3a utilizing the general procedure. [α]25
D  +38  (c  0.39, CHCl3); 

1H NMR (400 MHz, CDCl3) δ = 7.24-7.16 (m, 2H), 7.16-7.10 (m, 3H), 5.81 (s, 2H), 5.46 (dt, J = 15.4, 6.6 

Hz, 1H), 5.27 (dd, J = 15.4, 8.0 Hz, 1H), 5.19 (d, J = 16.8 Hz, 1H), 5.08 (d,  J =  10.6 Hz, 1H), 4.58 (t, J = 

7.4 Hz, 1H), 4.48 (dd, J = 13.3, 5.9 Hz, 1H), 4.41 (dd, J = 13.3, 4.3 Hz, 1H), 3.57 (s, 3H), 2.91 (d, J = 6.6 

Hz, 2H), 2.56 (ddt, J = 8.0, 7.4, 7.0 Hz, 1H), 0.92 (d, J = 7.0 Hz, 3H); 13C NMR (100MHz, CDCl3) δ = 

171.7, 155.2, 140.0, 135.2, 127.7, 126.9, 126.7, 123.0, 117.0, 65.0, 58.9, 51.4, 41.6, 37.3, 16.2; HRMS 

(m/z): [M+Na]+ calcd. for C18H23NO4Na, 340.1525; found, 340.1528.

Methyl (5S,6R,E)-6-(((allyloxy)carbonyl)amino)-5-methyl-6-(1-tosyl-1H-pyrrol-2-yl)hex-3-enoate 

(4b). Obtained as a clear oil (42% yield, >20:1 dr) from aldehyde 3b utilizing the general procedure. [α]25
D  

+41  (c  0.31, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 7.6 Hz, 2H), 7.25 (d, J =7.6 Hz, 2H), 7.18 

(br s, 1H), 6.17 (t, J = 2.7 Hz, 1H), 6.15-6.13 (m, 1H), 5.89 (ddd, J = 17.2, 11.0, 5.9, 5.5 Hz, 1H), 5.45 (dt, 

J = 15.6, 6.6 Hz, 1H), 5.37 (dd, J = 15.6, 6.6 Hz, 1H), 5.26 ( d, J = 17.2 Hz, 1H), 5.22-5.10 (m, 3H), 4.51 

(dd, J = 13.5, 5.5 Hz, 1H), 4.46 (dd, J = 13.5, 5.9 Hz, 1H), 3.65 (s, 3H), 2.94 (d, J = 6.6 Hz, 2H), 2.80 (sxt, 
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J = 6.5 Hz, 1H), 2.37 (s, 3H), 0.95 (d, J = 6.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 171.8, 154.9, 144.5, 

135.8, 135.3, 134.5, 132.4, 132.2, 129.5, 126.5, 123.0, 122.5, 117.2, 113.6, 111.5, 76.4, 65.2, 51.9, 51.4, 

40.8, 37.5, 21.2, 14.8. HRMS (m/z): [M+Na]+ calcd. for C23H28N2O6SNa, 483.1566; found, 483.1579.

Methyl (5S,6R,E)-6-((S)-2-((tert-butoxycarbonyl)amino)-3-(1H-Indol-3-yl)propanamido)-5-methyl-

6-phenylhex-3-enoate  (7a):  In a 50 mL round-bottomed flask under N2 was stirred 4a (394.00 mg, 1.24 

mmol, 1.0 equiv) in CH2Cl2 (4.5 mL) and methanol (1.5 mL).  Dimethylbarbituric acid (242 mg, 1.55 

mmol, 1.25 equiv) was then added, followed by Tetrakis(triphenylphosphine)palladium(0) (85.97 mg, 

74.40 µmol, 6 mol%).  The reaction was stirred at room temperature for four hours, forming a dark 

orange-reddish solution. MP-TsOH (65) resin (Biotage, Inc.) was added (1.6 g; 4.96 mmol; 4 equiv; 

loading: 3.11 mmol/g) in one portion.  The reaction was diluted with CH2Cl2 (3 mL) to allow for better 

mixing of resin.  The resulting suspension was stirred at room temperature for two hours.  The resin was 

then filtered off and rinsed with CH2Cl2 (5 x 10 mL).  The resin was then transferred to a round-bottomed 

flask and suspended in CH2Cl2 (20 mL).  To the suspension was added Et3N (5.5 mL).  The mixture was 

stirred at room temperature for 30 min.  The resin was then filtered off and rinsed with CH2Cl2 (4 x 5 

mL), retaining the mother liquor. The resin was re-treated with 20 mL CH2Cl2 and 5 mL Et3N for 20 

minutes and filtered again, rinsing with 3 x 5 mL CH2Cl2. The combined mother liquors from both 

treatments were concentrated to afford the deprotected amine 5a that was carried forward to the next step 

without further purification.

Compound 5a and Boc-L-tryptophan (434.60 mg, 1.43 mmol, 1.5 equiv) were combined in CH2Cl2 (6 

mL).  HATU (542.97 mg, 1.43 mmol, 1.5 equiv) was then added, followed by Hunig’s base (384.49 mg, 

2.97 mmol, 2.4 equiv).  The reaction was stirred at room temperature for 3.5 hours.  The solvent was 

removed in vacuo, and the crude residue was purified by flash chromatography (SiO2, gradient elution 35-

45% ethyl acetate in hexanes) to give product 7a (451 mg; 72.9% yield over two steps). [α]25
D  +29  (c  
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0.20, CHCl3); 1H NMR (400 MHz, acetone-d6) δ 10.05 (br s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.35 (br d, J 

= 7.8 Hz, 2H), 7.27-7.20 (m, 4H), 7.19-7.14 (m, 1H), 7.13-7.04 (m, 2H), 6.99 (br t, J = 7.2 Hz, 1H), 5.98 

(br d, J = 7.0 Hz, 1H), 5.24 (br d, J = 2.3 Hz, 2H), 4.82 (br t, J = 7.6 Hz, 1H), 4.50-4.37 (m, J = 14.3, 7.0 

Hz, 1H), 3.56 (s, 3H), 3.21 (dd, J = 14.3, 6.6 Hz, 1H), 3.09 (dd, J = 14.3, 7.0 Hz, 1H), 2.86 (br s, 2H), 

2.47-2.35 (m, J = 6.6 Hz, 1H), 1.33 (br s, 9H), 0.82 (br d, J = 6.6 Hz, 3H);  13C NMR (101 MHz, acetone-

d6) δ 206.4, 172.4, 171.8, 156.3, 141.8, 137.6, 136.4, 128.8, 128.6, 128.4, 127.6, 124.4, 124.2, 122.1, 

119.5, 119.5, 112.2, 112.2, 111.5, 79.4, 58.0, 56.4, 51.9, 42.4, 38.0, 29.0, 28.6, 16.7; HRMS (ESI) m/z 

calcd. for C30H37N3O5Na [M+Na]+, 542.2631; found, 542.2630.

Methyl (5S,6R,E)-6-((S)-2-((tert-butoxycarbonyl)amino)-3-(1H-indol-3-yl)propanamido)-5-methyl-

6-(1-tosyl-1H-pyrrol-2-yl)hex-3-enoate (7b):  In a 100 mL round-bottomed flask under N2, 4b (1.10 g, 

2.39 mmol, 1.0 equiv) was dissolved in in CH2Cl2 (9 mL) and methanol (4 mL).  Dimethyl barbituric acid 

(447.53 mg, 2.87 mmol, 1.2 equiv) was then added, followed by tetrakis(triphenylphosphine) 

palladium(0) (165.60 mg, 143.31 µmol, 6 mol%).  The reaction was stirred at room temperature for 

four hours.   The dark orange reaction was then diluted with CH2Cl2 (5 mL), and MP-TsOH (65) resin 

(Biotage, Inc.) (3.1 g; 9.56 mmol; 4 equiv ; loading: 3.11 mmol/g) was added.  The reaction was stirred at 

room temperature for two hours.  The resin was filtered off and rinsed with CH2Cl2 (4 x 5 mL), 10% 

MeOH/CH2Cl2 (2 x 20 mL), CH2Cl2 (2 x 5 mL).  

The resin was then then returned to the round-bottom flask and dissolved in CH2Cl2 (20 mL). 

Et3N (5 mL) was added, and the suspension was stirred at room temperature for 1.25 hrs.  The resin was 

filtered off and rinsed with CH2Cl2 (4 x 10 mL), retaining the mother liquor. The resin was then re-treated 

with CH2Cl2 (20 mL) and Et3N (5 mL) for 45 minutes.  The resin was again filtered off, rinsing with 

CH2Cl2 (3 x 5 mL). The combined mother liquors from both treatments were concentrated to afford the 

deprotected amine 5b, which was carried forward to the next step without further purification.

In a 100 mL round bottomed flask, amine 5b was stirred with Boc-L-tryptophan (836.33 mg, 2.75 

mmol, 1.15 equiv) in CH2Cl2 (11 mL).   HATU (957.80 mg, 2.52 mmol, 1.05 equiv) was then added, 
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followed by Hunig’s base (739.9 mg, 5.73 mmol, 999.86 µL, 2.4 equiv).  The reaction was stirred at room 

temperature overnight. The reaction was then diluted with CH2Cl2 and washed with water.  The organic 

layer was dried over Na2SO4, filtered and concentrated.  The crude residue was purified by flash 

chromatography (SiO2; gradient elution 38-48% ethyl acetate in hexanes.) to give product 7b (1.09 g, 

71.8% yield over two steps). [α]25
D  +34  (c  0.22, CHCl3); 1H NMR (400 MHz, acetone-d6) δ 10.07 (br 

s, 1H), 7.95 (br d, J = 8.2 Hz, 2H), 7.62 (d, J = 7.8 Hz, 1H), 7.38 (br d, J = 8.2 Hz, 3H), 7.29 (br d, J = 9.0 

Hz, 1H), 7.15 (br d, J = 1.6 Hz, 2H), 7.09 (t, J = 7.4 Hz, 1H), 7.00 (t, J = 7.4 Hz, 1H), 6.26-6.15 (m, 2H), 

5.99 (br d, J = 7.2 Hz, 1H), 5.86-5.76 (m, 1H), 5.50-5.26 (m, 2H), 4.49-4.38 (m, 1H), 3.60 (s, 3H), 3.25 

(dd, J = 14.5, 6.3 Hz, 1H), 3.08 (br dd, J = 14.3, 7.2 Hz, 1H), 2.93 (br s, 2H), 2.63 (br d, J = 5.5 Hz, 1H), 

2.39 (s, 3H), 1.35 (br s, 9H), 0.87 (br d, J = 6.6 Hz, 3H);  13C NMR (101 MHz, CDCl3) δ 170.8, 145.2, 

136.5, 136.0, 130.1, 127.3, 123.4, 122.5, 119.9, 119.2, 114.2, 112.2, 111.5, 52.2, 37.9, 28.6, 21.9; HRMS 

(ESI) m/z calcd. for C35H42N4O7SNa [M+Na]+, 685.2672; found, 685.2673.

Macrocyclic library synthesis. Macrocycles employed in the primary screen were synthesized according 

to the general procedure for macrolactone synthesis outlined below. Crude reaction mixtures were directly 

purified using mass-guided, preparative HPLC on a Waters FractionLynx system. Purified compounds 

meeting a >90% purity threshold (as determined by UPLC-MS-ELSD) were stored as 20 mM DMSO 

stocks at -30 °C prior to aliquotting for screening.

General procedure for macrolactone library synthesis (MC001-MC105): In a 25 mL round-bottomed 

flask was stirred Boc-protected amine 7 (0.57 mmol) in CH2Cl2 (6 mL).  A solution of 4.0 M HCl in 

dioxane (0.86 mL, 6.0 equiv) was added.  The reaction was stirred at room temperature for 3.25 hours. 

The solvent was evaporated, and the residue was azeotroped four times with CH2Cl2 (4 mL portions). The 

resultant gum was then taken up in CH2Cl2 (5 mL).   MP-Carbonate resin (Biotage, Inc.) was added (0.31 

g; 0.89 mmol; 3.6 equiv; 2.9mmol/g loading).  The suspension was stirred at room temperature for 1.5 

hours.  The resin was filtered off and rinsed with CH2Cl2 (3 x 4 mL).  The mother liquor was evaporated, 
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and the residue was transferred to a 10 mL microwave vessel using trifluorotoluene (1.2 mL).  Lactone 9 

(6.0 equiv) was added, followed by Otera’s catalyst (15 mol%). The vessel was capped and heated in the 

microwave at 175 °C for 45 min. For the original macrocycle library, the solvent was removed using 

centrifugal evaporation and the resultant residues were dissolved in DMSO and purified via mass-guided 

preparative HPLC. For follow-on syntheses and characterizations, the reaction suspension was directly 

loaded onto a silica/celite column (pre-wet with 20% acetone/H) using CH2Cl2.  Elution with a gradient of 

20% acetone/hexanes, (40 mL), 30% acetone/hexanes (20 mL), 40% acetone/hexanes (20 mL), 50% 

acetone/hexanes (20 mL), 60% acetone/hexanes (20 mL) afforded the analytically pure macrolactone. 

Synthetic yields and full characterization data for macrolactones 10-13:

(7S,10R,11S,E)-7-((1H-indol-3-yl)methyl)-11-methyl-10-phenyl-1-oxa-6,9-diazacyclopentadec-12-

ene-5,8,15-trione (10): Macrolactone 10 was obtained from Boc-amine 7a and lactone 9a according to 

the general procedure (29.8% yield over two steps). [α]25
D +7  (c  0.13, CHCl3); 1H NMR (400 MHz, 

acetone-d6) δ 10.01 (br s, 1H), 7.56 (d, J = 7.8 Hz, 1H), 7.37-7.20 (m, 8H), 7.17-7.02 (m, 2H), 6.98 (t, J = 

7.8 Hz, 1H), 5.60 (ddd, J = 15.2, 8.6, 5.9 Hz, 1H), 5.14 (dd, J = 15.2, 9.2 Hz, 1H), 4.94 (dd, J = 7.8, 3.1 

Hz, 1H), 4.82-4.72 (m, 1H), 4.33-4.24 (m, 1H), 3.36 (d, J = 15.0, 3.1 Hz, 1H), 3.10 (d, J = 15.0, 8.5 Hz, 

1H), 3.03 (dd, J = 16.0, 5.9 Hz, 1H), 2.96 (dd, J = 16.0, 8.6 Hz, 1H), 2.69-2.59 (m, 1H), 2.42-2.32 (m, 

1H), 2.31-2.20 (m, 2H), 1.76-1.65 (m, 1H), 0.87 (d, J = 6.3 Hz, 3H);  13C NMR (101 MHz, acetone-d6) δ 

173.9, 172.5, 171.8, 140.2, 138.2, 136.4, 129.3, 129.3, 129.6, 129.1, 128.5, 128.3, 126.2, 125.2, 124.7, 

124.5, 122.7, 120.2, 120.1, 119.8, 112.7, 112.5, 67.0, 58.7, 56.0, 42.1, 40.0, 35.0, 28.3, 24.2, 18.2; HRMS 

(ESI) m/z calcd. for C28H31N3O4Na [M+Na]+, 496.2212; found, 496.2223 

(8S,11R,12S,E)-8-((1H-indol-3-yl)methyl)-12-methyl-11-phenyl-1-oxa-7,10-diazacyclohexadec-13-

ene-6,9,16-trione (11): Macrolactone 11 was obtained from Boc-amine 7a and lactone 9i according to the 

general procedure (32% yield over two steps). [α]25
D  -24  (c  0.17, CHCl3);  1H NMR (400 MHz, acetone-

d6) δ 9.99 (br s, 1H), 7.49 (d, J  = 8.2 Hz, 1H), 7.45 (d, J = 8.2 Hz, 1H), 7.37-7.22 (m, 7H), 7.07 (t, J = 7.6 
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Hz, 1H), 6.96 (t, J = 7.0 Hz, 1H), 6.87 (br s, 1h), 5.71 (ddd, J = 15.5, 10.0, 4.3, 1H), 5.26 (dd, J = 15.5, 9.0 

Hz, 1H), 4.93 (dd, J = 8.2, 3.5 Hz, 1H), 4.78 (td, J = 8.0, 4.5 Hz, 1H), 4.24 (td, J = 10.5, 3.3 Hz, 1H), 4.01 

(dt, J = 10.5, 4.7 Hz, 1H), 3.19 (dd, J = 15.0, 4.5 Hz, 1H), 3.11 (dd, J = 15.0, 8.0 Hz, 1H), 3.09 (dd, J  = 

15.0, 6.6 Hz), 2.9-2.7 (m, 2H, obsc.), 2.65-2.56 (m, 1H), 2.23 (td, J = 9.4, 4.7 Hz, 1H), 1.95-1.85 (m, 1H), 

1.80-1.65 (m, 2H), 1.65-1.57 (m, 1H), 0.92 (t, J = 7.0 Hz, 3H); 13C NMR (101 MHz, acetone-d6) δ 173.0, 

170.8, 170.7, 139.8, 136.8, 134.2, 128.6, 128.4, 127.8, 127.2, 124.9, 123.8, 121.5, 119.0, 118.6, 111.5, 62.4, 

57.5, 54.4, 41.9, 40.8, 39.2, 34.1, 27.4, 27.2, 21.8, 18.1; HRMS (ESI) m/z calcd. for C29H33N3O4Na 

[M+Na]+, 510.2369; found, 510.2354.   

(7S,10R,11S,E)-7-((1H-indol-3-yl)methyl)-11-methyl-10-(1-tosyl-1H-pyrrol-2-yl)-1-oxa-6,9-

diazacyclopentadec-12-ene-5,8,15-trione (12): Macrolactone 12 was obtained from Boc-amine 7b and 

lactone 9a according to the general procedure (36.9% yield over two steps). [α]25
D  +5  (c  0.526, CHCl3);   

1H NMR (500 MHz, acetone-d6) δ 10.02 (br s, 1H), 7.94 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 7.8 Hz, 1H), 

7.42 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 1H), 7.30 (br s, 1H), 7.13-7.04 (m, 3H), 7.00 (t, J = 7.8 Hz, 

1H), 6.32 (br s, 1H), 6.28 (t, J = 3.1 Hz, 1H), 5.94 (dd, J = 8.8, 4.1 Hz, 1H), 5.52 (dt, J = 15.2, 7.4, 7.4 

Hz, 1H), 5.38 (dd, J = 15.2, 7.8 Hz, 1H), 4.68 (ddd, J = 10.6, 7.8, 3.5 Hz, 1H), 4.23-4.15 (m, 1H), 4.06 (t, 

J = 9.4 Hz, 1H), 3.44 (dd, J = 15.0, 3.5 Hz, 1H), 3.03-2.95 (m, 2H), 2.89 (dd, J = 15.0, 10.6 Hz, 1H), 

2.74-2.63 (m, 1H), 2.39 (s, 3H), 2.34-2.20 (m, 1H), 2.20-2.07 (m, 2H), 1.66-1.53 (m, 1H), 0.90 (d, J = 7.0 

Hz, 3H); 13C NMR (101 MHz, acetone-d6) δ 173.9, 173.0, 171.8, 146.8, 138.2, 137.8, 136.7, 134.9, 131.6, 

128.8, 126.3, 124.6, 124.1, 122.8, 120.2, 119.8, 116.0, 113.5, 112.8, 112.7, 66.9, 56.4, 50.1, 41.6, 39.9, 

35.1, 29.0, 24.3, 22.1, 17.1;  HRMS (ESI) m/z calcd. for C33H36N4O6SNa [M+Na]+, 639.2253; found, 

639.2248.

(8S,11R,12S,E)-8-((1H-indol-3-yl)methyl)-12-methyl-11-(1-tosyl-1H-pyrrol-2-yl)-1-oxa-7,10-

diazacyclohexadec-13-ene-6,9,16-trione (13): Macrolactone 13 was obtained from Boc-amine 7b and 
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lactone 9i according to the general procedure (30.5% yield over two steps). [α]25
D  -29  (c  0.32, CHCl3);   

1H NMR (400 MHz, acetone-d6) δ 9.99 (br s, 1H), 8.06 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 7.8 Hz, 1H), 7.82 

(d, J = 8.0 Hz, 2H), 7.42-7.37 (m, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.23 (dd, J = 3.1, 2.0 Hz, 1H), 7.17 (br d, 

J = 8.2 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.95 (br s, 1H), 6.93 (t, J = 7.0 Hz, 1H), 6.25-6.20 (m, 2H), 5.94 

(dd, J = 8.2, 3.5 Hz, 1H), 5.63 (ddd, J = 16.0, 6.0, 5.0 Hz, 1H), 5.54 (dd, J = 16.0, 6.3 Hz, 1H), 4.70 (td, J 

= 9.0, 4.0 Hz, 1H), 4.18 (ddd, J = 10.9, 9.0, 4.3 Hz, 1H), 4.12 (dd, J = 10.9, 5.1 Hz, 1H), 3.20 (dd, J = 

15.4, 4.0 Hz, 1H), 3.09 (dd, J = 15.4, 9.0 Hz, 1H), 3.02 (d, J = 5.9 Hz, 1H), 3.00 (d, J = 6.3 Hz, 1H), 2.77-

2.70 (m, 1H), 2.37 (s, 3H), 2.21 (dt, J = 14.3, 7.4 Hz, 1H), 1.98 (dt, J = 14.3, 7.8 Hz, 1H), 1.90-1.80 (m, 

1H), 1.70-1.60 (m, 2H), 1.60-1.50 (m, 1H), 0.93 (d, J = 7.0 Hz, 3H); 13C NMR (101 MHz, acetone-d6) δ 

173.1, 171.4, 171.2, 145.5, 137.0, 136.8, 134.9, 130.3, 128.2, 127.8, 124.2, 123.7, 123.3, 121.6, 119.1, 

118.7, 114.9, 112.6, 111.6, 110.9, 62.7, 55.4, 49.7, 41.0, 38.7, 34.4, 27.9, 27.7, 21.9, 21.0, 15.3;  HRMS 

(ESI) m/z calcd. for C34H39N4O6S [M+H]+, 631.2590; found, 631.2586. 

Synthetic procedures and full characterization data for macrolactams 17-32.

Part A: General procedure for amino acid coupling: In a 25 mL round-bottomed flask, compound 

7a/7b (0.576 mmol, 1.0 equiv) was dissolved in CH2Cl2 (6 mL).  A solution of 4.0 M HCl in dioxane 

(0.86 mL, 6.0 equiv) was then added.  The reaction was stirred at room temperature for 3.25 hours, at 

which time the solvent was removed in vacuo.  The resultant residue was azeotroped four times with 4 

mL portions of CH2Cl2 to afford 8a/8b as a foamy gum. This crude gum was then dissolved in CH2Cl2 (1 

mL) in a 25 mL round-bottomed flask. The appropriate Boc-amino acid 14a-k (1.1 equiv) was added, 

followed by HATU (1.1 equiv) and Hunig’s base (2.0 equiv). After stirring at room temperature for four 

hours, the reaction mixture was concentrated in vacuo and the crude residue was directly purified by flash 

column chromatography using a gradient elution of 25-45% acetone in hexanes to afford the Boc-

protected intermediate 15/16. 
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Several of the Boc-protected intermediates exhibited significant peak splitting, possibly due to the 

presence of Boc rotamers. In addition, several Boc intermediates were not sufficiently pure for 

characterization, and were carried on to the next step (Part B) without further attempts to purify. Only the 

Boc-intermediates of sufficient purity for characterization are described below.

Part B: General procedure for three-step deprotection/cyclization sequence: Intermediate 15/16 

(0.105 mmol) was dissolved in methanol (1 mL). A solution of 2.5M aqueous NaOH (1.5 equiv) was then 

added, and the reaction was stirred at room temperature overnight. The solvent was removed in vacuo and 

the residue was dissolved in THF (1 mL). The solution was acidified via addition of 1N HCl (0.13 mL). 

The mixture was stirred for two minutes and the solvent was removed in vacuo. The residue was then 

dissolved in CH2Cl2 and the solution was passed through an Isolute HM-N cartridge, eluting with 

additional CH2Cl2. The solution was concentrated in a 25 mL round-bottom flask and 1 mL CH2Cl2 was 

added, followed by a solution of 4.0N HCl in dioxane (5.0 equiv). The reaction was stirred at room 

temperature for three hours and then concentrated in vacuo. The resulting residue was azeotroped four 

times with CH2Cl2, and transferred to a two dram vial in DMF (1.2 mL). To this solution was added 

HATU (1.75 equiv), followed by Hunig’s base (4.0 equiv). The reaction was stirred at room temperature 

overnight. The solvent was removed in vacuo and the crude residue was purified by flash column 

chromatography (SiO2; gradient elution 20-60% acetone in hexanes) to afford the macrolactam product.

Methyl (6S,10S,13R,14S,E)-10-((1H-indol-3-yl)methyl)-6-(4-fluorophenyl)-2,2,14-trimethyl-4,8,11-

trioxo-13-phenyl-3-oxa-5,9,12-triazaoctadec-15-en-18-oate (15i):  77% yield from 7a, after 

deprotection and coupling to 14i, according to the general procedure, part A. [α]25
D  +16  (c  0.146, 

CHCl3); 1H NMR (400 MHz, acetone-d6) δ 10.11 (br s, 1H), 7.66 (br d, J = 7.8 Hz, 1H), 7.47 (br d, J = 

7.4 Hz, 1H), 7.39 (br d, J = 7.8 Hz, 3H), 7.34-7.08 (m, 9H), 7.04 (br t, J = 7.4 Hz, 1H), 6.95 (br t, J = 8.6 

Hz,1H), 6.83 (br d, J = 6.3 Hz, 1H), 5.18-4.97 (m, 3H), 4.83-4.69 (m, 2H), 3.59 (s, 3H), 3.17-3.03 (m, 

2H), 2.81 (br d, J = 6.3 Hz, 2H), 2.62-2.49 (m, 2H), 2.28-2.16 (m, 1H), 1.36 (br s, 9H), 0.73 (br d, J = 6.3 

Hz, 3H);  13C NMR (101 MHz, acetone-d6) δ 172.5, 171.1, 170.7, 162.6 (d, JC-F=242.8 Hz, 1 C), 155.8, 
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141.8, 137.7, 136.2, 129.1, 129.0, 128.8, 128.7 (2 C), 128.5 (2 C), 127.7, 124.5 (2 C), 124.4 (2 C), 122.3, 

119.7, 119.7, 115.7 (d, JC-F=21.4 Hz, 2 C), 112.3, 111.6, 79.1, 58.2, 55.3, 52.4, 52.0, 43.1, 42.4, 38.0, 

28.7, 17.0; HRMS (ESI) m/z calcd. for C39H46FN4O6 [M+H]+, 685.3401; found, 685.3389.

Methyl (6S,10S,13R,14S,E)-10-((1H-indol-3-yl)methyl)-6-(4-chlorophenyl)-2,2,14-trimethyl-4,8,11-

trioxo-13-phenyl-3-oxa-5,9,12-triazaoctadec-15-en-18-oate (15j): 78% yield from 7a, after 

deprotection and coupling to 14j, according to the general procedure, part A. [α]25
D  +13  (c  0.173, 

CHCl3); 1H NMR (400 MHz, acetone-d6) δ 10.06 (br s, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.39 (br d, J = 7.8 

Hz, 1H), 7.32-7.14 (m, 11H), 7.14-7.08 (m, 2H), 7.04 (t, J = 7.1 Hz, 1H), 6.82 (br s, 1H), 5.21-4.94 (m, 

3H), 4.79-4.63 (m, 2H), 3.60 (s, 3H), 3.06 (br d, J = 7.0 Hz, 2H), 2.73 (s, 3H), 2.62 (br d, J = 9.8 Hz, 1H), 

2.30-2.13 (m, 1H), 1.36 (br s, 9H), 0.74 (br d, J = 7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 172.2, 

169.8, 169.7, 154.9, 138.6, 135.9, 134.6, 132.5, 128.2, 127.6, 127.1, 127.0, 126.8, 123.4, 122.8, 121.9, 

119.3, 118.4, 111.1, 110.3, 79.3, 56.8, 54.0, 51.6, 41.6, 41.0, 38.3, 36.9, 29.3, 28.5, 28.0, 16.3; HRMS 

(ESI) m/z calcd. for C39H45ClN4O6Na [M+Na]+, 723.2925; found, 723.2924.

Methyl (11S,14R,15S,E)-11-((1H-indol-3-yl)methyl)-2,2,15-trimethyl-4,9,12-trioxo-14-(1-tosyl-1H-

pyrrol-2-yl)-3-oxa-5,10,13-triazanonadec-16-en-19-oate (16a): 81% yield from 7b, after deprotection 

and coupling to 14a, according to the general procedure, part A. [α]25
D  +17  (c  0.14, CHCl3); 1H NMR 

(400 MHz, acetone-d6) δ 10.04 (br s, 1H), 7.91 (br d, J = 8.2 Hz, 2H), 7.60 (d, J = 7.8 Hz, 1H), 7.38 (br d, 

J = 9.0 Hz, 1H), 7.36-7.29 (m, 4H), 7.14 (br s, 2H), 7.09-7.02 (m, 1H), 7.01-6.92 (m, 1H), 6.16 (br s, 1H), 

6.13 (t, J = 3.3 Hz, 1H), 5.94 (br s, 1H), 5.77 (dd, J = 8.8, 5.7 Hz, 1H), 5.41-5.22 (m, 2H), 4.73 (q, J = 7.4 

Hz, 1H), 3.56 (s, 3H), 3.24 (dd, J = 14.9, 6.3 6Hz, 1H), 3.05 (dd, J = 14.5, 7.4 Hz, 1H), 2.97-2.83 (m, 

4H), 2.63-2.52 (m, 1H), 2.33 (s, 3H), 2.15-2.08 (m, 2H), 1.71-1.56 (m, 1H), 1.70-1.55 (m, 1H), 1.72-1.55 

(m, 2H), 1.35 (s, 9H), 0.83 (d, J = 6.6 Hz, 3H);  13C NMR (101 MHz, acetone-d6) δ 173.5, 172.9, 172.3, 

146.5, 138.0, 137.7, 136.9, 136.7, 131.3, 129.2, 128.5, 124.8, 124.4, 124.1, 122.6, 120.0, 119.9, 115.3, 

113.5, 112.6, 112.0, 79.0, 55.2, 52.3, 51.2, 43.1, 41.0, 38.6, 34.3, 31.1, 30.9, 30.7, 30.5, 30.1, 30.0, 29.8, 
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30.3, 29.2, 27.4, 22.0, 15.8; HRMS (ESI) m/z calcd. for C39H49N5O8SNa [M+Na]+, 770.3200; found, 

770.3185.

Methyl (12S,15R,16S,E)-12-((1H-indol-3-yl)methyl)-2,2,16-trimethyl-4,10,13-trioxo-15-(1-tosyl-1H-

pyrrol-2-yl)-3-oxa-5,11,14-triazaicos-17-en-20-oate (16b): 74% yield from 7b, after deprotection and 

coupling to 14b, according to the general procedure, part A. [α]25
D  +19  (c  0.14, CHCl3);  1H NMR (400 

MHz, acetone-d6) δ 10.05 (br s, 1H), 7.90 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 7.8 Hz, 1H), 7.40-7.29 (m, 

4H), 7.23 (br d, J = 7.8 Hz, 1H), 7.15 (d, J = 1.6 Hz, 2H), 7.06 (t, J = 1.0 Hz, 1H), 6.98 (t, J = 1.0 Hz, 

1H), 6.19-6.10 (m, 2H), 5.82 (br s, 1H), 5.76 (dd, J = 9.0, 5.5 Hz, 1H), 5.36-5.30 (m, 2H), 4.73 (q, J = 7.6 

Hz, 1H), 3.56 (s, 3H), 3.24 (dd, J = 14.5, 6.6 Hz, 1H), 3.04 (dd, J = 14.5, 7.8 Hz, 1H), 2.97-2.84 (m, 4H), 

2.64-2.50 (m, 1H), 2.33 (s, 3H), 2.13-2.07 (m, 2H), 1.55-1.41 (m,  2H), 1.36 (s, 9H), 1.33-1.22 (m, 2H), 

0.82 (d, J = 7.0 Hz, 3H); 13C NMR (101 MHz, acetone-d6) δ 173.3, 172.5, 171.9, 156.7, 146.1, 137.6, 

137.2, 136.4, 136.3, 130.9, 128.8, 128.1, 124.4, 124.0, 123.7, 122.2, 119.6, 119.5, 114.9, 113.1, 112.2, 

112.2, 111.6, 78.4, 54.7, 51.9, 50.7, 42.5, 40.7, 38.2, 36.2, 30.7, 28.8, 23.5, 21.6, 15.3; HRMS (ESI) m/z 

calcd. for C40H51N5O8SNa [M+Na]+, 784.3356; found, 784.3343.

Methyl (10S,13R,14S,E)-10-((1H-indol-3-yl)methyl)-2,2,14-trimethyl-4,8,11-trioxo-13-(1-tosyl-1H-

pyrrol-2-yl)-3-oxa-5,9,12-triazaoctadec-15-en-18-oate (16c): 93% yield from 7b, after deprotection and 

coupling to 14c, according to the general procedure, part A. [α]25
D  +19  (c  0.27, CHCl3); 1H NMR (400 

MHz, acetone-d6) δ 10.06 (br s, 1H), 7.90 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 7.8 Hz, 1H), 7.42-7.29 (m, 

5H), 7.15 (br s, 2H), 7.10-7.02 (m, 1H), 6.92-7.02 (m, 1H), 6.19-6.12 (m, 2H), 5.85 (br s, 1HN), 5.76 (br 

dd, J = 9.0, 5.5 Hz, 1H), 5.35-5.28 (m, 2H), 4.72 (q, J = 7.2 Hz, 1H), 3.56 (s, 3H), 3.30-3.15 (m, 3H), 

3.13-3.00 (m, 1H), 2.88 (br d, J = 5.5 Hz, 2H), 2.64-2.50 (m, 1H), 2.33 (s, 3H), 2.36-2.23 (m, 2H), 1.34 

(s, 9H), 0.82 (d, J = 6.6 Hz, 3H); 13C NMR (101 MHz, acetone-d6) δ 172.9, 172.4, 172.1, 172.1, 157.0, 

146.5, 138.0, 137.7, 136.7, 131.3, 129.2, 128.6, 124.9, 124.8, 124.4, 124.1, 124.1, 122.7, 120.0, 120.0, 
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115.3, 113.6, 112.7, 112.6, 112.0, 79.2, 55.2, 52.3, 51.2, 43.0, 39.2, 38.6, 38.2, 37.1, 29.3, 29.1, 22.0, 

15.8; HRMS (ESI) m/z calcd. for C38H47N5O8SNa [M+Na]+, 756.3043; found, 756.3033.

Methyl (6S,10S,13R,14S,E)-10-((1H-Indol-3-yl)methyl)-2,2,14-trimethyl-4,8,11-trioxo-13-(1-tosyl-

1H-pyrrol-2-yl)-6-(4-(trifluoromethyl)phenyl)-3-oxa-5,9,12-triazaoctadec-15-en-18-oate (16g):   70% 

yield from 7b, after deprotection and coupling to 14g, according to the general procedure, part A. [α]25
D  

+3  (c 0.36, CHCl3); 1H NMR (400 MHz, acetone-d6) δ 10.07 (br s, 1H), 7.88 (br d, J = 8.6 Hz, 2H), 7.59 

(br d, J = 7.8 Hz, 1H), 7.51 (br d, J = 7.8 Hz, 2H), 7.45 (d, J = 7.8 Hz, 3H), 7.37-7.26 (m, 4H), 7.17-7.04 

(m, 3H), 6.98 (t, J = 7.4 Hz, 1H), 6.90 (br d, J = 7.4 Hz, 1H), 6.16-6.07 (m, 2H), 5.72 (dd, J = 8.6, 5.9 Hz, 

1H), 5.21 (br s, 2H), 5.11 (br s, 1H), 4.69 (q, J = 7.0 Hz, 1H), 3.56 (s, 3H), 3.13 (t, J = 14.5 Hz, 1H), 3.00 

(t, J = 14.5 Hz, 1H), 2.92-2.74 (m, 4H), 2.52-2.44 (m, 1H), 2.30 (s, 3H), 1.33 (br s, 9H), 0.75 (br d, J = 

7.0 Hz, 3H);  13C NMR (101 MHz, acetone-d6) δ 172.5, 172.5, 171.4, 170.6, 170.6, 165.9, 155.8, 148.8, 

146.0, 137.6, 137.3, 136.2, 130.9, 129.5, 128.7, 128.1, 128.0, 126.8, 126.0, 124.4, 128.0, 124.0, 123.6, 

122.2, 119.6, 119.6, 114.9, 114.7, 113.2, 113.1, 113.1, 113.1, 112.2, 112.2, 112.2, 111.4, 79.3, 54.8, 52.7, 

52.6, 51.9, 51.9, 50.7, 42.7, 42.5, 38.8, 38.1, 28.6, 29.5, 21.6, 15.4; HRMS (ESI) m/z calcd. for 

C45H51F3N5O8S [M+H]+, 878.3410; found, 878.3417.

Methyl (6S,10S,13R,14S,E)-10-((1H-indol-3-yl)methyl)-6-(4-fluorophenyl)-2,2,14-trimethyl-4,8,11-

trioxo-13-(1-tosyl-1H-pyrrol-2-yl)-3-oxa-5,9,12-triazaoctadec-15-en-18-oate (16i):   79% yield from 

7b, after deprotection and coupling to 14i, according to the general procedure, part A. [α]25
D  +5  (c  0.28, 

CHCl3); 1H NMR (400 MHz, acetone-d6) δ 10.06 (br s, 1H), 7.92 (d, J = 8.6 Hz, 2H), 7.62 (d, J = 7.8 Hz, 

1H), 7.47-7.26 (m, 8H), 7.17 (dd, J = 3.1, 2.0 Hz, 1H), 7.14-7.08 (m, 2H), 7.01 (t, J = 7.2 Hz, 1H), 6.95 

(br t, J = 8.8 Hz, 1H), 6.89-6.76 (m, 1H), 6.16 (br t, J = 3.3 Hz, 1H), 6.13 (br s, 1H), 5.75 (dd, J = 8.8, 5.7 

Hz, 1H), 5.27-5.21 (m, 2H), 5.06 (br s, 1H), 4.71 (dd, J = 14.5, 7.3 Hz, 1H), 3.60 (s, 3H), 3.16 (dd, J = 

14.5, 7.0 Hz, 1H), 3.02 (dd, J = 14.0, 7.0 Hz, 1H), 2.86 (br d, J = 2.3 Hz, 2H), 2.82-2.72 (m, 1H), 2.68-

2.59 (m, 1H), 2.51 (br dd, J=6.50, 11.00 Hz, 1H), 2.35 (s, 3H), 1.36 (br s, 9H), 0.79 (d, J = 7.0 Hz, 3H);  
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13C NMR (101 MHz, acetone-d6) δ 172.5, 171.4, 170.8, 163.9, 161.4, 155.8, 146.1, 137.6, 137.3, 136.3, 

136.2, 130.9, 129.2, 129.1, 128.7, 128.1, 124.5, 124.4, 124.0, 123.6, 122.3, 119.7, 119.6, 115.8, 115.6, 

115.2, 114.9, 113.1, 112.3, 111.4, 79.2, 79.1, 54.8, 52.3, 51.9, 51.9, 50.7, 50.7, 43.1, 42.6, 38.2, 29.1, 

28.7, 21.6, 15.4; HRMS (ESI) m/z calcd. for C44H51FN5O8S [M+H]+, 828.3442; found, 828.3446.

Methyl (6R,10S,13R,14S,E)-10-((1H-indol-3-yl)methyl)-6-(4-chlorobenzyl)-2,2,14-trimethyl-4,8,11-

trioxo-13-(1-tosyl-1H-pyrrol-2-yl)-3-oxa-5,9,12-triazaoctadec-15-en-18-oate (16k):   80% yield from 

7b, after deprotection and coupling to 14k, according to the general procedure, part A. 1H NMR (500 

MHz, acetone-d6) δ 10.06 (br s, 1H), 7.93 (d, J = 8.3 Hz, 2H), 7.67 (d, J = 7.83 Hz, 1H), 7.39-7.35 (m, 

4H), 7.22 (s, 1H), 7.19-7.14 (m, 3H), 7.12-7.08 (m, 1H), 7.00-7.05 (m, 2H), 7.05-7.03 (m, 1H), 6.24 (dd, 

J = 3.4, 1.5 Hz, 1H), 6.17 (t, J = 3.4 Hz, 1H), 6.13 (br d, J = 8.8 Hz, 1H), 5.79 (dd, J = 8.8, 5.9 Hz, 1H), 

5.37-5.31 (m, 2H), 4.83 (q, J = 7.5 Hz, 1H), 4.07-3.98 (m, 1H), 3.60 (s, 3H), 3.28 (dd, J = 14.9, 6.4 Hz, 

1H), 3.11 (dd, J = 14.9, 7.6 Hz, 1H), 2.89 (br d, J = 4.4 Hz, 2H), 2.82 (s, 1H), 2.67-2.59 (m, 3H), 2.37 

(dd, J = 6.3, 3.3 Hz, 2H), 2.35 (s, 3H), 1.33 (s, 9H), 0.85 (d, J = 7.3 Hz, 3H);  13C NMR (126 MHz, 

acetone-d6) δ 172.5, 171.7, 171.5, 156.0, 146.0, 138.8, 137.7, 137.3, 136.4, 136.3, 132.2, 132.0 (2C), 

130.9 (2C), 129.0 (2C), 128.8, 128.8, 128.1 (2C), 124.4, 124.0, 123.7, 122.3, 119.7, 119.6, 114.9, 113.1, 

112.3, 111.6, 78.8, 54.6, 51.9, 51.9, 50.8, 42.7, 40.5, 40.2, 38.2, 29.0, 28.7, 21.6, 15.5; HRMS (ESI) m/z 

calcd. for C45H52ClN5O8SNa [M+Na]+, 880.3123; found, 880.3133.

(3S,14S,15R,E)-3-((1H-indol-3-yl)methyl)-14-methyl-15-(1-tosyl-1H-pyrrol-2-yl)-1,4,9-

triazacyclopentadec-12-ene-2,5,10-trione (17): 29% yield from 16a according to the general procedure, 

part B. 1H NMR (400 MHz, acetone-d6) δ 10.02 (br s, 1H), 7.92 (d, J = 8.2 Hz, 2H), 7.61 (d, J =7.8 Hz, 

1H), 7.40 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 1H), 7.30 (q, J = 1.5 Hz, 1H), 7.12 (s, 1H), 7.11-6.98 

(m, 5H), 6.62 (q, J = 1.5 Hz, 1H), 6.28 (t, J = 3.3 Hz, 1H), 5.96 (dd, J = 9.0, 4.3 Hz, 1H), 5.48-5.30 (m, 

2H), 4.63 (ddd, J = 10.9, 7.7, 3.2 Hz, 1H), 3.48 (dd, J = 14.9, 3.1 Hz, 1H), 3.44-3.32 (m, 1H), 2.97-2.87 

(m, 1H), 2.83 (br d, J = 6.6 Hz, 2H), 2.75-2.62 (m, 1H), 2.72 (br d, J = 8.6 Hz, 1H), 2.38 (s, 3H), 2.34-
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2.23 (m, 1H), 2.13-2.06 (m, 1H), 1.87 (q, J = 12.5 Hz, 1H), 1.50-1.38 (m, 1H), 0.90 (d, J = 7.0 Hz, 3H); 

13C NMR (101 MHz, acetone-d6) δ 174.4, 171.8, 171.3, 146.2, 137.7, 137.3, 136.2, 134.2, 131.0 (2 C), 

128.7, 128.2 (2 C), 127.1, 124.1, 123.5, 122.2, 119.7, 119.2, 116.2, 113.1, 112.3, 112.3, 56.0, 49.8, 41.5, 

41.2, 41.1, 35.1, 28.7, 23.9, 21.6, 16.7; HRMS (ESI) m/z calcd. for C33H37N5O5SNa [M+Na]+, 638.2413; 

found, 638.2415.

 (3S,15S,16R,E)-3-((1H-indol-3-yl)methyl)-15-methyl-16-(1-tosyl-1H-pyrrol-2-yl)-1,4,10-

triazacyclohexadec-13-ene-2,5,11-trione (18): 22% yield from 16b according to the general procedure, 

part B. [α]25
D  +49  (c  0.11, CHCl3); 1H NMR (400 MHz, acetone-d6) δ 9.99 (br s, 1H), 8.02 (d, J = 8.2 

Hz, 2H), 7.55 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H) 7.25 (br d, J = 1.6 Hz, 

1H), 7.21 (br d, J = 7.8 Hz, 1H), 7.14-7.05 (m, 2H), 7.03 (s, 1H), 6.97 (t, J =7.4 Hz, 1H), 6.44 (br s, 1H), 

6.25 (br s, 1H0, 6.04 (dd, J = 8.4, 3.3 Hz, 1H), 5.51 (ddd, J = 15.6, 7.8, 5.5 Hz, 1H), 5.41 (dd, J = 15.6, 

7.8 Hz, 1H), 4.71-4.64 (m, 1H), 3.69-3.54 (m, 1H), 3.33-3.23 (m, 2H), 3.03-2.81 (m, 3H), 1.98-1.84 (m, 

2H), 1.68-1.49 (m, 4H), 2.34 (s, 3H), 0.94 (d, , J = 6.6 Hz, 3H); 13C NMR (101 MHz, acetone-d6) δ 174.3, 

171.9, 171.6, 146.1, 137.6, 137.4, 135.7, 135.1, 130.9 (2 C), 128.7, 128.4 (2 C), 126.7, 124.1, 123.8, 

122.2, 119.6, 119.2, 116.0, 113.3, 112.3, 111.9, 55.8, 49.7, 41.9, 41.2, 37.1, 34.3, 30.7, 28.7, 28.6, 21.6, 

16.7; HRMS (ESI) m/z calcd. for C34H39N5O5SNa [M+Na]+, 652.2570; found, 652.2565.

(3S,13S,14R,E)-3-((1H-Indol-3-yl)methyl)-13-methyl-14-(1-tosyl-1H-pyrrol-2-yl)-1,4,8-

triazacyclotetradec-11-ene-2,5,9-trione (19): 41% yield from 16c according to the general procedure, 

part B.  [α]25
D  +5  (c 0.193, CHCl3);   1H NMR (400 MHz, acetone-d6) δ 10.02 (br s, 1H), 8.03 (d, J = 8.2 

Hz, 2H), 7.59-7.49 (m, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 1H), 7.23 (d, J = 2.0 Hz, 1H), 

7.08 (t, J = 7.1 Hz, 1H), 7.02 (s, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.89 (br d, J = 7.4 Hz, 1H), 6.26 (s, 2H), 

5.86 (dd, J = 7.4, 3.9 Hz, 1H), 5.71-5.56 (m, 2H), 4.69 (t, J = 8.1 Hz, 1H), 3.51-3.40 (m, 1H), 3.23 (dd, J 

= 14.9, 3.9 Hz, 1H), 3.19-3.10 (m, 1H), 3.08-2.96 (m, 2H), 2.94-2.84 (m, 1H), 2.83-2.68 (m, 2H), 2.54 (tt, 

J = 11.4, 4.1 Hz, 1H), 2.36 (s, 3H), 0.90 (d, J = 7.0 Hz, 3H); 13C NMR (101 MHz, acetone-d6) δ 172.0, 
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171.8, 171.5, 146.1, 137.6, 137.4, 135.8, 135.0, 130.9, 128.6, 128.2, 127.7, 124.1, 123.8, 122.2, 119.6, 

119.1, 115.1, 113.4, 112.3, 111.6, 56.3, 50.2, 42.3, 41.2, 36.0, 35.5, 28.6, 21.6, 14.8; HRMS (ESI) m/z 

calcd. for C32H35N5O5SNa [M+Na]+, 624.2257; found, 624.2268.  

 (3S,7S,13S,14R,E)-3-((1H-indol-3-yl)methyl)-13-methyl-7-phenethyl-14-(1-tosyl-1H-pyrrol-2-yl)-

1,4,8-triazacyclotetradec-11-ene-2,5,9-trione (20): 70% overall yield from 7b/14d according to the 

general procedures, parts A and B; [α]25
D = +13  (c 0.11, CHCl3); 1H NMR (400 MHz, acetone-d6) δ 

10.00 (br s, 1H), 7.99 (d, J = 8.4 Hz, 2H), 7.60 (br d, J = 8.6 Hz, 1H), 7.53 (d, J = 8.0 Hz, 1H), 

7.40 (br d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.0 Hz, 1H), 7.28-7.31 (m, 1H), 7.14-7.27 (m, 6H), 7.08 

(t, J = 8.0 Hz, 1H), 7.03 (s, 1H), 6.98 (t, J = 8.0 Hz, 1H), 6.86 (br d, J = 8.6 Hz, 1H), 6.31 (br s, 

1H), 6.30-6.28 (m, 1H), 5.99 (dd, J = 8.6, 3.5 Hz, 1H), 5.59 (ddd, J = 15.8, 8.2, 5.0 Hz, 1H), 5.51 

(dd, J = 15.8, 7.4 Hz, 1H), 4.74 (ddd, J = 10.2, 8.6, 3.0 Hz, 1H), 4.12-4.25 (m, 1H), 3.34 (dd, J = 

14.8, 3.5 Hz, 1H), 2.84-2.92 (m, H2O overlap), 2.50-2.70 (m, 6H), 2.35 (s, 3H), 2.24 (dd, J = 

15.2, 3.5 Hz, 1H), 1.81-1.93 (m, 1H), 1.65-1.77 (m, 1H), 0.85 (d, J = 6.6 Hz, 3H); 13C NMR 

(100 MHz, acetone-d6) δ 171.4, 171.2, 170.6, 145.6, 142.4, 137.0, 136.6, 134.1, 133.5, 130.3, 128.7, 

128.6, 128.0, 127.7, 126.0, 123.4, 123.2, 121.6, 119.1, 118.5, 55.0, 48.5, 47.3, 42.2, 41.5, 41.0, 36.8, 32.7, 

28.0, 21.0, 15.6; HRMS (ESI) m/z calcd for C40H44N5O5S [M+H]+, 706.3063; found, 706.3052.  

(3S,7R,13S,14R,E)-3-((1H-Indol-3-yl)methyl)-13-methyl-7-phenethyl-14-(1-tosyl-1H-pyrrol-2-yl)-

1,4,8-triazacyclotetradec-11-ene-2,5,9-trione (21): 39% overall yield from 7b/14e according to the 

general procedures; [α]25
D  +57  (c  0.10, CHCl3); 1H NMR (400 MHz, acetone-d6) δ 10.00 (br s, 1H), 

7.98 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 7.8 Hz, 1H), 7.34-7.41 (m, 3H), 7.22-7.32 (m, 4H), 7.14-

7.20 (m, 3H), 7.09 (br t, J = 8.0 Hz, 2 H), 6.97-7.04 (m, 2H), 6.87 (br d, J = 8.6 Hz, 1H), 6.50 (br 

s, 1H), 6.31 (t, J = 3.5 Hz, 1H), 5.99 (dd, J = 8.6, 3.5 Hz, 1H), 5.60 (ddd, J = 14.9, 7.8, 6.3 Hz, 
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1H), 5.49 (dd, J = 14.9, 7.4 Hz, 1H), 4.56 (ddd, J = 11.0, 8.2, 3.5 Hz, 1H), 4.07-4.18 (m, 1H), 

3.23 (dd, J = 14.8, 3.5 Hz, 1H), 3.05 (dd, J = 12.1, 5.9 Hz, 1H), 2.69-2.77 (m, 2H), 2.52-2.68 (m, 

4H), 2.31 (s, 3H), 2.14 (dd, J = 14.8, 7.8 Hz, 1H), 1.93-2.02 (m, 1H), 1.72-1.83 (m, 1H), 0.93 (d, 

J = 7.0 Hz, 3H);  13C NMR (100 MHz, acetone-d6) δ 171.3, 171.1, 170.9, 145.5, 142.4, 137.0, 136.7, 

134.7, 134.2, 130.3, 128.7, 128.6,  128.0, 127.6, 127.1, 126.0, 123.5, 123.1, 121.6, 119.0, 118.5, 115.5, 

112.8, 111.7, 111.1, 56.4, 49.1, 46.6, 41.6, 41.2, 40.7, 36.9, 32.8, 28.0, 20.9, 15.5; HRMS (ESI) m/z 

calcd. for C40H44N5O5S [M+H]+, 706.3063; found, 706.3029. 

(3S,7S,13S,14R,E)-3-((1H-Indol-3-yl)methyl)-13-methyl-14-(1-tosyl-1H-pyrrol-2-yl)-7-(3-

(trifluoromethyl)phenyl)-1,4,8-triazacyclotetradec-11-ene-2,5,9-trione (22): 28% overall yield from 

7b/14f according to the general procedures, parts A and B. [α]25
D +27 (c 0.19, CHCl3); 1H NMR (500 

MHz, acetone-d6) δ 10.01 (br s, 1H), 7.94 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 8.6 Hz, 1H), 7.72 (s, 1H), 7.67 

(d, J = 7.4 Hz, 1H), 7.61-7.54 (m, 3H), 7.49 (d, J = 7.0 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 7.8 

Hz, 1H), 7.33 (dd, J = 3.1, 1.6 Hz, 1H), 7.13-6.99 (m, 4H), 6.54 (dd, J = 3.1, 1.6 Hz, 1H), 6.34 (t, J = 3.1 

Hz, 1H), 6.03 (dd, J = 8.6, 4.3 Hz, 1H), 5.70-5.47 (m, 3H), 4.45 (ddd, J = 10.9, 7.4, 5.3 Hz, 1H), 3.26 (dd, 

J = 14.9, 3.5 Hz, 1H), 3.10 (dd, J = 11.9, 6.0 Hz, 1H), 2.99 (dd, J = 14.9, 10.9 Hz, 1H), 2.77-2.70 (m, 

2H), 2.65-2.60 (m, 1H), 2.52 (dd, J = 14.5, 10.9, 1H), 2.29 (s, 3H), 0.95 (d, J = 7.0 Hz, 3H); 13C NMR 

(101 MHz, acetone-d6) δ 171.1, 171.0, 170.6, 145.6, 144.4, 137.1, 136.7, 135.3, 133.7, 130.7, 130.3, 

130.2 (q, 2JC-F = 70.0 Hz), 129.7, 127.9, 127.6, 126.9 (q, 1JC-F = 262.3 Hz), 126.5, 124.1 (q, 3JC-F = 3.9 

Hz), 123.6, 123.4 (q, 3JC-F = 3.9 Hz), 123.1, 121.7, 119.1, 118.5, 115.8, 112.8, 111.8, 111.2, 57.5, 50.1, 

49.2, 43.4, 41.4, 41.2, 27.8, 20.9, 16.2; HRMS (ESI) m/z calcd. for C39H39F3N5O5S [M+H]+, 746.2624; 

found, 746.2642. 

(3S,7S,13S,14R,E)-3-((1H-Indol-3-yl)methyl)-13-methyl-14-(1-tosyl-1H-pyrrol-2-yl)-7-(4-

(trifluoromethyl)phenyl)-1,4,8-triazacyclotetradec-11-ene-2,5,9-trione (23): 46% yield from 16g 
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according to the general procedure, part B. [α]25
D  +38  (c  0.36, CHCl3); 1H NMR (500 MHz, acetone-d6) 

δ 9.99 (br s, 1H), 7.94 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.5 Hz, 1H), 7.64 (d, J = 7.6 Hz, 2H), 7.60-7.56 

(m, 3H), 7.49 (br d, J = 7.3 Hz, 1H), 7.39 (d, J = 7.9 Hz, 2H), 7.36 (d, J = 8.0 Hz, 1H), 7.32 (dd, J = 3.4, 

1.7 Hz, 1H), 7.10 (ddd, J = 8.0, 6.9, 1.2 Hz, 1H), 7.07 (s, 1H), 7.03 (dt, J = 1.1, 7.4 Hz, 2H), 6.53 (dd, J = 

3.4, 1.5 Hz, 1H), 6.34 (t, J = 3.4 Hz, 1H), 6.02 (dd, J = 8.7, 4.1 Hz, 1H), 5.64 (ddd, J = 15.4, 8.8, 6.0 Hz, 

1H), 5.48-5.57 (m, 2H), 4.44 (ddd, J = 11.0, 7.6, 3.7 Hz, 1H), 3.25 (dd, J = 15.0, 3.6 Hz, 1H), 3.11 (dd, J 

= 11.9, 6.1 Hz, 1H), 2.96 (dd, J = 14.5, 10.7 Hz, 1H), 2.81-2.79 (m, 1H), 2.77-2.71 (m, 5H), 2.66-2.58 (m, 

1H), 2.51 (dd, J = 14.5, 10.8 Hz, 1H), 0.95 (d, J = 7.0 Hz, 3H); 13C NMR (126 MHz, acetone-d6) δ 171.7, 

171.6, 171.2, 148.1, 146.2, 137.7, 137.3, 135.8, 134.3, 130.9 (2 C), 129.5 (q, 2JC-F = 32.2 Hz, C), 128.5, 

128.2 (2 C), 128.0 (2 C), 127.1, 126.2 (q, 3JC-F = 3.6 Hz, 2 C), 127.5 (q, 1JC-F = 259 Hz, CF3), 124.2, 123.7, 

122.4, 119.7, 119.1, 116.4, 113.3, 112.4, 111.9, 58.1, 50.6, 49.8, 43.8, 41.9, 41.7, 28.3, 21.5, 16.7; HRMS 

(ESI) m/z calcd. for C39H38F3N5O5SNa [M+Na]+, 768.2443; found, 768.2479.  

(3S,7S,13S,14R,E)-3-((1H-indol-3-yl)methyl)-13-methyl-7-(p-tolyl)-14-(1-tosyl-1H-pyrrol-2-yl)-1,4,8-

triazacyclotetradec-11-ene-2,5,9-trione (24): 26% overall yield from 7b/14h according to the general 

procedures, parts A and B. [α]25
D  +40  (c  0.166, CHCl3); 1H NMR (400 MHz, acetone-d6) δ 10.01 (br s, 

1H), 7.94 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 9.0 Hz, 1H), 7.59 (d, J = 8.2 Hz, 1H), 7.42 (d, J = 7.4 Hz, 1H), 

7.40-7.34 (m, 3H), 7.33 (d, J = 3.5, 1.6 Hz, 1H), 7.22 (d, J = 8.2 Hz, 2H), 7.12-6.97 (m, 6H), 6.63 (dd, J = 

3.1, 1.6 Hz, 1H), 6.34 (dd, J = 3.1, 3.5 Hz, 1H), 6.07 (dd, J = 9.0, 4.3 Hz, 1H), 5.60 (ddd, J = 15.4, 9.4, 

5.3 Hz, 1H), 5.47 (dd, J = 15.4, 8.6 Hz, 1H), 5.49-5.40 (m, 1H), 4.45 (ddd, J = 10.8, 7.5, 3.4 Hz, 1H), 

3.26 (dd, J = 14.7, 3.4 Hz, 1H), 3.06 (dd, J = 11.7, 5.3 Hz, 1H), 2.92 (dd, J = 14.7, 10.8 Hz, 1H), 2.69 (dd, 

J =  11.7, 9.4 Hz, 1H), 2.63 (dd, J = 14.5, 4.5 Hz, 1H), 2.60-2.50 (m, 1H), 2.41 (dd, J = 14.3, 11.5 Hz, 

1H). 2.28 (s, 3H), 2.26 (s, 3H), 0.96 (d, J = 6.6 Hz, 3H); 1H NMR (101 MHz, acetone-d6) δ 171.0, 170.5, 

170.2, 145.2, 139.5, 136.7, 136.3 (2C), 134.7, 133.1, 130.0, 128.9, 127.6, 127.2, 126.4, 126.1, 123.3, 

122.7, 121.3, 118.7, 118.1, 115.7, 112.4, 111.4, 110.0, 57.1, 49.5, 48.6, 43.8, 41.1, 40.9, 27.5, 20.6, 20.1, 

16.1; HRMS (ESI) m/z calcd. for C39H42N5O5S [M+H]+, 692.2907; found, 692.2915. 
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(3S,7S,13S,14R,E)-3-((1H-indol-3-yl)methyl)-7-(4-fluorophenyl)-13-methyl-14-(1-tosyl-1H-pyrrol-2-

yl)-1,4,8-triazacyclotetradec-11-ene-2,5,9-trione (25): 42% yield from 16i according to the general 

procedure, part B. [α]25
D  +17  (c  0.146, CHCl3); 1H NMR (400 MHz, acetone-d6) δ 10.01 (br s, 1H), 7.94 

(d, J = 8.2 Hz, 2H), 7.71 (br d, J = 8.6 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.44 (br d, J = 7.0 Hz, 1H), 7.42-

7.34 (m, 5H), 7.33 (dd, J = 3.1, 1.6 Hz, 1H), 7.13-6.97 (m, 6H), 6.58 (d, J = 1.6 Hz, 1H), 6.34 (t, J = 3.3 

Hz, 1H), 6.04 (dd, J = 8.7, 3.9 Hz, 1H), 5.66-5.56 (m, 1H), 5.53-5.42 (m, 2H), 4.44 (s, 1H), 3.26 (dd, J = 

14.5, 3.1 Hz, 1H), 3.06 (dd, J = 11.7, 5.5 Hz, 1H), 2.96-2.88 (m, 1H), 2.74-2.64 (m, 2H), 2.62-2.55 (m, 

1H), 2.45 (dd, J = 14.1, 11.3 Hz, 1H), 2.29 (s, 3H), 0.95 (d, J = 7.0 Hz, 3H);   13C NMR (101 MHz, 

acetone-d6) δ 171.8, 171.5, 171.1, 162.7 (d, 1JC-F = 258.3 Hz, 2C), 146.1, 139.7, 137.7, 137.3, 135.7, 

134.2, 130.9 (2C), 129.1, 129.2, 128.5, 128.2 (2C), 127.2, 124.2, 123.7, 122.3, 119.7, 119.1, 116.6, 115.8 

(d, 2JC-F = 21.7 Hz, 2C), 113.3, 112.4, 112.3, 111.9, 58.0, 50.2, 49.7, 44.3, 42.0, 41.8, 30.9, 30.7, 28.4, 

21.5, 16.9; HRMS (ESI) m/z calcd. for C38H38FN5O5SNa [M+Na]+, 718.2475; found, 718.2488. 

(3S,7S,13S,14R,E)-3-((1H-indol-3-yl)methyl)-7-(4-chlorophenyl)-13-methyl-14-(1-tosyl-1H-pyrrol-2-

yl)-1,4,8-triazacyclotetradec-11-ene-2,5,9-trione (26): 36% overall yield from 7b/14j, according to the 

general procedures, parts A and B. [α]25
D  +33  (c  0.14, CHCl3); 1H NMR (400 MHz, acetone-d6) δ 10.03 

(br s, 1H), 7.94 (d, J = 8.2 Hz, 2H), 7.75 (d, J = 8.6 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 7.4 Hz, 

1H), 7.43-7.30 (m, 8H), 7.14-7.00 (m, 4H), 6.56 (br s, 1H), 6.33 (t, J = 3.1 Hz, 1H), 6.03 (dd, J = 8.6, 3.9 

Hz, 1H), 5.62 (ddd, J = 14.9, 8.2, 6.1 Hz, 1H), 5.50 (dd, J = 14.9, 8.6 Hz, 1H), 5.50-5.40 (m, 1H), 4.44 

(ddd, J = 10.8, 7.8, 2.9 Hz, 1H), 3.25 (d, J = 14.9, 2.9 Hz, 1H), 3.08 (dd, J = 11.9, 6.1 Hz, 1H), 2.94 (dd, J 

= 14.9, 10.8 Hz, 1H), 2.71 (dd, J = 11.9, 8.2 Hz, 1H), 2.68 (dd, J = 14.1, 4.5 Hz, 1H), 2.63-2.56 (m, 1H), 

2.46 (dd, J = 14.1, 11.3 Hz, 1H), 2.29 (s, 3H), 0.95 (d, J = 6.6 Hz, 3H); 13C NMR (100 MHz, acetone-d6) 

δ 170.8, 170.6, 170.2, 145.2, 141.5, 136.7, 136.3, 134.8, 133.2, 132.1, 130.0, 128.3, 128.1, 127.5, 127.2, 

126.2, 123.3, 122.7, 121.4, 118.7, 118.1, 115.5, 112.4, 111.4, 110.9, 57.1, 49.3, 48.8, 43.1, 41.0, 40.8, 

27.4, 20.6, 15.9; HRMS (ESI) m/z calcd. for C38H39ClN5O5S [M+H]+, 712.2360; found, 712.2380.  
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(3S,7R,13S,14R,E)-3-((1H-indol-3-yl)methyl)-7-(4-chlorobenzyl)-13-methyl-14-(1-tosyl-1H-pyrrol-2-

yl)-1,4,8-triazacyclotetradec-11-ene-2,5,9-trione (27): 42% yield from 16k according to the general 

procedure, part B. [α]25
D  +57  (c  0.22, CHCl3); 1H NMR (400 MHz, acetone-d6) δ 9.98 (br s, 1H), 7.98 

(d, J = 8.3 Hz, 2H), 7.53 (d, J = 7.8 Hz, 1H), 7.41-7.36 (m, 3H), 7.33 (br d, J = 7.8 Hz, 1H), 7.28-7.24 (m, 

3H), 7.20 (d, J = 8.8 Hz, 2H), 7.09 (t, J = 7.6 Hz, 2H), 7.00-6.95 (m, 2H), 6.87 (br d, J = 7.8 Hz, 1H), 

6.42 (dd, J = 3.2, 1.7 Hz, 1H), 6.29 (t, J = 3.2 Hz, 1H), 5.96 (dd, J = 8.6, 4.2 Hz, 1H), 5.59 (ddd, J = 15.2, 

8.8, 6.7 Hz, 1H), 5.49 (dd, J = 15.2, 8.3 Hz, 1H), 4.59 (ddd, J = 10.4, 8.0, 3.7 Hz, 1H), 4.29 (dddd, J = 

15.2, 8.5, 7.3, 4.9 Hz, 1H), 3.23 (dd, J = 14.9, 23.7 Hz, 1H), 3.01-2.87 (m, 5H), 2.64 (dd, J = 12.2, 8.5 Hz, 

1H), 2.51 (dd, J = 15.0, 4.9 Hz, 1H), 2.32 (s, 3H), 2.12 (dd, J = 15.0, 7.3 Hz, 1H), 0.91 (d, J = 7.3 Hz, 

3H); 13C NMR (101 MHz, acetone-d6) δ 172.3, 172.0, 172.0, 146.6, 139.4, 138.2, 137.9, 135.9, 135.4, 

133.0, 132.5, 131.4, 129.7, 129.7, 129.6, 129.1, 12.7, 128.1, 124.6, 124.3, 122.8, 120.2, 119.6, 116.5, 

113.9, 112.8, 112.8, 112.3, 57.5, 50.3, 49.4, 42.6, 42.3, 40.9, 40.5, 29.1, 22.0, 16.6; HRMS (ESI) m/z 

calcd. for C39H43ClN5O5S [M+H]+, 726.2517; found, 726.2508.   

(3S,7S,13S,14R,E)-3-((1H-indol-3-yl)methyl)-13-methyl-14-phenyl-7-(4-(trifluoromethyl)phenyl)-

1,4,8-triazacyclotetradec-11-ene-2,5,9-trione (28): 19% overall yield from 7a/14g, according to the 

general procedures part A and B. [α]25
D = +10  (c 0.35, CHCl3); 1H NMR (400 MHz, acetone-d6) δ 9.99 

(br s, 1H), 7.92 (s, 1H), 7.80 (br d, J = 8.2 Hz, 1H), 7.67-7.55 (m, 5H), 7.52 (d, J = 7.8 Hz, 1H), 7.34-7.27 

(m, 5H), 7.27-7.20 (m, 1H), 7.07 (s, 1H), 7.04 (t, J = 7.4 Hz, 1H), 6.95 (t, J = 7.4 Hz, 1H), 5.75 (ddd, J = 

15.3, 9.1, 6.5 Hz, 1H), 5.59-5.49 (m, 1H), 5.29 (dd, J = 15.3, 9.4 Hz, 1H), 4.95 (dd, J = 8.4, 4.1 Hz, 1H), 

4.53-4.44 (m, 1H), 3.33 (dd, J = 15.0, 4.4 Hz, 1H), 3.14 (dd, J = 15.0, 10.6 Hz, 1H), 3.10-3.05 (m, 1H), 

2.80-2.75 (m, 1H), 2.68 (dd, J = 11.9, 9.6 Hz, 1H), 2.62-2.49 (m, 2H), 0.85 (d, J = 7.0 Hz, 3H);  13C NMR 

(101 MHz, acetone-d6) δ 171.7, 171.5, 171.1, 148.2, 139.8, 137.7, 135.7, 129.4 (2 C), 129.5 (q, 2JC-F = 

32.3 Hz, 1 C), 128.7 (2 C), 128.6, 128.0 (2 C), 127.9, 127.2, 126.2 (q, 3JC-F = 3.8 Hz, 2C), 124.3, 122.2, 

Page 52 of 64

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



125.4 (q, 1JC-F = 271.7 Hz, 1 C), 119.7, 119.2, 112.3, 112.3, 112.0, 58.5, 57.8, 50.6, 43.7, 42.4, 41.6, 27.6, 

17.6; HRMS (ESI) m/z calcd. for C34H44F3N4O3 [M+H]+, 603.2583; found, 603.2582.

(3S,7S,13S,14R,E)-3-((1H-indol-3-yl)methyl)-7-(4-fluorophenyl)-13-methyl-14-phenyl-1,4,8-

triazacyclotetradec-11-ene-2,5,9-trione (29): 33% yield from 15i according to the general procedure, 

part B. [α]25
D  +15  (c  0.133, CHCl3); 1H NMR (500 MHz, acetone-d6) δ 9.97 (br s, 1H), 7.69 (br d, J = 

8.0 Hz, 1H), 7.55-7.54 (m, 1H), 7.56 (br d, J = 7.8 Hz, 1H), 7.43 (d, J = 5.3 Hz, 1H), 7.41 (d, J = 5.3 Hz, 

1H), 7.36-7.31 (m, 6H), 7.31-7.25 (m, 2H), 7.11-7.09 (m, 2H), 7.09 (d, J = 5.3 Hz, 1H), 7.07 (s, 1H), 

7.06-7.04 (m, 1H), 6.99 (t, J = 8.0 Hz, 1H), 5.76 (ddd, J = 15.2, 9.8, 6.1 Hz, 1H), 5.49 (dddd, J =12.2, 8.1, 

3.7, 0.4 Hz, 1H), 5.30 (dd, J = 15.2, 9.8 Hz, 1H), 4.98 (dd, J = 8.3, 3.9 Hz, 1H), 4.52 (ddd, J = 10.2, 7.5, 

3.9 Hz, 1H), 3.36 (dd, J = 14.9, 3.9 Hz, 1H), 3.15 (dd, J = 14.9, 10.2 Hz, 1H), 3.08 (dd, J = 12.2, 5.9 Hz, 

1H), 2.76 (d, J = 4.4 Hz, 1H), 2.74 (dd, J = 14.9, 3.9 Hz, 1H), 2.77-2.72 (m, 1H), 2.74 (dd, J = 12.2, 5.9 

Hz, 1H), 2.69 (dd, J = 12.2, 9.5 Hz, 1H), 2.58 (dd, J = 14.9, 3.7 Hz, 2H), 2.56-2.54 (m, 1H), 1.50-1.39 (m, 

3H), 0.90 (d, J = 6.9 Hz, 3H); 13C NMR (126 MHz, acetone-d6) δ 171.9, 171.3, 171.0, 162.7 (d, 1JC-F = 

243.4 Hz, 1 C), 139.8, 137.7, 135.6, 129.5 (2 C), 129.3, 129.2, 128.6 (2 C), 127.9 (2 C), 127.3, 124.3, 

124.2, 122.2, 119.7, 119.2, 115.9 (d, 2JC-F = 21.1 Hz, 1C), 112.3, 112.0, 58.5, 57.7, 50.2, 44.3, 42.5, 41.7, 

27.7, 17.8; HRMS (ESI) m/z calcd. for C33H34FN4O3 [M+H]+, 553.2615; found, 553.2634. 

(3S,7S,13S,14R,E)-3-((1H-indol-3-yl)methyl)-7-(4-chlorophenyl)-13-methyl-14-phenyl-1,4,8-

triazacyclotetradec-11-ene-2,5,9-trione (30): 13% yield from 15j according to the general procedure, 

part B. [α]25
D  +16  (c  0.146, CHCl3); 1H NMR (500 MHz, acetone-d6) δ 9.97 (br s, 1H), 7.69 (br d, J = 

8.8 Hz, 1H), 7.56 (d, J = 7.8 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 7.36-7.30 (m, 7H), 7.32-7.25 (m, 3H), 

7.09 (d, J = 2.0 Hz, 1H), 7.07 (t, J = 7.8 Hz, 1H), 6.99 (t, J = 6.9 Hz, 1H), 5.76 (ddd, J = 15.3, 9.3, 5.9 Hz, 

1H), 5.48 (ddd, J = 10.8, 8.8, 3.9 Hz, 1H), 5.31 (dd, J = 15.3, 9.6 Hz, 1H), 4.98 (dd, J = 8.3, 3.9 Hz, 1H), 

4.52 (ddd, J = 10.2, 7.5, 3.9 Hz, 1H), 3.36 (dd, J = 14.9, 3.7 Hz, 1H), 3.15 (dd, J = 14.9, 10.0 Hz, 1H), 

3.09 (dd, J = 11.9, 5.9 Hz, 1H), 2.76 (dd, J = 14.7, 3.9 Hz, 1H), 2.70 (dd, J = 11.9, 9.3 Hz, 1H), 2.57 (dd, 
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J = 14.7, 10.2 Hz, 1H), 2.60-2.52 (m, 1H), 0.90 (d, J = 6.9 Hz, 3H); 13C NMR (126 MHz, acetone-d6) δ 

170.8, 170.3, 170.0, 141.6, 138.9, 136.7, 134.6, 132.1, 128.5, 128.3, 128.1, 127.7, 127.6, 126.9, 126.2, 

123.3, 121.3, 118.7, 118.2, 111.3, 111.0, 57.5, 56.7, 49.3, 43.1, 41.5, 40.7, 26.7, 16.8;  HRMS (ESI) m/z 

calcd. for C33H33ClN4O3Na [M+Na]+, 591.2139; found, 591.2147.

Abbreviations

EDCI, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; (HATU (1-[Bis(dimethylamino)methylene]-1H-

1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate, Hexafluorophosphate Azabenzotriazole Tetramethyl Uronium

Supporting Information Availability

Figure S1.

Coordinate files used to generate Figures 4 and 5.

Figure4-Dockingcoordinates-het.pdb

Figure5-Dockingcoordinates-het.pdb

Molecular Structures 

jm-2018-01529y.csv

PDB ID codes

Coordinates have been deposited with the PDB with the following accession numbers: APE1 bound to 

DMSO (6MK3), DMSO/Mg2+ (6MKK), DMSO/Tris (6MKM), and GLC (6MKO). Authors will release 

the atomic coordinates and experimental data upon article publication.
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