9 research outputs found

    Syngas-Enriched hydrogen production via catalytic gasification of water hyacinth using renewable palm kernel shell hydrochar

    Get PDF
    Syngas produced from biomass gasification has emerged as a highly promising substitute for conventional fossil fuel, catering to various industrial applications while ensuring minimal greenhouse gas emissions. Water hyacinth (WH) has been a major concern due to its invasive nature and uncontrollable growth which impedes aquatic growth and urban management. Fortunately, WH is a potential biomass feedstock due to the comparable cellulose and hemicellulose contents alongside high carbon content and high calorific value which reflects good biofuel properties. Therefore, this study aims to investigate the conversion of WH biomass via catalytic air gasification for syngas-enriched hydrogen production using palm kernel shell hydrochar (PKSH). A parametric study was conducted in a lab-scale fixed-bed downdraft gasifier based on the response surface methodology coupled with Box-Behnken design (RSM-BBD). The combined interaction effects of the influencing parameters investigated are temperature (600–800 °C), biomass particle size (2–6 mm), catalyst loading (0–10 wt%), and air flow rate (1–3 L/min). Temperature was revealed to be the primary factor with significant influence on the H2 and CO output. Maximum syngas (30.09 vol%) compositions of 11.14 vol% H2 and 18.95 vol% CO were obtained at 800 °C with a particle size of 6 mm and air flow rate of 2 L/min alongside 5 wt% PKSH catalyst loading

    Thermo-catalytic co-pyrolysis of palm kernel shell and plastic waste mixtures using bifunctional HZSM-5/limestone catalyst : Kinetic and thermodynamic insights

    Get PDF
    Kinetic and thermodynamic parameters of catalytic co-pyrolysis of palm kernel shell (PKS) and high-density polyethylene (HDPE) with three different catalysts (zeolite HZSM-5, limestone (LS) and bifunctional HZSM-5/LS) using thermogravimetric analyser via nitrogen environment were studied. The experiments were carried out at different heating rates ranging from 10 to 100 K/min within temperature range of 50–900 °C. Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and modified Distributed Activation Energy Model (DAEM) methods were employed in this current study. The average Ea for PKS, HDPE, PKS/HDPE (2:8) – HZSM-5, PKS/HDPE (2:8) – LS, PKS/HDPE (2:8) – HZSM-5/LS, PKS/HDPE (5:5) – HZSM-5/LS, PKS/HDPE (8:2) – HZSM-5/LS are 137.26–145.49, 247.73–250.45, 168.97–172.50, 149.74–152.79, 115.30–120.39, 124.36–129.41, 151.03–154.47 and 152.67–157.31 kJ mol−1, respectively. Among the different catalysts used, LS demonstrated the lowest average Ea (151.30–120.39 kJ mol−1) and ΔH (109.65–114.74 kJ mol−1). Positive values for ΔH and ΔG were found for the catalytic co-pyrolysis of PKS/HDPE mixtures which indicates the process is in endothermic reaction and possess non-spontaneous nature. The kinetic and thermodynamic analyses revealed the potential of PKS and HDPE as a potential feedstock for clean bioenergy production

    Preliminary study for catalytic gasification of water hyacinth for syngas production

    No full text
    Water hyacinth being one of the top invasive aquatic plants has brought upon various challenges towards the humanity and the environment. The magnitude of the menace of uncontrollable growth and spread of water hyacinth has sparked the interest of researchers in identifying its potential as a biomass feedstock for biofuel production. Biomass gasification is deemed as a promising green technology which is capable of converting biomass into value-added commodity. Conversion of such large quantity of biomass into biofuel via gasification does not only help to promote sustainable resource utilization but also facilitates the reduction of global carbon impacts and engender socioeconomic development. The addition of catalysts to the gasification process could enhance the formation of gaseous products where the gas composition may be altered. This study aims to present the preliminary study on the gasification performance of water hyacinth biomass in a lab scale fixed-bed downdraft gasifier (67 mm diameter and 750 mm height), with the use of air as the gasifying agent in a batch feeding of 50 grams for each run. The results showed that temperature has a substantial effect on the gasification of water hyacinth whereby hydrogen produced was raised from 2.92 vol.% to 11.19 vol.%. Further gasification tests are expected for the optimization of the main process parameters such as biomass particle size and catalyst loading

    Thermo-catalytic co-pyrolysis of palm kernel shell and plastic waste mixtures using bifunctional HZSM-5/limestone catalyst: Kinetic and thermodynamic insights

    No full text
    Kinetic and thermodynamic parameters of catalytic co-pyrolysis of palm kernel shell (PKS) and high-density polyethylene (HDPE) with three different catalysts (zeolite HZSM-5, limestone (LS) and bifunctional HZSM-5/LS) using thermogravimetric analyser via nitrogen environment were studied. The experiments were carried out at different heating rates ranging from 10 to 100 K/min within temperature range of 50–900 °C. Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and modified Distributed Activation Energy Model (DAEM) methods were employed in this current study. The average Ea for PKS, HDPE, PKS/HDPE (2:8) – HZSM-5, PKS/HDPE (2:8) – LS, PKS/HDPE (2:8) – HZSM-5/LS, PKS/HDPE (5:5) – HZSM-5/LS, PKS/HDPE (8:2) – HZSM-5/LS are 137.26–145.49, 247.73–250.45, 168.97–172.50, 149.74–152.79, 115.30–120.39, 124.36–129.41, 151.03–154.47 and 152.67–157.31 kJ mol−1, respectively. Among the different catalysts used, LS demonstrated the lowest average Ea (151.30–120.39 kJ mol−1) and ΔH (109.65–114.74 kJ mol−1). Positive values for ΔH and ΔG were found for the catalytic co-pyrolysis of PKS/HDPE mixtures which indicates the process is in endothermic reaction and possess non-spontaneous nature. The kinetic and thermodynamic analyses revealed the potential of PKS and HDPE as a potential feedstock for clean bioenergy production.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Annual Selected Bibliography

    No full text
    corecore