372 research outputs found

    Verification and intercomparison of reactive transport codes to describe root-uptake

    Get PDF
    Several mathematical models have been developed to simulate processes and interactions in the plant rhizosphere. Most of these models are based on a rather simplified description of the soil chemistry and interactions of plant roots in the rhizosphere. In particular the feedback loops between exudation, water and solute uptake are mostly not considered, although their importance in the bioavailability of mineral elements for plants has been demonstrated. The aim of this work was to evaluate three existing coupled speciation-transport tools to model rhizosphere processes. In the field of hydrogeochemistry, such␣computational tools have been developed to␣describe acid-base and redox reactions, complexation and ion exchange, adsorption and precipitation of chemical species in soils and aquifers using thermodynamic and kinetic relationships. We implemented and tested a simple rhizosphere model with three geochemical computational tools (ORCHESTRA, MIN3P, and PHREEQC). The first step was an accuracy analysis of the different solution strategies by comparing the numerical results to the analytical solution of solute uptake (K or Ca) by a single cylindrical root. All models are able to reproduce the concentration profiles as well as the uptake flux. The relative error of the simulated concentration profile decreases with increasing distance from the root. The uptake flux was simulated for all codes with less than 5% error for K and less than 0.4% for Ca. The strength of the codes presented in this paper is that they can also be used to investigate more complex and coupled biogeochemical processes in rhizosphere models. This is shown exemplarily with simulations involving both exudation and uptake and the simultaneous uptake of solute and wate

    Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany

    Get PDF
    Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10−4 cm3 (STP) g–1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ∼107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids

    Developing a robust geochemical and reactive transport model to evaluate possible sources of arsenic at the CO2 sequestration natural analog site in Chimayo, New Mexico

    Full text link
    Migration of carbon dioxide (CO2) from deep storage formations into shallow drinking water aquifers is a possible system failure related to geologic CO2 sequestration. A CO2 leak may cause mineral precipitation/ dissolution reactions, changes in aqueous speciation, and alteration of pH and redox conditions leading to potential increases of trace metal concentrations above EPA National Primary Drinking Water Standards. In this study, the Chimayo site (NM) was examined for site-specific impacts of shallow groundwater interacting with CO2 from deep storage formations. Major ion and trace element chemistry for the site have been previously studied. This work focuses on arsenic (As), which is regulated by the EPA under the Safe Drinking Water Act and for which some wells in the Chimayo area have concentrations higher than the maximum contaminant level (MCL). Statistical analysis of the existing Chimayo groundwater data indicates that As is strongly correlated with trace metals U and Pb indicating that their source may be from the same deep subsurface water. Batch experiments and materials characterization, such as: X-ray diffraction (XRD), scanning electron microscopy (SEM), and synchrotron micro X-ray fluorescence (#2;-XRF), were used to identify As association with Fe-rich phases, such as clays or oxides, in the Chimayo sediments as the major factor controlling As fate in the subsurface. Batch laboratory experiments with Chimayo sediments and groundwater show that pH decreases as CO2 is introduced into the system and buffered by calcite. The introduction of CO2 causes an immediate increase in As solution concentration, which then decreases over time. A geochemical model was developed to simulate these batch experiments and successfully predicted the pH drop once CO2 was introduced into the experiment. In the model, sorption of As to illite, kaolinite and smectite through surface complexation proved to be the key reactions in simulating the drop in As concentration as a function of time in the batch experiments. Based on modeling, kaolinite precipitation is anticipated to occur during the experiment, which allows for additional sorption sites to form with time resulting in the slow decrease in As concentration. This mechanism can be viewed as trace metal “scavenging” due to sorption caused secondary mineral precipitation. Since deep geologic transport of these trace metals to the shallow subsurface by brine or CO2 intrusion is critical to assessing environmental impacts, the effective retardation of trace metal transport is an important parameter to estimate and it is dependent on multiple coupled reactions. At the field scale, As mobility is retarded due to the influence of sorption reactions, which can affect environmental performance assessment studies of a sequestration site

    Submarine groundwater discharge to Tampa Bay : nutrient fluxes and biogeochemistry of the coastal aquifer

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Chemistry 104 (2007): 85-97, doi:10.1016/j.marchem.2006.10.012.To separately quantify the roles of fresh and saline submarine groundwater discharge (SGD), relative to that of rivers, in transporting nutrients to Tampa Bay, Florida, we used three approaches (Darcy's Law calculations, a watershed water budget, and a 222Rn mass-balance) to estimate rate of SGD from the Pinellas peninsula. Groundwater samples were collected in 69 locations in the coastal aquifer to examine biogeochemical conditions, nutrient concentrations and stoichiometry, and salinity structure. Salinity structure was also examined using stationary electrical resistivity measurements. The coastal aquifer along the Pinellas peninsula was chemically reducing in all locations sampled, and that condition influences nitrogen (N) form and mobility of N and PO43−. Concentrations of NH4+, PO43− and ratio of dissolved inorganic N (DIN) to PO43− were all related to measured oxidation/reduction potential (pε) of the groundwater. Ratio of DIN: PO43− was below Redfield ratio in both fresh and saline groundwater. Nitrogen occurred almost exclusively in reduced forms, NH4+ and dissolved organic nitrogen (DON), suggesting that anthropogenic N is exported from the watershed in those forms. In comparison to other SGD studies, rate of PO43− flux in the seepage zone (μM m− 2 d− 1) in Tampa Bay was higher than previous estimates, likely due to 1) high watershed population density, 2) chemically reducing conditions, and 3) high ion concentrations in fresh groundwater. Estimates of freshwater groundwater flux indicate that the ratio of groundwater discharge to stream flow is not, vert, similar 20 to 50%, and that the magnitudes of both the total dissolved nitrogen and PO43− loads due to fresh SGD are not, vert, similar 40 to 100% of loads carried by streams. Estimates of SGD based on radon inventories in near-shore waters were 2 to 5 times greater than the estimates of freshwater groundwater discharge, suggesting that brackish and saline SGD is also an important process in Tampa Bay and results in flux of regenerated N and P from sediment to surface water.This work was supported by a USGS Mendenhall Postdoctoral Fellowship to K.D.K. and by the USGS Coastal and Marine Geology Program's (CMGP) Tampa Bay Project

    Hybrid off-river augmentation system as an alternative raw water resource: the hydrogeochemistry of abandoned mining ponds

    Get PDF
    The use of water from abandoned mining ponds under a hybrid off-river augmentation system (HORAS) has been initiated as an alternative water resource for raw water. However, it raises the questions over the safety of the use of such waters. In this study, the hydrogeochemical analysis of the waters is presented to assess the degree to which the water has been contaminated. Comparisons were made between sampling sites, i.e. abandoned mining ponds, active sand mining ponds and the receiving streams within Bestari Jaya, Selangor River basin. The aqueous geochemistry analysis showed different hydrochemical signatures of major elements between sites, indicating different sources of minerals in the water. Discharges from the sand mining ponds were found to contain elevated availability of dissolved concentrations of iron, manganese, lead, copper and zinc, among others. However, the quality of the water (from the main river) that is supplied for potable water consumption is at a satisfactory level despite being partly sourced from the abandoned mining ponds. In fact, all the metal concentrations detected were well below the Malaysia Ministry of Health guideline limits for untreated raw water. In addition, the results of the geochemical index analysis (i.e. geoaccumulation index, enrichment factor and modified contamination factor) showed that the rivers and abandoned mining ponds were generally unpolluted with respect to the metals found in sediments
    corecore