260 research outputs found

    Embedded Ribbons of Graphene Allotropes: An Extended Defect Perspective

    Full text link
    Four fundamental dimer manipulations can be used to produce a variety of localized and extended defect structures in graphene. Two-dimensional templates result in graphene allotropes, here viewed as extended defects, which can exhibit either metallic or semiconducting electrical character. \emph{Embedded allotropic ribbons}--i.e. thin swaths of the new allotropes--can also be created within graphene. We examine these ribbons and find that they maintain the electrical character of their parent allotrope even when only a few atoms in width. Such extended defects may facilitate the construction of monolithic electronic circuitry.Comment: 24 pages, 21 figure

    Counteranion-Dependent Reaction Pathways in the Protonation of Cationic Ruthenium−Vinylidene Complexes

    Get PDF
    The tetraphenylborate salts of the cationic vinylidene complexes [Cp*Ru=C=CHR(iPr2PNHPy)]+ (R = p-C6H4CF3 (1a-BPh4), Ph (1b-BPh4), p-C6H4CH3 (1c- BPh4), p-C6H4Br (1d-BPh4), tBu (1e-BPh4), H (1f-BPh4)) have been protonated using an excess of HBF4·OEt2 in CD2Cl2, furnishing the dicationic carbyne complexes [Cp*Ru≡CCH2R(iPr2PNHPy)]2+ (R = p-C6H4CF3 (2a), Ph (2b), p-C6H4CH3 (2c), p-C6H4Br (2d), tBu (2e), H (2f)), which were characterized in solution at low temperature by NMR spectroscopy. The corresponding reaction of the chloride salts 1a-Cl, 1b-Cl, 1c-Cl, and 1d-Cl followed a different pathway, instead affording the novel alkene complexes [Cp*RuCl(Îș1(N),η2(C,C)-C5H4N-NHPiPr2CH=CHR)][BF4] (3a−d). In these species, the entering proton is located at the α- carbon atom of the former vinylidene ligand, which also forms a P−C bond with the phosphorus atom of the iPr2PNHPy ligand. To shed light on the reaction mechanism, DFT calculations have been performed by considering several protonation sites. The computational results suggest metal protonation followed by insertion. The coordination of chloride to ruthenium leads to alkenyl species which can undergo a P−C coupling to yield the corresponding alkene complexes. The noncoordinating nature of [BPh4]− does not allow the stabilization of the unsaturated species coming from the insertion step, thus preventing this alternative pathway

    Ambulatory assessment of psychophysiological stress among police officers: A proof-of-concept study.

    Get PDF
    Occupational stress has been widely recognized as a global challenge and has received increased attention by the academic community. Ambulatory Assessment methodologies, combining psychophysiological measures of stress, offer a promising avenue for future prevention and/or rehabilitation stress research. Considering that policing is well known for being a particularly stressful occupation, Emergency Responders Officers (EROs) stress levels were investigated. Particularly, this study analyzed: (i) physiological stress data obtained during shifts and compared these data with baseline levels (days off), as well as (ii) with normative values for healthy populations; (iii) stress symptoms differences from beginning to end of shift; (iv) stress events and events intensity and (v) the acceptability and feasibility of this proof-of-concept study in a highly stressful occupation. A Geo-location event system was used to help retrospective accounts of psychological stress, combined with electrocardiogram (ECG) data and mobile self-reports, that include stress symptoms, event types and event intensity. Results suggest that EROs experience high levels of stress (both on-duty and off duty) when compared to healthy populations. Stress symptoms increase from the beginning to end of the shift. However, the mean events intensity was very low. It can be concluded that stress may not always be diagnosed when using merely self-reports. These findings highlight the importance of combining both self-report and physiological stress measures in occupational health contexts. Finally, results confirm the acceptability and feasibility of the multi-method used. Key implications for policy makers and applied practitioners in the area of occupational health and future research directions are discussed

    Heart rate variability and the relationship between trauma exposure age, and psychopathology in a post-conflict setting

    Get PDF
    BACKGROUND: Cumulative exposure to potentially traumatic events (PTEs) increases risk for mental distress in conflict-affected settings, but the psychophysiological mechanisms that mediate this dose-response relationship are unknown. We investigated diminished heart rate variability (HRV) - an index of vagus nerve function and a robust predictor of emotion regulation capacity - as a vulnerability marker that potentially mediates the association between PTE exposure, age and symptoms of posttraumatic stress disorder (PTSD), psychological distress and aggressive behavior, in a community sample from Timor-Leste - a post-conflict country with a history of mass violence. METHOD: Resting state heart rate data was recorded from 45 cases of PTSD, depression and intermittent explosive disorder (IED); and 29 non-case controls. RESULTS: Resting HRV was significantly reduced in the combined case group compared with non-cases (p = .021; Cohen's d = 0.5). A significant mediation effect was also observed, whereby a sequence of increased age, reduced HRV and elevated PTSD symptoms mediated the association between PTE exposure and distress (B = .06, SE = .05, 95% CI = [.00-.217]) and aggression (B = .02, SE = .02, 95% CI = [.0003-.069])). CONCLUSION: The findings demonstrate an association between diminished resting HRV and psychopathology. Moreover, age-related HRV reductions emerged as a potential psychophysiological mechanism that underlies enhanced vulnerability to distress and aggression following cumulative PTE exposure

    Counteranion and Solvent Assistance in Ruthenium-Mediated Alkyne to Vinylidene Isomerizations

    Get PDF
    The complex [Cp*RuCl(iPr2PNHPy)] (1) reacts with 1-alkynes HC≡CR (R = COOMe, C6H4CF3) in dichloromethane furnishing the corresponding vinylidene complexes [Cp*Ru≡C≡CHR(iPr2PNHPy)]Cl (R = COOMe (2a- Cl), C6H4CF3 (2b-Cl)), whereas reaction of 1 with NaBPh4 in MeOH followed by addition of HC≡CR (R = COOMe, C6H4CF3) yields the metastable π-alkyne complexes [Cp*Ru(η2-HC≡CR)(iPr2PNHPy)][BPh4] (R = COOMe (3a-BPh4), C6H4CF3 (3b-BPh4)). The transformation of 3a-BPh4/3b-BPh4 into their respective vinylidene isomers in dichloromethane is very slow and requires hours to its completion. However, this process is accelerated by addition of LiCl in methanol solution. Reaction of 1 with HC≡CR (R = COOMe, C6H4CF3) in MeOH goes through the intermediacy of the π-alkyne complexes [Cp*Ru(η2-HC≡CR)(iPr2PNHPy)]Cl (R = COOMe (3a-Cl), C6H4CF3 (3b-Cl)), which rearrange to vinylidenes in minutes, i.e., much faster than their counterparts containing the [BPh4]− anion. The kinetics of these isomerizations has been studied in solution by NMR. With the help of DFT studies, these observations have been interpreted in terms of chloride- and methanolassisted hydrogen migrations. Calculations suggest participation of a hydrido−alkynyl intermediate in the process, in which the hydrogen atom can be transferred from the metal to the ÎČ-carbon by means of species with weak basic character acting as proton shuttles
    • 

    corecore