1,004 research outputs found

    Time-dependent density-functional and reduced density-matrix methods for few electrons: Exact versus adiabatic approximations

    Get PDF
    To address the impact of electron correlations in the linear and non-linear response regimes of interacting many-electron systems exposed to time-dependent external fields, we study one-dimensional (1D) systems where the interacting problem is solved exactly by exploiting the mapping of the 1D NN-electron problem onto an NN-dimensional single electron problem. We analyze the performance of the recently derived 1D local density approximation as well as the exact-exchange orbital functional for those systems. We show that the interaction with an external resonant laser field shows Rabi oscillations which are detuned due to the lack of memory in adiabatic approximations. To investigate situations where static correlations play a role, we consider the time-evolution of the natural occupation numbers associated to the reduced one-body density matrix. Those studies shed light on the non-locality and time-dependence of the exchange and correlation functionals in time-dependent density and density-matrix functional theories.Comment: 19 pages, 13 figures, version as published apart from layou

    Modeling the variations of Dose Rate measured by RAD during the first MSL Martian year: 2012-2014

    Get PDF
    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) rover Curiosity, measures the {energy spectra} of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic ray (GCR) induced surface radiation dose concurrently: [a] short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, [b] long-term seasonal pressure changes in the Martian atmosphere, and [c] the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activity and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analysed and fitted to empirical models which quantitatively demonstrate} how the long-term influences ([b] and [c]) are related to the measured dose rates. {Correspondingly we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment

    Modeling scale-dependent bias on the baryonic acoustic scale with the statistics of peaks of Gaussian random fields

    Get PDF
    Models of galaxy and halo clustering commonly assume that the tracers can be treated as a continuous field locally biased with respect to the underlying mass distribution. In the peak model pioneered by BBKS, one considers instead density maxima of the initial, Gaussian mass density field as an approximation to the formation site of virialized objects. In this paper, the peak model is extended in two ways to improve its predictive accuracy. Firstly, we derive the two-point correlation function of initial density peaks up to second order and demonstrate that a peak-background split approach can be applied to obtain the k-independent and k-dependent peak bias factors at all orders. Secondly, we explore the gravitational evolution of the peak correlation function within the Zel'dovich approximation. We show that the local (Lagrangian) bias approach emerges as a special case of the peak model, in which all bias parameters are scale-independent and there is no statistical velocity bias. We apply our formulae to study how the Lagrangian peak biasing, the diffusion due to large scale flows and the mode-coupling due to nonlocal interactions affect the scale dependence of bias from small separations up to the baryon acoustic oscillation (BAO) scale. For 2-sigma density peaks collapsing at z=0.3, our model predicts a ~ 5% residual scale-dependent bias around the acoustic scale that arises mostly from first-order Lagrangian peak biasing (as opposed to second-order gravity mode-coupling). We also search for a scale dependence of bias in the large scale auto-correlation of massive halos extracted from a very large N-body simulation provided by the MICE collaboration. For halos with mass M>10^{14}Msun/h, our measurements demonstrate a scale-dependent bias across the BAO feature which is very well reproduced by a prediction based on the peak model.Comment: (v1): 23 pages text, 8 figures + appendix (v2): typos fixed, references added, accepted for publication in PR

    The Analysis of Multijet Events Produced at High Energy Hadron Colliders

    Get PDF
    We define and discuss a set of (4N - 4) parameters that can be used to analyse events in which N jets have been produced in high energy hadron-hadron collisions. These multijet variables are the multijet mass and (4N - 5) independent dimensionless parameters. To illustrate the use of the variables QCD predictions are presented for events with up to five jets produced at the Fermilab Tevatron Proton-Antiproton Collider. These QCD predictions are compared with the predictions of a model in which multijet events uniformly populate the N-body phase-space

    Dynamical photon-photon interaction mediated by a quantum emitter

    Get PDF
    Single photons constitute a main platform in quantum science and technology: they carry quantum information over extended distances in the future quantum internet and can be manipulated in advanced photonic circuits enabling scalable photonic quantum computing. The main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces. Here we utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets. This inherently multimode quantum system constitutes a new research frontier in quantum optics. We demonstrate control of a photon with another photon and experimentally unravel the dynamical response of two-photon interactions mediated by a quantum emitter, and show that the induced quantum correlations are controlled by the pulse duration. The work will open new avenues for tailoring complex photonic quantum resource states

    Mathematical practice, crowdsourcing, and social machines

    Full text link
    The highest level of mathematics has traditionally been seen as a solitary endeavour, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. Crowdsourcing pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs too long and complicated for humans to comprehend. Mathematical practice is an emerging interdisciplinary field which draws on philosophy and social science to understand how mathematics is produced. Online mathematical activity provides a novel and rich source of data for empirical investigation of mathematical practice - for example the community question answering system {\it mathoverflow} contains around 40,000 mathematical conversations, and {\it polymath} collaborations provide transcripts of the process of discovering proofs. Our preliminary investigations have demonstrated the importance of "soft" aspects such as analogy and creativity, alongside deduction and proof, in the production of mathematics, and have given us new ways to think about the roles of people and machines in creating new mathematical knowledge. We discuss further investigation of these resources and what it might reveal. Crowdsourced mathematical activity is an example of a "social machine", a new paradigm, identified by Berners-Lee, for viewing a combination of people and computers as a single problem-solving entity, and the subject of major international research endeavours. We outline a future research agenda for mathematics social machines, a combination of people, computers, and mathematical archives to create and apply mathematics, with the potential to change the way people do mathematics, and to transform the reach, pace, and impact of mathematics research.Comment: To appear, Springer LNCS, Proceedings of Conferences on Intelligent Computer Mathematics, CICM 2013, July 2013 Bath, U

    Aerodynamic investigations of ventilated brake discs.

    Get PDF
    The heat dissipation and performance of a ventilated brake disc strongly depends on the aerodynamic characteristics of the flow through the rotor passages. The aim of this investigation was to provide an improved understanding of ventilated brake rotor flow phenomena, with a view to improving heat dissipation, as well as providing a measurement data set for validation of computational fluid dynamics methods. The flow fields at the exit of four different brake rotor geometries, rotated in free air, were measured using a five-hole pressure probe and a hot-wire anemometry system. The principal measurements were taken using two-component hot-wire techniques and were used to determine mean and unsteady flow characteristics at the exit of the brake rotors. Using phase-locked data processing, it was possible to reveal the spatial and temporal flow variation within individual rotor passages. The effects of disc geometry and rotational speed on the mean flow, passage turbulence intensity, and mass flow were determined. The rotor exit jet and wake flow were clearly observed as characterized by the passage geometry as well as definite regions of high and low turbulence. The aerodynamic flow characteristics were found to be reasonably independent of rotational speed but highly dependent upon rotor geometry

    Microwave-based quantum control and coherence protection of tin-vacancy spin qubits in a strain-tuned diamond membrane heterostructure

    Full text link
    Robust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K. However, the SnV spin lacks efficient microwave control and its spin coherence degrades with higher temperature. In this work, we introduce a new platform that overcomes these challenges - SnV centers in uniformly strained thin diamond membranes. The controlled generation of crystal strain introduces orbital mixing that allows microwave control of the spin state with 99.36(9) % gate fidelity and spin coherence protection beyond a millisecond. Moreover, the presence of crystal strain suppresses temperature dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223(10) μ{\mu}s at 4 K, a widely accessible temperature in common cryogenic systems. Critically, the coherence of optical transitions is unaffected by the elevated temperature, exhibiting nearly lifetime-limited optical linewidths. Combined with the compatibility of diamond membranes with device integration, the demonstrated platform is an ideal spin-photon interface for future quantum technologies
    corecore