192 research outputs found

    Ground-State Quantum-Electrodynamical Density-Functional Theory

    Full text link
    In this work we establish a density-functional reformulation of coupled matter-photon problems subject to general external electromagnetic fields and charge currents. We first show that for static minimally-coupled matter-photon systems an external electromagnetic field is equivalent to an external charge current. We employ this to show that scalar external potentials and transversal external charge currents are in a one-to-one correspondence to the expectation values of the charge density and the vector-potential of the correlated matter-photon ground state. This allows to establish a Maxwell-Kohn-Sham approach, where in conjunction with the usual single-particle Kohn-Sham equations a classical Maxwell equation has to be solved. In the magnetic mean-field limit this reduces to a current-density-functional theory that does not suffer from non-uniqueness problems and if furthermore the magnetic field is zero recovers standard density-functional theory

    Global fixed point proof of time-dependent density-functional theory

    Full text link
    We reformulate and generalize the uniqueness and existence proofs of time-dependent density-functional theory. The central idea is to restate the fundamental one-to-one correspondence between densities and potentials as a global fixed point question for potentials on a given time-interval. We show that the unique fixed point, i.e. the unique potential generating a given density, is reached as the limiting point of an iterative procedure. The one-to-one correspondence between densities and potentials is a straightforward result provided that the response function of the divergence of the internal forces is bounded. The existence, i.e. the v-representability of a density, can be proven as well provided that the operator norms of the response functions of the members of the iterative sequence of potentials have an upper bound. The densities under consideration have second time-derivatives that are required to satisfy a condition slightly weaker than being square-integrable. This approach avoids the usual restrictions of Taylor-expandability in time of the uniqueness theorem by Runge and Gross [Phys.Rev.Lett.52, 997 (1984)] and of the existence theorem by van Leeuwen [Phys.Rev.Lett. 82, 3863 (1999)]. Owing to its generality, the proof not only answers basic questions in density-functional theory but also has potential implications in other fields of physics.Comment: 4 pages, 1 figur

    One-body reduced density-matrix functional theory in finite basis sets at elevated temperatures

    Get PDF
    In this review we provide a rigorous and self-contained presentation of one-body reduced density-matrix (1RDM) functional theory. We do so for the case of a finite basis set, where density-functional theory (DFT) implicitly becomes a 1RDM functional theory. To avoid non-uniqueness issues we consider the case of fermionic and bosonic systems at elevated temperature and variable particle number, i.e, a grand-canonical ensemble. For the fermionic case the Fock space is finite-dimensional due to the Pauli principle and we can provide a rigorous 1RDM functional theory relatively straightforwardly. For the bosonic case, where arbitrarily many particles can occupy a single state, the Fock space is infinite-dimensional and mathematical subtleties (not every hermitian Hamiltonian is self-adjoint, expectation values can become infinite, and not every self-adjoint Hamiltonian has a Gibbs state) make it necessary to impose restrictions on the allowed Hamiltonians and external non-local potentials. For simple conditions on the interaction of the bosons a rigorous 1RDM functional theory can be established, where we exploit the fact that due to the finite one-particle space all 1RDMs are finite-dimensional. We also discuss the problems arising from 1RDM functional theory as well as DFT formulated for an infinite-dimensional one-particle space.Comment: 55 pages, 7 figure

    Time-dependent Kohn-Sham approach to quantum electrodynamics

    Full text link
    We prove a generalization of the van Leeuwen theorem towards quantum electrodynamics, providing the formal foundations of a time-dependent Kohn-Sham construction for coupled quantized matter and electromagnetic fields. Thereby we circumvent the symmetry-causality problems associated with the action-functional approach to Kohn-Sham systems. We show that the effective external four-potential and four-current of the Kohn-Sham system are uniquely defined and that the effective four-current takes a very simple form. Further we rederive the Runge-Gross theorem for quantum electrodynamics.Comment: 8 page

    Atoms and Molecules in Cavities: From Weak to Strong Coupling in QED Chemistry

    Full text link
    In this work, we provide an overview of how well-established concepts in the fields of quantum chemistry and material sciences have to be adapted when the quantum nature of light becomes important in correlated matter-photon problems. Therefore, we analyze model systems in optical cavities, where the matter-photon interaction is considered from the weak- to the strong coupling limit and for individual photon modes as well as for the multi-mode case. We identify fundamental changes in Born-Oppenheimer surfaces, spectroscopic quantities, conical intersections and efficiency for quantum control. We conclude by applying our novel recently developed quantum-electrodynamical density-functional theory to single-photon emission and show how a straightforward approximation accurately describes the correlated electron-photon dynamics. This paves the road to describe matter-photon interactions from first-principles and addresses the emergence of new states of matter in chemistry and material science

    Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems

    Full text link
    In this work, we illustrate the recently introduced concept of the cavity Born-Oppenheimer approximation for correlated electron-nuclear-photon problems in detail. We demonstrate how an expansion in terms of conditional electronic and photon-nuclear wave functions accurately describes eigenstates of strongly correlated light-matter systems. For a GaAs quantum ring model in resonance with a photon mode we highlight how the ground-state electronic potential-energy surface changes the usual harmonic potential of the free photon mode to a dressed mode with a double-well structure. This change is accompanied by a splitting of the electronic ground-state density. For a model where the photon mode is in resonance with a vibrational transition, we observe in the excited-state electronic potential-energy surface a splitting from a single minimum to a double minimum. Furthermore, for a time-dependent setup, we show how the dynamics in correlated light-matter systems can be understood in terms of population transfer between potential energy surfaces. This work at the interface of quantum chemistry and quantum optics paves the way for the full ab-initio description of matter-photon systems
    • …
    corecore