38 research outputs found

    Deterministic Factors Overwhelm Stochastic Environmental Fluctuations as Drivers of Jellyfish Outbreaks

    Get PDF
    16 pages, 4 figures, 1 table, supporting Information http://dx.doi.org/10.1371/journal.pone.0141060Jellyfish outbreaks are increasingly viewed as a deterministic response to escalating levels of environmental degradation and climate extremes. However, a comprehensive understanding of the influence of deterministic drivers and stochastic environmental variations favouring population renewal processes has remained elusive. This study quantifies the deterministic and stochastic components of environmental change that lead to outbreaks of the jellyfish Pelagia noctiluca in the Mediterranen Sea. Using data of jellyfish abundance collected at 241 sites along the Catalan coast from 2007 to 2010 we: (1) tested hypotheses about the influence of time-varying and spatial predictors of jellyfish outbreaks; (2) evaluated the relative importance of stochastic vs. deterministic forcing of outbreaks through the environmental bootstrap method; and (3) quantified return times of extreme events. Outbreaks were common in May and June and less likely in other summer months, which resulted in a negative relationship between outbreaks and SST. Cross- and along-shore advection by geostrophic flow were important concentrating forces of jellyfish, but most outbreaks occurred in the proximity of two canyons in the northern part of the study area. This result supported the recent hypothesis that canyons can funnel P. noctiluca blooms towards shore during upwelling. This can be a general, yet unappreciated mechanism leading to outbreaks of holoplanktonic jellyfish species. The environmental bootstrap indicated that stochastic environmental fluctuations have negligible effects on return times of outbreaks. Our analysis emphasized the importance of deterministic processes leading to jellyfish outbreaks compared to the stochastic component of environmental variation. A better understanding of how environmental drivers affect demographic and population processes in jellyfish species will increase the ability to anticipate jellyfish outbreaks in the futureThe authors gratefully acknowledge financial support by the European Community Seventh Framework Programme (FP7/2007–2013) for the project VECTORS (grant agreement no. 266445) (URL: http://cordis.europa.eu/fp7/home_en.html). AC was supported by a doctoral fellowship from the Chilean National Commission for Scientific and Technological Research (CONICYT – PFCHA/Doctorado al Extranjero 4a Convocatoria, 72120016).Peer Reviewe

    Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest

    Get PDF
    This short communication aims at providing an updated report on degassing activity and ground deformation variations observed during the ongoing (2012–2019) Campi Flegrei caldera unrest, with a particular focus on Pisciarelli, currently its most active fumarolic field.We show that the CO2 flux fromthe main Pisciarelli fumarolic vent (referred as “Soffione”) has increased by a factor N 3 since 2012, reaching in 2018–2019 levels (N600 tons/ day) that are comparable to those typical of a medium-sized erupting arc volcano. A substantial widening ofthe degassing vents and bubbling pools, and a further increase in CO2 concentrations in ambient air (up to 6000 ppm), have also been detected since mid-2018. We interpret this escalating CO2 degassing activity using a multidisciplinary dataset that includes thermodynamically estimated pressures for the source hydrothermal system, seismic and ground deformation data. From this analysis, we show that degassing, deformation and seis- micity have all reached in 2018–2019 levels never observed since the onset ofthe unrest in 2005, with an overall uplift of~57 cmand ~448 seismic events in the last year. The calculated pressure ofthe Campi Flegrei hydrother- mal system has reached ~44 bar and is rapidly increasing. Our results raise concern on the possible evolution of the Campi Flegrei unrest and reinforce the need for careful monitoring of the degassing activity at Pisciarelli, hopefully with the deployment of additional permanent gas monitoring units.Published151-1574V. Processi pre-eruttiviJCR Journa

    VIGIL: a Python tool for automatized probabilistic VolcanIc Gas dIspersion modeLling

    Get PDF
    Probabilistic volcanic hazard assessment is a standard methodology based on running a deterministic hazard quantification tool multiple times to explore the full range of uncertainty in the input parameters and boundary conditions, in order to probabilistically quantify the variability of outputs accounting for such uncertainties. Nowadays, different volcanic hazards are quantified by means of this approach. Among these, volcanic gas emission is particularly relevant given the threat posed to human health if concentrations and exposure times exceed certain thresholds. There are different types of gas emissions but two main scenarios can be recognized: hot buoyant gas emissions from fumaroles and the ground and dense gas emissions feeding density currents that can occur, e.g., in limnic eruptions. Simulation tools are available to model the evolution of critical gas concentrations over an area of interest. Moreover, in order to perform probabilistic hazard assessments of volcanic gases, simulations should account for the natural variability associated to aspects such as seasonal and daily wind conditions, localized or diffuse source locations, and gas fluxes. Here we present VIGIL (automatized probabilistic VolcanIc Gas dIspersion modeLling), a new Python tool designed for managing the entire simulation workflow involved in single and probabilistic applications of gas dispersion modelling. VIGIL is able to manage the whole process from meteorological data processing, needed to run gas dispersion in both the dilute and dense gas flow scenarios, to the post processing of models’ outputs. Two application examples are presented to show some of the modelling capabilities offered by VIGIL

    Testing gas dispersion modelling: a case study at La Soufrière volcano (Guadeloupe, Lesser Antilles)

    Get PDF
    Volcanic gas dispersal can be a serious threat to people living near active volcanoes since it can have short- and long-term effects on human health, and severely damage crops and agricultural land. In recent decades, reliable computational models have significantly advanced, and now they may represent a valuable tool to make quantitative and testable predictions, supporting gas dispersal forecasting and hazard assessments for public safety. Before applying a specific modelling tool into hazard quantification, its calibration and its sensitivity to initial and boundary conditions should be carefully tested against available data, in order to produce unbiased hazard quantifications. In this study, we provided a number of prototypical tests aimed to validate the modelling of gas dispersal from a hazard perspective. The tests were carried out at La Soufrière de Guadeloupe volcano, one of the most active gas emitters in the Lesser Antilles. La Soufrière de Guadeloupe has shown quasi-permanent degassing of a low-temperature hydrothermal nature since its last magmatic eruption in 1530 CE, when the current dome was emplaced. We focused on the distribution of CO2 and H2S discharged from the three main present-day fumarolic sources at the summit, using the measurements of continuous gas concentrations collected in the period March–April 2017. We developed a new probabilistic implementation of the Eulerian code DISGAS-2.0 for passive gas dispersion coupled with the mass-consistent Diagnostic Wind Model, using local wind measurements and atmospheric stability information from a local meteorological station and ERA5 reanalysis data. We found that model outputs were not significantly affected by the type of wind data but rather upon the relative positions of fumaroles and measurement stations. Our results reproduced the statistical variability in daily averages of observed data over the investigated period within acceptable ranges, indicating the potential usefulness of DISGAS-2.0 as a tool for reproducing the observed fumarolic degassing and for quantifying gas hazard at La Soufrière. The adopted testing procedure allows for an aware application of simulation tools for quantifying the hazard, and thus we think that this kind of testing should actually be the first logical step to be taken when applying a simulator to assess (gas) hazard in any other volcanic contexts

    An integrated assessment of the Good Environmental Status of Mediterranean Marine Protected Areas

    Get PDF
    Este artículo contiene 11 páginas, 2 figuras, 2 tablas.Local, regional and global targets have been set to halt marine biodiversity loss. Europe has set its own policy targets to achieve Good Environmental Status (GES) of marine ecosystems by implementing the Marine Strategy Framework Directive (MSFD) across member states. We combined an extensive dataset across five Mediterranean ecoregions including 26 Marine Protected Areas (MPAs), their reference unprotected areas, and a no-trawl case study. Our aim was to assess if MPAs reach GES, if their effects are local or can be detected at ecoregion level or up to a Mediterranean scale, and which are the ecosystem components driving GES achievement. This was undertaken by using the analytical tool NEAT (Nested Environmental status Assessment Tool), which allows an integrated assessment of the status of marine systems. We adopted an ecosystem approach by integrating data from several ecosystem components: the seagrass Posidonia oceanica, macroalgae, sea urchins and fish. Thresholds to define the GES were set by dedicated workshops and literature review. In the Western Mediterranean, most MPAs are in good/high status, with P. oceanica and fish driving this result within MPAs. However, GES is achieved only at a local level, and the Mediterranean Sea, as a whole, results in a moderate environmental status. Macroalgal forests are overall in bad condition, confirming their status at risk. The results are significantly affected by the assumption that discrete observations over small spatial scales are representative of the total extension investigated. This calls for large-scale, dedicated assessments to realistically detect environmental status changes under different conditions. Understanding MPAs effectiveness in reaching GES is crucial to assess their role as sentinel observatories of marine systems. MPAs and trawling bans can locally contribute to the attainment of GES and to the fulfillment of the MSFD objectives. Building confidence in setting thresholds between GES and non-GES, investing in long-term monitoring, increasing the spatial extent of sampling areas, rethinking and broadening the scope of complementary tools of protection (e.g., Natura 2000 Sites), are indicated as solutions to ameliorate the status of the basin.This article was undertaken within the COST Action 15121 MarCons (http://www.marcons-cost.eu, European Cooperation in Science and Technology), the Interreg MED AMAre Plus (Ref: 8022) and the project PO FEAMP 2014-2020 Innovazione, sviluppo e sostenibilita ` nel settore della pesca e dell’acquacoltura per la Regione Campania (ISSPA 2.51). M.C.U., A.B. have been funded by the project MEDREGION (European Commission DG ENV/MSFD, 2018 call, Grant Agreement 110661/ 2018/794286/SUB/ENV.C2). Aegean Sea data were retrieved from the project PROTOMEDEA (www.protomedea.eu), funded by DG for Marine Affairs and Fisheries of the EC, under Grant Agreement SI2.721917. JB acknowledges support from the Spanish Ministry of Science and Innovation (Juan de la Cierva fellowship FJC 2018-035566-I).With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S).Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Clumpy galaxies seen in H α: inflated observed clump properties due to limited spatial resolution and sensitivity

    Full text link
    High-resolution simulations of star-forming massive galactic discs have shown that clumps form with a characteristic baryonic mass in the range 107–108 M⊙, with a small tail exceeding 109 M⊙ produced by clump–clump mergers. This is in contrast with the observed kpc-size clumps with masses up to 1010 M⊙ in high-redshift star-forming galaxies. In this paper, we show that the comparison between simulated and observed star-forming clumps is hindered by limited observational spatial resolution and sensitivity. We post-process high-resolution hydrodynamical simulations of clumpy discs using accurate radiative transfer to model the effect of ionizing radiation from young stars and to compute H α emission maps. By comparing the intrinsic clump size and mass distributions with those inferred from convolving the H α maps with different Gaussian apertures, we mimic the typical resolution used in observations. We found that with 100 pc resolution, mock observations can recover the intrinsic clump radii and stellar masses, in agreement with those found by lensing observations. Instead, using a 1 kpc resolution smears out individual clumps, resulting in their apparent merging. This causes significant overestimations of the clump radii and therefore masses derived using methods that use their observed sizes. We show that limited sensitivity can also force observations to significantly overestimate the clump masses. We conclude that a significant fraction of giant clumps detected in the observations may result from artificially inflated radii and masses, and that ≈100 pc spatial resolution is required to capture correctly the physical characteristics of star-forming clumps if they are coherent structures produced by disc fragmentation

    Schnitzler syndrome, a rare autoinflammatory disease. Complete response to IL-1 blockade

    No full text
    The Schnitzler syndrome (SCS) is a rare, late-onset acquired autoinflammatory syndrome often underdiagnosed. The diagnosis is based on the Lipsker and recently on validated Strasbourg diagnostic criteria (chronic urticarial rash, monoclonal gammopathy, intermittent fever, arthritis, arthralgia, bone involvement, hepatomegaly, splenomegaly, lymphadenopathy, dermal infiltration of neutrophils and laboratory markers of inflammation). Conventional therapies including anti-histamines, anti-inflammatory drugs, corticosteroids and immunosuppressive drugs that are usually ineffective. Recently the gold standard therapy of SCS are considered IL-1 blocking agents as anakinra, canakinumab, rilonacept that led to a significant control of clinical symptoms, even if a relapse could appear at suspension of the treatment. We report a case of a 63-year-old man with a recent diagnosis of SCS - after 6 years of symptoms of disease - refractory to several conventional immunosuppressive therapies and treated with anakinra, with sustained remission of clinic manifestations during treatment at 24 months of follow up

    On the Stellar Masses of Giant Clumps in Distant Star-forming Galaxies

    Full text link
    We analyze stellar masses of clumps drawn from a compilation of star-forming galaxies at 1.1 < z < 3.6. Comparing clumps selected in different ways, and in lensed or blank field galaxies, we examine the effects of spatial resolution and sensitivity on the inferred stellar masses. Large differences are found, with median stellar masses ranging from 109M\sim {10}^{9}\,{M}_{\odot } for clumps in the often-referenced field galaxies to 107M\sim {10}^{7}\,{M}_{\odot } for fainter clumps selected in deep-field or lensed galaxies. We argue that the clump masses, observed in non-lensed galaxies with a limited spatial resolution of ~1 kpc, are artificially increased due to the clustering of clumps of smaller mass. Furthermore, we show that the sensitivity threshold used for the clump selection affects the inferred masses even more strongly than resolution, biasing clumps at the low-mass end. Both improved spatial resolution and sensitivity appear to shift the clump stellar mass distribution to lower masses, qualitatively in agreement with clump masses found in recent high-resolution simulations of disk fragmentation. We discuss the nature of the most massive clumps, and we conclude that it is currently not possible to properly establish a meaningful clump stellar mass distribution from observations and to infer the existence and value of a characteristic clump mass scale

    Nailfold videocapillaroscopy in internal medicine

    No full text
    Capillaroscopy is an actual inexpensive imaging technique, used to examine, non-invasively and safely, the morphology of nailfold dermal papillary capillaries. Many studies agree in the statement that the capillaroscopy is one of the gold standard methods for non-invasive examination of the microcirculation and it plays an important role in screening in Raynaud’s phenomenon and in monitoring of systemic sclerosis and other rheumatologic diseases. There are also many reports on the possible use of nailfold capillaroscopy in the diagnosis and monitoring of many other diseases in internal medicine
    corecore