57 research outputs found

    Child-Robot Interactions Using Educational Robots : An Ethical and Inclusive Perspective

    Get PDF
    The Qui-Bot H2O project involves developing four educational sustainable robots and their associated software. Robots are equipped with HRI features such as voice recognition and color sensing, and they possess a humanoid appearance. The project highlights the social and ethical aspects of robotics applied to chemistry and industry 4.0 at an early age. Here, we report the results of an interactive study that involved 212 students aged within the range of 3-18. Our educational robots were used to measure the backgrounds, impact, and interest of students, as well as their satisfaction after interacting with them. Additionally, we provide an ethical study of the use of these robots in the classroom and a comparison of the interactions of humanoid versus non-humanoid educational robots observed in early childhood learning. Our findings demonstrate that these robots are useful in teaching technical and scientific concepts in a playful and intuitive manner, as well as in increasing the number of girls who are interested in science and engineering careers. In addition, major impact measures generated by the project within a year of its implementation were analyzed. Several public administrations in the area of gender equality endorsed and participated in the Qui-Bot H2O project in addition to educational and business entities

    Alirocumab Reduces Total Nonfatal Cardiovascular and Fatal Events : The ODYSSEY OUTCOMES Trial

    Get PDF
    The ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) trial compared alirocumab with placebo, added to high-intensity or maximum-tolerated statin treatment, after acute coronary syndrome (ACS) in 18,924 patients. Alirocumab reduced the first occurrence of the primary composite endpoint and was associated with fewer all-cause deaths. This pre-specified analysis determined the extent to which alirocumab reduced total (first and subsequent) nonfatal cardiovascular events and all-cause deaths in ODYSSEY OUTCOMES. Hazard functions for total nonfatal cardiovascular events (myocardial infarction, stroke, ischemia-driven coronary revascularization, and hospitalization for unstable angina or heart failure) and death were jointly estimated, linked by a shared frailty accounting for patient risk heterogeneity and correlated within-patient nonfatal events. An association parameter also quantified the strength of the linkage between risk of nonfatal events and death. The model provides accurate relative estimates of nonfatal event risk if nonfatal events are associated with increased risk for death. With 3,064 first and 5,425 total events, 190 fewer first and 385 fewer total nonfatal cardiovascular events or deaths were observed with alirocumab compared with placebo. Alirocumab reduced total nonfatal cardiovascular events (hazard ratio: 0.87; 95% confidence interval: 0.82 to 0.93) and death (hazard ratio: 0.83; 95% confidence interval: 0.71 to 0.97) in the presence of a strong association between nonfatal and fatal event risk. In patients with ACS, the total number of nonfatal cardiovascular events and deaths prevented with alirocumab was twice the number of first events prevented. Consequently, total event reduction is a more comprehensive metric to capture the totality of alirocumab clinical efficacy after ACS

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    Get PDF
    Lipoprotein(a) concentration is associated with cardiovascular events. Alirocumab, a proprotein convertase subtilisin/kexin type 9 inhibitor, lowers lipoprotein(a) and low-density lipoprotein cholesterol (LDL-C). A pre-specified analysis of the placebo-controlled ODYSSEY Outcomes trial in patients with recent acute coronary syndrome (ACS) determined whether alirocumab-induced changes in lipoprotein(a) and LDL-C independently predicted major adverse cardiovascular events (MACE). One to 12 months after ACS, 18,924 patients on high-intensity statin therapy were randomized to alirocumab or placebo and followed for 2.8 years (median). Lipoprotein(a) was measured at randomization and 4 and 12 months thereafter. The primary MACE outcome was coronary heart disease death, nonfatal myocardial infarction, ischemic stroke, or hospitalization for unstable angina. Baseline lipoprotein(a) levels (median: 21.2 mg/dl; interquartile range [IQR]: 6.7 to 59.6 mg/dl) and LDL-C [corrected for cholesterol content in lipoprotein(a)] predicted MACE. Alirocumab reduced lipoprotein(a) by 5.0 mg/dl (IQR: 0 to 13.5 mg/dl), corrected LDL-C by 51.1 mg/dl (IQR: 33.7 to 67.2 mg/dl), and reduced the risk of MACE (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.78 to 0.93). Alirocumab-induced reductions of lipoprotein(a) and corrected LDL-C independently predicted lower risk of MACE, after adjustment for baseline concentrations of both lipoproteins and demographic and clinical characteristics. A 1-mg/dl reduction in lipoprotein(a) with alirocumab was associated with a HR of 0.994 (95% CI: 0.990 to 0.999; p = 0.0081). Baseline lipoprotein(a) and corrected LDL-C levels and their reductions by alirocumab predicted the risk of MACE after recent ACS. Lipoprotein(a) lowering by alirocumab is an independent contributor to MACE reduction, which suggests that lipoprotein(a) should be an independent treatment target after ACS. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402

    Spatio‐temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate

    Get PDF
    Aim To decipher Europe-wide spatiotemporal patterns of forest growth dynamics and their associations with carbon isotope fractionation processes inferred from tree rings as modulated by climate warming. Location Europe and North Africa (30‒70°N, 10°W‒35°E). Time period 1901‒2003. Major taxa studied Temperate and Euro-Siberian trees. Methods We characterize changes in the relationship between tree growth and carbon isotope fractionation over the 20th century using a European network consisting of 20 site chronologies. Using indexed tree-ring widths (TRWi), we assess shifts in the temporal coherence of radial growth across sites (synchrony) for five forest ecosystems (Atlantic, Boreal, cold continental, Mediterranean and temperate). We also examine whether TRWi shows variable coupling with leaf-level gas exchange, inferred from indexed carbon isotope discrimination of tree-ring cellulose (Δ13Ci). Results We find spatial autocorrelation for TRWi and Δ13Ci extending over up to 1,000 km among forest stands. However, growth synchrony is not uniform across Europe, but increases along a latitudinal gradient concurrent with decreasing temperature and evapotranspiration. Latitudinal relationships between TRWi and Δ13Ci (changing from negative to positive southwards) point to drought impairing carbon uptake via stomatal regulation for water saving occurring at forests below 60°N in continental Europe. A rise in forest growth synchrony over the 20th century together with increasingly positive relationships between TRWi and Δ13Ci indicate intensifying drought impacts on tree performance. These effects are noticeable in drought-prone biomes (Mediterranean, temperate and cold continental). Main conclusions At the turn of this century, convergence in growth synchrony across European forest ecosystems is coupled with coordinated warming-induced drought effects on leaf physiology and tree growth spreading northwards. Such a tendency towards exacerbated moisture-sensitive growth and physiology could override positive effects of enhanced leaf intercellular CO2 concentrations, possibly resulting in Europe-wide declines of forest carbon gain in the coming decades

    The relative effects of upwelling and river flow on the phytoplankton diversity patterns in the ria of A Coruña (NW Spain)

    Get PDF
    Phytoplankton species assemblages in estuaries are connected to those in rivers and marine environments by local hydrodynamics leading to a continuous flow of taxa. This study revealed differential effects of upwelling and river flow on phytoplankton communities observed in 2011 along a salinity gradient from a river reservoir connected to the sea through a ria-marine bay system in A Coruña (NW Spain, 43° 16-21’ N, 8° 16-22’ W). With 130 phytoplankton taxa identified, the assemblages were dominated in general by diatoms, particularly abundant in the bay and in the estuary, but also by chlorophycea and cyanobacteria in the reservoir. Considering the entire seasonal cycle, the local assemblages were mainly characterized by changes in cryptophytes and diatoms, small dinoflagellates and some freshwater chlorophycea. Salinity, nitrate, and organic matter variables, were the main environmental factors related to the changes in the phytoplankton communities through the system, while phosphate and nitrite were also important for local communities in the estuary and the bay, respectively. The corresponding local phytoplankton assemblages showed moderate levels of connectivity. The estuarine community shared a variable number of taxa with the adjacent zones, depending on the relative strength of upwelling (major influence from the bay) and river flow (major influence of the reservoir) but had on average 35% of unique taxa. Consequently, local and zonal diversity patterns varied seasonally and were not simply related to the salinity gradient driven by the river flow.ANILE (CTM2009-08396 and CTM2010-08804-E), FIOME (CTM2011-28792-C02-01-MAR), and MEFIO (CTM2011-28792-C02-02-MAR) of the Plan Nacional de I+D+i (Spain), and RADIALES of the Instituto Español de Oceanografía (IEO, Spain).Versión del editor2,01

    Contribution of Individual and Environmental Factors to Physical Activity Level among Spanish Adults

    Get PDF
    BACKGROUND: Lack of physical activity (PA) is a major risk for chronic disease and obesity. The main aims of the present study were to identify individual and environmental factors independently associated with PA and examine the relative contribution of these factors to PA level in Spanish adults. METHODOLOGY/PRINCIPAL FINDINGS: A population-based cross-sectional sample of 3,000 adults (18-75 years old) from Gran Canaria (Spain) was selected using a multistage stratified random sampling method. The participants were interviewed at home using a validated questionnaire to assess PA as well as individual and environmental factors. The data were analyzed using bivariate and multivariate logistic regression. One demographic variable (education), two cognitive (self-efficacy and perceived barriers), and one social environmental (organized format) were independently associated with PA in both genders. Odds ratios ranged between 1.76-2.07 in men and 1.35-2.50 in women (both p<0.05). Individual and environmental factors explained about one-third of the variance in PA level. CONCLUSIONS/SIGNIFICANCE: Self-efficacy and perceived barriers were the most significant factors to meet an adequate level of PA. The risk of insufficient PA was twofold greater in men with primary or lesser studies and who are employed. In women, living in rural environments increased the risk of insufficient PA. The promotion of organized PA may be an efficient way to increase the level of PA in the general population. Improvement in the access to sport facilities and places for PA is a prerequisite that may be insufficient and should be combined with strategies to improve self-efficacy and overcome perceived barriers in adulthood

    A High Productivity Bioprocess for Obtaining Metallic Copper from Printed Circuit Boards (PCBs)

    No full text
    PCBs constitute a residue rich in metals, among which copper stands out due to its majority content, much higher than that found in natural deposits, so that it is a potential secondary resource. Many attempts have been made to recover copper via biohydrometallurgy because it is an environmentally friendly route, however, one of its main drawbacks is the low productivity achieved. A global process based on circularity for obtaining copper cathodes from PCBs is proposed. First, PCBs from end-of-life mobile phones are shred to sizes between 800 and 2000 µm. Copper is leached from these pieces in a continuous stirred tank reactor (CSTR) at high ferric concentration, at a moderate temperature of 60 °C reaching dissolution rate higher than 1 g/L·h and a yield of 99 %. The solution that leaves the CSTR with concentrations of up to 10 g/L of Cu is passed through a high-performance bioreactor for the regeneration of Fe(III). A biooxidation rate of 1.3 g/L⋅h was achieved, and no inhibition was observed. Concurrently, copper is recovered in metallic state by solvent extraction and electrowinning with recirculation streams becoming a more profitable and sustainable complete global process.Ministerio de Ciencia e Innovación PID2020-117520RA-I0

    Computational and Experimental Investigation of Biofilm Disruption Dynamics Induced by High-Velocity Gas Jet Impingement

    No full text
    Experimental data showed that high-speed microsprays can effectively disrupt biofilms on their support substratum, producing a variety of dynamic reactions such as elongation, displacement, ripple formation, and fluidization. However, the mechanics underlying the impact of high-speed turbulent flows on biofilm structure is complex under such extreme conditions, since direct measurements of viscosity at these high shear rates are not possible using dynamic testing instruments. Here, we used computational fluid dynamics simulations to assess the complex fluid interactions of ripple patterning produced by high-speed turbulent air jets impacting perpendicular to the surface of Streptococcus mutans biofilms, a dental pathogen causing caries, captured by high-speed imaging. The numerical model involved a two-phase flow of air over a non-Newtonian biofilm, whose viscosity as a function of shear rate was estimated using the Herschel-Bulkley model. The simulation suggested that inertial, shear, and interfacial tension forces governed biofilm disruption by the air jet. Additionally, the high shear rates generated by the jet impacts coupled with shear-thinning biofilm property resulted in rapid liquefaction (within milliseconds) of the biofilm, followed by surface instability and traveling waves from the impact site. Our findings suggest that rapid shear thinning under very high shear flows causes the biofilm to behave like a fluid and elasticity can be neglected. A parametric sensitivity study confirmed that both applied force intensity (i.e., high jet nozzle air velocity) and biofilm properties (i.e., low viscosity and low air-biofilm surface tension and thickness) intensify biofilm disruption by generating large interfacial instabilities.IMPORTANCE Knowledge of mechanisms promoting disruption though mechanical forces is essential in optimizing biofilm control strategies which rely on fluid shear. Our results provide insight into how biofilm disruption dynamics is governed by applied forces and fluid properties, revealing a mechanism for ripple formation and fluid-biofilm mixing. These findings have important implications for the rational design of new biofilm cleaning strategies with fluid jets, such as determining optimal parameters (e.g., jet velocity and position) to remove the biofilm from a certain zone (e.g., in dental hygiene or debridement of surgical site infections) or using antimicrobial agents which could increase the interfacial area available for exchange, as well as causing internal mixing within the biofilm matrix, thus disrupting the localized microenvironment which is associated with antimicrobial tolerance. The developed model also has potential application in predicting drag and pressure drop caused by biofilms on bioreactor, pipeline, and ship hull surfaces.BT/Environmental Biotechnolog
    corecore