11 research outputs found

    On The Universality Class Of Little String Theories

    Get PDF
    We propose that Little String Theories in six dimensions are quasilocal quantum field theories. Such field theories obey a modification of Wightman axioms which allows Wightman functions (i.e. vacuum expectation values of products of fundamental fields) to grow exponentially in momentum space. Wightman functions of quasilocal fields in x-space violate microlocality at short distances. With additional assumptions about the ultraviolet behavior of quasilocal fields, one can define approximately local observables associated to big enough compact regions. The minimum size of such a region can be interpreted as the minimum distance which observables can probe. We argue that for Little String Theories this distance is of order {\sqrt N}/M_s.Comment: 25 pages, late

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    High-resolution 3D structural and optical analyses of hybrid or composite materials by means of scanning probe microscopy combined with the ultramicrotome technique: an example of application to engineering of liquid crystals doped with fluorescent quantu

    No full text
    ABSTRACT Combination of nanometer-scale 3D structural analysis with optical characterization of the same material is a challenging task. Its results may be important for nanophotonics, materials science, and quality control. We have developed a new technique for complementary high-resolution structural and optical characterization followed by optical spectroscopic and microscopic measurements accompanied by reconstruction of the 3D structure in the same area of the sample. The 3D structure is reconstructed by combination of ultramicrotomic and SPM techniques allowing the study of the 3D distribution of implanted nanoparticles and their effect on the matrix structure. The combination of scanning probe nanotomography (SPN) and optical microspectroscopy makes it possible to direct estimate how the 3D structural characteristics of materials affect their macroscopic optical properties. The technique developed has been applied to the engineering of materials made from cholesteric liquid crystals and fluorescent quantum dots (QDs). These materials permit photochemical patterning and image recording through the changes in the dissymmetry factor of circular polarization of QD emission. The differences in the polarisation images and morphological characteristics of the liquid crystal matrix have proved to be correlated with the arrangement of the areas of homogeneous distribution and nonhomogeneous clustering of QDs. The reconstruction of the 3D structure of the liquid crystal matrix in the areas of homogeneous QD distribution has shown that QDs embedded into cholesteric liquid crystal matrices do not perturb their periodic planar texture. The combined optical/SPM/ultramicrotome technique will be indispensable for evaluating the effects of inorganic nanoparticles on the organisation of organic and liquid crystal matrices, biomedical materials, cells, and tissues

    Combined Scanning Probe Nanotomography and Optical Microspectroscopy: A Correlative Technique for 3D Characterization of Nanomaterials

    No full text
    Combination of 3D structural analysis with optical characterization of the same sample area on the nanoscale is a highly demanded approach in nanophotonics, materials science, and quality control of nanomaterial. We have developed a correlative microscopy technique where the 3D structure of the sample is reconstructed on the nanoscale by means of a “slice-and-view” combination of ultramicrotomy and scanning probe microscopy (scanning probe nanotomography, SPNT), and its optical characteristics are analyzed using microspectroscopy. This approach has been used to determine the direct quantitative relationship of the 3D structural characteristics of nanovolumes of materials with their microscopic optical properties. This technique has been applied to 3D structural and optical characterization of a hybrid material consisting of cholesteric liquid crystals doped with fluorescent quantum dots (QDs) that can be used for photochemical patterning and image recording through the changes in the dissymmetry factor of the circular polarization of QD emission. The differences in the polarization images and fluorescent spectra of this hybrid material have proved to be correlated with the arrangement of the areas of homogeneous distribution and heterogeneous clustering of QDs. The reconstruction of the 3D nanostructure of the liquid crystal matrix in the areas of homogeneous QDs distribution has shown that QDs do not perturb the periodic planar texture of the cholesteric liquid crystal matrix, whereas QD clusters do perturb it. The combined microspectroscopy–nanotomography technique will be important for evaluating the effects of nanoparticles on the structural organization of organic and liquid crystal matrices and biomedical materials, as well as quality control of nanotechnology fabrication processes and products

    Polymer Kernels as Compact Carriers for Suspended Cardiomyocytes

    No full text
    Induced pluripotent stem cells (iPSCs) constitute a potential source of patient-specific human cardiomyocytes for a cardiac cell replacement therapy via intramyocardial injections, providing a major benefit over other cell sources in terms of immune rejection. However, intramyocardial injection of the cardiomyocytes has substantial challenges related to cell survival and electrophysiological coupling with recipient tissue. Current methods of manipulating cell suspensions do not allow one to control the processes of adhesion of injected cells to the tissue and electrophysiological coupling with surrounding cells. In this article, we documented the possibility of influencing these processes using polymer kernels: biocompatible fiber fragments of subcellular size that can be adsorbed to a cell, thereby creating the minimum necessary adhesion foci to shape the cell and provide support for the organization of the cytoskeleton and the contractile apparatus prior to adhesion to the recipient tissue. Using optical excitation markers, the restoration of the excitability of cardiomyocytes in suspension upon adsorption of polymer kernels was shown. It increased the likelihood of the formation of a stable electrophysiological coupling in vitro. The obtained results may be considered as a proof of concept that the stochastic engraftment process of injected suspension cells can be controlled by smart biomaterials

    Silicon–Gold Nanoparticles Affect Wharton’s Jelly Phenotype and Secretome during Tri-Lineage Differentiation

    No full text
    Multiple studies have demonstrated that various nanoparticles (NPs) stimulate osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibit adipogenic ones. The mechanisms of these effects are not determined. The aim of this paper was to estimate Wharton’s Jelly MSCs phenotype and humoral factor production during tri-lineage differentiation per se and in the presence of silicon–gold NPs. Silicon (SiNPs), gold (AuNPs), and 10% Au-doped Si nanoparticles (SiAuNPs) were synthesized by laser ablation, characterized, and studied in MSC cultures before and during differentiation. Humoral factor production (n = 41) was analyzed by Luminex technology. NPs were nontoxic, did not induce ROS production, and stimulated G-CSF, GM-CSF, VEGF, CXCL1 (GRO) production in four day MSC cultures. During MSC differentiation, all NPs stimulated CD13 and CD90 expression in osteogenic cultures. MSC differentiation resulted in a decrease in multiple humoral factor production to day 14 of incubation. NPs did not significantly affect the production in chondrogenic cultures and stimulated it in both osteogenic and adipogenic ones. The major difference in the protein production between osteogenic and adipogenic MSC cultures in the presence of NPs was VEGF level, which was unaffected in osteogenic cells and 4–9 times increased in adipogenic ones. The effects of NPs decreased in a row AuNPs > SiAuNPs > SiNPs. Taken collectively, high expression of CD13 and CD90 by MSCs and critical level of VEGF production can, at least, partially explain the stimulatory effect of NPs on MSC osteogenic differentiation

    Novel Molecular Vehicle-Based Approach for Cardiac Cell Transplantation Leads to Rapid Electromechanical Graft–Host Coupling

    No full text
    Myocardial remodeling is an inevitable risk factor for cardiac arrhythmias and can potentially be corrected with cell therapy. Although the generation of cardiac cells ex vivo is possible, specific approaches to cell replacement therapy remain unclear. On the one hand, adhesive myocyte cells must be viable and conjugated with the electromechanical syncytium of the recipient tissue, which is unattainable without an external scaffold substrate. On the other hand, the outer scaffold may hinder cell delivery, for example, making intramyocardial injection difficult. To resolve this contradiction, we developed molecular vehicles that combine a wrapped (rather than outer) polymer scaffold that is enveloped by the cell and provides excitability restoration (lost when cells were harvested) before engraftment. It also provides a coating with human fibronectin, which initiates the process of graft adhesion into the recipient tissue and can carry fluorescent markers for the external control of the non-invasive cell position. In this work, we used a type of scaffold that allowed us to use the advantages of a scaffold-free cell suspension for cell delivery. Fragmented nanofibers (0.85 µm ± 0.18 µm in diameter) with fluorescent labels were used, with solitary cells seeded on them. Cell implantation experiments were performed in vivo. The proposed molecular vehicles made it possible to establish rapid (30 min) electromechanical contact between excitable grafts and the recipient heart. Excitable grafts were visualized with optical mapping on a rat heart with Langendorff perfusion at a 0.72 ± 0.32 Hz heart rate. Thus, the pre-restored grafts’ excitability (with the help of a wrapped polymer scaffold) allowed rapid electromechanical coupling with the recipient tissue. This information could provide a basis for the reduction of engraftment arrhythmias in the first days after cell therapy
    corecore