38 research outputs found

    Conserved Roles of CrRLK1L Receptor-Like Kinases in Cell Expansion and Reproduction from Algae to Angiosperms

    Get PDF
    Receptor-like kinases (RLKs) are regulators of plant development through allowing cells to sense their extracellular environment. They facilitate detection of local endogenous signals, in addition to external biotic and abiotic stimuli. The Catharanthus roseus RLK1-like (CrRLK1L) protein kinase subfamily, which contains FERONIA, plays a central role in regulating fertilization and in cell expansion mechanisms such as cell elongation and tip growth, as well as having indirect links to plant–pathogen interactions. Several components of CrRLK1L signaling pathways have been identified, including an extracellular ligand, coreceptors, and downstream signaling elements. The presence and abundance of the CrRLK1L proteins in the plant kingdom suggest an origin within the Streptophyta lineage, with a notable increase in prevalence in the seeded land plants. Given the function of the sole CrRLK1L protein in a charophycean alga, the possibility of a conserved role in detection and/or regulation of cell wall integrity throughout the Strephtophytes is discussed. Orthologs of signaling pathway components are also present in extant representatives of non-vascular land plants and early vascular land plants including the liverwort Marchantia polymorpha, the moss Physcomitrella patens and the lycophyte Selaginella moellendorffii. Deciphering the roles in development of the CrRLK1L protein kinases in early diverging land plants will provide insights into their ancestral function, furthering our understanding of this diversified subfamily of receptors in higher plants

    Proliferation and Morphogenesis of the Endoplasmic Reticulum Driven by the Membrane Domain of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Plant Cells

    No full text
    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis and is composed of an endoplasmic reticulum (ER)-anchoring membrane domain with low sequence similarity among eukaryotic kingdoms and a conserved cytosolic catalytic domain. Organized smooth endoplasmic reticulum (OSER) structures are common formations of hypertrophied tightly packed ER membranes devoted to specific biosynthetic and secretory functions, the biogenesis of which remains largely unexplored. We show that the membrane domain of plant HMGR suffices to trigger ER proliferation and OSER biogenesis. The proliferating membranes become highly enriched in HMGR protein, but they do not accumulate sterols, indicating a morphogenetic rather than a metabolic role for HMGR. The N-terminal MDVRRRPP motif present in most plant HMGR isoforms is not required for retention in the ER, which was previously proposed, but functions as an ER morphogenic signal. Plant OSER structures are morphologically similar to those of animal cells, emerge from tripartite ER junctions, and mainly build up beside the nuclear envelope, indicating conserved OSER biogenesis in high eukaryotes. Factors other than the OSER-inducing HMGR construct mediate the tight apposition of the proliferating membranes, implying separate ER proliferation and membrane association steps. Overexpression of the membrane domain of Arabidopsis (Arabidopsis thaliana) HMGR leads to ER hypertrophy in every tested cell type and plant species, whereas the knockout of the HMG1 gene from Arabidopsis, encoding its major HMGR isoform, causes ER aggregation at the nuclear envelope. Our results show that the membrane domain of HMGR contributes to ER morphogenesis in plant cells
    corecore