3,140 research outputs found
The monkey's perspective
The sequencing of the genome of a female rhesus macaque (Macaca mulatta) of Indian origin will provide us with biomedical and evolutionary insights into both humans and Old World monkeys
A mobile element-based evolutionary history of guenons (tribe Cercopithecini)
BACKGROUND: Guenons (tribe Cercopithecini) are a species-rich group of primates that have attracted considerable attention from both primatologists and evolutionary biologists. The complex speciation pattern has made the elucidation of their relationships a challenging task, and many questions remain unanswered. SINEs are a class of non-autonomous mobile elements and are essentially homoplasy-free characters with known ancestral states, making them useful genetic markers for phylogenetic studies. RESULTS: We identified 151 novel Alu insertion loci from 11 species of tribe Cercopithecini, and used these insertions and 17 previously reported loci to infer a phylogenetic tree of the tribe Cercopithecini. Our results robustly supported the following relationships: (i) Allenopithecus is the basal lineage within the tribe; (ii) Cercopithecus lhoesti (L'Hoest's monkey) forms a clade with Chlorocebus aethiops (African green monkey) and Erythrocebus patas (patas monkey), supporting a single arboreal to terrestrial transition within the tribe; (iii) all of the Cercopithecus except C. lhoesti form a monophyletic group; and (iv) contrary to the common belief that Miopithecus is one of the most basal lineages in the tribe, M. talapoin (talapoin) forms a clade with arboreal members of Cercopithecus, and the terrestrial group (C. lhoesti, Chlorocebus aethiops and E. patas) diverged from this clade after the divergence of Allenopithecus. Some incongruent loci were found among the relationships within the arboreal Cercopithecus group. Several factors, including incomplete lineage sorting, concurrent polymorphism and hybridization between species may have contributed to the incongruence. CONCLUSION: This study presents one of the most robust phylogenetic hypotheses for the tribe Cercopithecini and demonstrates the advantages of SINE insertions for phylogenetic studies
Lowered sensitivity of bitter taste receptors to β-glucosides in bamboo lemurs: an instance of parallel and adaptive functional decline in TAS2R16?
竹食サル類の苦味感覚の進化を解明 --竹が先か苦味が先か--. 京都大学プレスリリース. 2021-04-16.Bitter taste facilitates the detection of potentially harmful substances and is perceived via bitter taste receptors (TAS2Rs) expressed on the tongue and oral cavity in vertebrates. In primates, TAS2R16 specifically recognizes β-glucosides, which are important in cyanogenic plants' use of cyanide as a feeding deterrent. In this study, we performed cell-based functional assays for investigating the sensitivity of TAS2R16 to β-glucosides in three species of bamboo lemurs (Prolemur simus, Hapalemur aureus and H. griseus), which primarily consume high-cyanide bamboo. TAS2R16 receptors from bamboo lemurs had lower sensitivity to β-glucosides, including cyanogenic glucosides, than that of the closely related ring-tailed lemur (Lemur catta). Ancestral reconstructions of TAS2R16 for the bamboo-lemur last common ancestor (LCA) and that of the Hapalemur LCA showed an intermediate sensitivity to β-glucosides between that of the ring-tailed lemurs and bamboo lemurs. Mutagenetic analyses revealed that P. simus and H. griseus had separate species-specific substitutions that led to reduced sensitivity. These results indicate that low sensitivity to β-glucosides at the cellular level-a potentially adaptive trait for feeding on cyanogenic bamboo-evolved independently after the Prolemur-Hapalemur split in each species
Lesula: A New Species of Cercopithecus Monkey Endemic to the Democratic Republic of Congo and Implications for Conservation of Congo’s Central Basin
In June 2007, a previously undescribed monkey known locally as “lesula” was found in the forests of the middle Lomami Basin in central Democratic Republic of Congo (DRC). We describe this new species as Cercopithecus lomamiensis sp. nov., and provide data on its distribution, morphology, genetics, ecology and behavior. C. lomamiensis is restricted to the lowland rain forests of central DRC between the middle Lomami and the upper Tshuapa Rivers. Morphological and molecular data confirm that C. lomamiensis is distinct from its nearest congener, C. hamlyni, from which it is separated geographically by both the Congo (Lualaba) and the Lomami Rivers. C. lomamiensis, like C. hamlyni, is semi-terrestrial with a diet containing terrestrial herbaceous vegetation. The discovery of C. lomamiensis highlights the biogeographic significance and importance for conservation of central Congo’s interfluvial TL2 region, defined from the upper Tshuapa River through the Lomami Basin to the Congo (Lualaba) River. The TL2 region has been found to contain a high diversity of anthropoid primates including three forms, in addition to C. lomamiensis, that are endemic to the area. We recommend the common name, lesula, for this new species, as it is the vernacular name used over most of its known range
Mitogenomic phylogeny of the common long-tailed macaque (Macaca fascicularis fascicularis)
Background
Long-tailed macaques (Macaca fascicularis) are an important model species in biomedical research and reliable knowledge about their evolutionary history is essential for biomedical inferences. Ten subspecies have been recognized, of which most are restricted to small islands of Southeast Asia. In contrast, the common long-tailed macaque (M. f. fascicularis) is distributed over large parts of the Southeast Asian mainland and the Sundaland region. To shed more light on the phylogeny of M. f. fascicularis, we sequenced complete mitochondrial (mtDNA) genomes of 40 individuals from all over the taxon’s range, either by classical PCR-amplification and Sanger sequencing or by DNA-capture and high-throughput sequencing.
Results
Both laboratory approaches yielded complete mtDNA genomes from M. f. fascicularis with high accuracy and/or coverage. According to our phylogenetic reconstructions, M. f. fascicularis initially diverged into two clades 1.70 million years ago (Ma), with one including haplotypes from mainland Southeast Asia, the Malay Peninsula and North Sumatra (Clade A) and the other, haplotypes from the islands of Bangka, Java, Borneo, Timor, and the Philippines (Clade B). The three geographical populations of Clade A appear as paraphyletic groups, while local populations of Clade B form monophyletic clades with the exception of a Philippine individual which is nested within the Borneo clade. Further, in Clade B the branching pattern among main clades/lineages remains largely unresolved, most likely due to their relatively rapid diversification 0.93-0.84 Ma.
Conclusions
Both laboratory methods have proven to be powerful to generate complete mtDNA genome data with similarly high accuracy, with the DNA-capture and high-throughput sequencing approach as the most promising and only practical option to obtain such data from highly degraded DNA, in time and with relatively low costs. The application of complete mtDNA genomes yields new insights into the evolutionary history of M. f. fascicularis by providing a more robust phylogeny and more reliable divergence age estimations than earlier studies
Modification by Influenza on Health Effects of Air Pollution in Hong Kong
Background: Both influenza viruses and air pollutants have been well documented as major hazards to human health, but few epidemiologic studies have assessed effect modification of influenza on health effects of ambient air pollutants. Objectives: We aimed to assess modifying effects of influenza on health effects of ambient air pollutants. Methods: We applied Poisson regression to daily numbers of hospitalizations and mortality to develop core models after adjustment for potential time-varying confounding variables. We assessed modification of influenza by adding variables for concentrations of single ambient air pollutants and proportions of influenza-positive specimens (influenza intensity) and their cross-product terms. Results: We found significant effect modification of influenza (p < 0.05) for effects of ozone. When influenza intensity is assumed to increase from 0% to 10%, the excess risks per 10-μg/m 3 increase in concentration of O 3 increased 0.24% and 0.40% for hospitalization of respiratory disease in the all-ages group and ≥ 65 year age group, respectively; 0.46% for hospitalization of acute respiratory disease in the all-ages group; and 0.40% for hospitalization of chronic obstructive pulmonary disease in the ≥ 65 group. The estimated increases in the excess risks for mortality of respiratory disease and chronic obstructive pulmonary disease in the all-ages group were 0.59% and 1.05%, respectively. We found no significant modification of influenza on effects of other pollutants in most disease outcomes under study. Conclusions: Influenza activity could be an effect modifier for the health effects of air pollutants particularly for O 3 and should be considered in the studies for short-term effects of air pollutants on health.published_or_final_versio
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV
This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
Historical sampling reveals dramatic demographic changes in western gorilla populations
Background: Today many large mammals live in small, fragmented populations, but it is often unclear whether this subdivision is the result of long-term or recent events. Demographic modeling using genetic data can estimate changes in long-term population sizes while temporal sampling provides a way to compare genetic variation present today with that sampled in the past. In order to better understand the dynamics associated with the divergences of great ape populations, these analytical approaches were applied to western gorillas (Gorilla gorilla) and in particular to the isolated and Critically Endangered Cross River gorilla subspecies (G. g. diehli).Results: We used microsatellite genotypes from museum specimens and contemporary samples of Cross River gorillas to infer both the long-term and recent population history. We find that Cross River gorillas diverged from the ancestral western gorilla population ~17,800 years ago (95% HDI: 760, 63,245 years). However, gene flow ceased only ~420 years ago (95% HDI: 200, 16,256 years), followed by a bottleneck beginning ~320 years ago (95% HDI: 200, 2,825 years) that caused a 60-fold decrease in the effective population size of Cross River gorillas. Direct comparison of heterozygosity estimates from museum and contemporary samples suggests a loss of genetic variation over the last 100 years.Conclusions: The composite history of western gorillas could plausibly be explained by climatic oscillations inducing environmental changes in western equatorial Africa that would have allowed gorilla populations to expand over time but ultimately isolate the Cross River gorillas, which thereafter exhibited a dramatic population size reduction. The recent decrease in the Cross River population is accordingly most likely attributable to increasing anthropogenic pressure over the last several hundred years. Isolation of diverging populations with prolonged concomitant gene flow, but not secondary admixture, appears to be a typical characteristic of the population histories of African great apes, including gorillas, chimpanzees and bonobos
- …