291 research outputs found

    Population density and group size effects on reproductive behavior in a simultaneous hermaphrodite

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite growing evidence that population dynamic processes can have substantial effects on mating system evolution, little is known about their effect on mating rates in simultaneous hermaphrodites. According to theory, mating rate is expected to increase with mate availability because mating activity is primarily controlled by the male sexual function. A different scenario appears plausible in the hermaphroditic opisthobranch <it>Chelidonura sandrana</it>. Here, field mating rates are close to the female fitness optimum, suggesting that mating activity remains unresponsive to variation in mate availability.</p> <p>Results</p> <p>Applying an experimental design that aims at independent experimental manipulation of density and social group size, we find substantial increases in mate encounter rate with both factors, but no statistically detectable effects on mating rate in <it>C. sandrana</it>. Instead, mating rate remained close to the earlier determined female fitness optimum.</p> <p>Conclusions</p> <p>We demonstrate that mating rate in <it>C. sandrana </it>is largely unresponsive to variation in mate availability and is maintained close to the female fitness optimum. These findings challenge the prevailing notion of male driven mating rates in simultaneous hermaphrodites and call for complementary investigations of mating rate effects on fitness through the male sexual function.</p

    The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics

    Get PDF
    Invariance properties of physical systems govern their behavior: energy conservation in turbulence drives a wide distribution of energy among modes, observed in geophysical or astrophysical flows. In ideal hydrodynamics, the role of helicity conservation (correlation between velocity and its curl, measuring departures from mirror symmetry) remains unclear since it does not alter the energy spectrum. However, with solid body rotation, significant differences emerge between helical and non-helical flows. We first outline several results, like the energy and helicity spectral distribution and the breaking of strict universality for the individual spectra. Using massive numerical simulations, we then show that small-scale structures and their intermittency properties differ according to whether helicity is present or not, in particular with respect to the emergence of Beltrami-core vortices (BCV) that are laminar helical vertical updrafts. These results point to the discovery of a small parameter besides the Rossby number; this could relate the problem of rotating helical turbulence to that of critical phenomena, through renormalization group and weak turbulence theory. This parameter can be associated with the adimensionalized ratio of the energy to helicity flux to small scales, the three-dimensional energy cascade being weak and self-similar

    Do we want more cancer patients on clinical trials If so, what are the barriers to greater accrual

    Get PDF
    It is often stated that only a small proportion of adult cancer patients participate in clinical trials. This is said to be a bad thing, with calls for more trials to include more patients. Here I argue that whether or not greater accrual to clinical trials would be a good thing depends on the trials we conduct. The vast majority of clinical trials in cancer are currently early phase trials, and most do not lead to further studies even if they have encouraging results. The key metric is thus not the number of patients on clinical trials, but the number on the sort of large, randomized, Phase III trials that can be used as a basis for clinical decisions. I also address two important barriers to greater clinical trial participation. The first barrier is financial: clinical research has long been the poor cousin of basic research, with perhaps no more than a nickel in the cancer research dollar going to clinical research. The second barrier is regulatory: clinical research has become so overburdened by regulation that it takes years to initiate a trial, and dedicated staff just to deal with the paperwork once the trial starts. This not only adds significantly to the costs of clinical research, but scares many young investigators away. It has been estimated that nearly half of all US-sponsored trials are being conducted abroad, and it is plausible that excessive regulation is at least partly responsible. That statistic should serve as a wake-up call to the US clinical research community to implement the recommendations of the now decade-old report of National Cancer Institute Clinical Trials Program Review Group, which largely center around simplifying trials and streamlining trial procedures

    Accessory male investment can undermine the evolutionary stability of simultaneous hermaphroditism

    Get PDF
    Sex allocation (SA) models are traditionally based on the implicit assumption that hermaphroditism must meet criteria that make it stable against transition to dioecy. This, however, puts serious constraints on the adaptive values that SA can attain. A transition to gonochorism may, however, be impossible in many systems and therefore realized SA in hermaphrodites may not be limited by conditions that guarantee stability against dioecy. We here relax these conditions and explore how sexual selection on male accessory investments (e.g. a penis) that offer a paternity benefit affects the evolutionary stable strategy SA in outcrossing, simultaneous hermaphrodites. Across much of the parameter space, our model predicts male allocations well above 50 per cent. These predictions can help to explain apparently ‘maladaptive’ hermaphrodite systems

    doi:10.1016/j.cub.2005.09.022

    Get PDF
    Pseudocerus bifurcus, behaviours such as penis-fencing are favoured to avoid receiving sperm [19]. Thus, the opposite pattern of a universal preference for playing the male role can also emerge. Nevertheless, the work of Anthes et al. [5] is exceptional in providing definitive evidence for sperm trading in hermaphroditic sexual reproduction. Moreover, this work provides clear evidence of male &apos;mate choice&apos; in the form of selective sperm donation to &apos;honest&apos; partners. Alone, such features should earn this study a place in the text books; more so since it also provides a rare unequivocal example of conditional reciprocity being employed to escape the tragedy of the commons in biology. Earlier work [6] had shown that STM is needed in the SAM to maintain low gibberellin levels and inhibit expression of the GA20-ox1 gene, which encodes a ratelimiting enzyme of gibberellin biosynthesis. GA20-ox1 expression is normally confined to leaves, where gibberellin levels are high, but exluded from the apex by STM activity. Two lines of evidence suggested that repression of GA20-ox1 by STM is functionally relevant. Firstly, the interaction is likely to be direct -KNOX-I protein can bind a regulatory sequence in the GA-20 oxidase gene of tobacc

    Association of double tropopause events with baroclinic waves

    Get PDF
    We herein propose a method for identifying breaks in the subtropical tropopause as found in the ERA Interim reanalysis data. The method uses the identification of double tropopauses and allows the quantification of the extension of the overlap between the tropical and extratropical tropopauses. The correlations between the meridional extension of the superposition of tropopauses and the fields of geopotential, potential vorticity, or potential temperature, reveal baroclinic wave patterns. Similar wave patterns were also identified in the potential temperature fields derived from GPS radio occultation COSMIC data. The zonal propagation velocity of the anomalies in the meridional extension of the overlap was estimated using Hovmöller diagrams. The estimated zonal velocities suggest that the variability in the superposition of the tropopauses is associated with baroclinic Rossby wave patterns in the subtropical upper troposphere and lower stratosphere.This work was partially supported by the TRODIM Project (CGL2007‐65891‐C05‐01) funded by the Spanish Ministry of Science and Innovation and by the DYNOZONE project (PTDC/ CTE‐ATM/105507/2008) funded by the FCT (Fundação para a Ciência e a Tecnologia, Portugal).publishe

    GNSS remote sensing of the Australian tropopause

    Get PDF
    Radio occultation (RO) techniques that use signals transmitted by Global Navigation Satellite Systems (GNSS) have emerged over the past decade as an important tool for measuring global changes in tropopause temperature and height, a valuable capacity given the tropopause’s sensitivity to temperature variations. This study uses 45,091 RO data from the CHAMP (CHAllenging Minisatellite Payload, 80 months), GRACE (Gravity Recovery And Climate Experiment, 23 months) and COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate, 20 months) satellites to analyse the variability of the tropopause’s height and temperature over Australia. GNSS RO temperature profiles from CHAMP, GRACE, and COSMIC are first validated using radiosonde observations provided by the Bureau of Meteorology (Australia). These are compared to RO soundings from between 2001 and 2007 that occurred within 3 h and 100 km of a radiosonde.The results indicate that RO soundings provide data of a comparable quality to radiosonde observations in the tropopause region, with temperature deviations of less than 0.5 ± 1.5 K. An analysis of tropopause height and temperature anomalies indicates a height increase over Australia as a whole of ca. 4.8 ± 1.3 m between September 2001 and April 2008, with a corresponding temperature decrease of −0.019 ± 0.007 K. A similar pattern of increasing height/decreasing temperature was generally observed when determining the spatial distribution of the tropopause height and temperature rate of change over Australia. Although only a short period has been considered in this study, a function of the operating time of these satellites, the results nonetheless show an increase in the height of the tropopause over Australia during this period and thus may indicate regional warming. Several mechanisms could be responsible for these changes, such as an increase in the concentration of greenhouse gases in the atmosphere, and lower stratospheric cooling due to ozone loss, both of which have been observed during the last decades

    An Earth-system prediction initiative for the twenty-first century

    Get PDF
    International audienceSome scientists have proposed the Earth-System Prediction Initiative (EPI) at the 2007 GEO Summit in Cape Town, South Africa. EPI will draw upon coordination between international programs for Earth system observations, prediction, and warning, such as the WCRP, WWRP, GCOS, and hence contribute to GEO and the GEOSS. It will link with international organizations, such as the International Council for Science (ICSU), Intergovernmental Oceanographic Commission (IOC), UNEP, WMO, and World Health Organization (WHO). The proposed initiative will provide high-resolution climate models that capture the properties of regional high-impact weather events, such as tropical cyclones, heat wave, and sand and dust storms associated within multi-decadal climate projections of climate variability and change. Unprecedented international collaboration and goodwill are necessary for the success of EPI

    Simulations of the 2004 North American Monsoon: NAMAP2

    Get PDF
    The second phase of the North American Monsoon Experiment (NAME) Model Assessment Project (NAMAP2) was carried out to provide a coordinated set of simulations from global and regional models of the 2004 warm season across the North American monsoon domain. This project follows an earlier assessment, called NAMAP, that preceded the 2004 field season of the North American Monsoon Experiment. Six global and four regional models are all forced with prescribed, time-varying ocean surface temperatures. Metrics for model simulation of warm season precipitation processes developed in NAMAP are examined that pertain to the seasonal progression and diurnal cycle of precipitation, monsoon onset, surface turbulent fluxes, and simulation of the low-level jet circulation over the Gulf of California. Assessment of the metrics is shown to be limited by continuing uncertainties in spatially averaged observations, demonstrating that modeling and observational analysis capabilities need to be developed concurrently. Simulations of the core subregion (CORE) of monsoonal precipitation in global models have improved since NAMAP, despite the lack of a proper low-level jet circulation in these simulations. Some regional models run at higher resolution still exhibit the tendency observed in NAMAP to overestimate precipitation in the CORE subregion; this is shown to involve both convective and resolved components of the total precipitation. The variability of precipitation in the Arizona/New Mexico (AZNM) subregion is simulated much better by the regional models compared with the global models, illustrating the importance of transient circulation anomalies (prescribed as lateral boundary conditions) for simulating precipitation in the northern part of the monsoon domain. This suggests that seasonal predictability derivable from lower boundary conditions may be limited in the AZNM subregion.open131
    corecore