61 research outputs found

    The James A. Baker Institute for Animal Health Annual Report 1996

    Full text link
    The James A. Baker Institute for Animal Health Annual Report 1996Topics in this Annual Report include: A Message from the Director (Douglas F. Antczak); Staff of the Baker Institute; Perspectives; Advisory Council; Recognitions; Memorials; Infectious Diseases and Immunology (Hadley C. Stephenson Laboratory for the Study of Canine Diseases, Albert C. Bostwick Laboratory of Molecular Biology, Immunology Laboratory, Mucosal Immunity Laboratory, Equine Genetics Center); A Retrospective [Leland Carmichael] (Giralda Laboratory for Canine Infectious Diseases); Genetics and Develepment John M. Olin Laboratory for the Study of Canine Bone and Joint Disease, Laboratory of Cellular Growth and Differentiation, Laboratory for the Study of Inherited Canine Reproductive Diseases, Donnelley Laboratory of Gene Regulation and Expression, Inherited Eye Disease Studies Unit); Beyond the Laboratory (Baker Institute Scientific Conference Series, Honorable Mentions, Publications); Acknowledgements

    Baker Institute for Animal Health Annual Report 2008

    Full text link
    Baker Institute for Animal Health Annual Report 2008Topics in this Annual Report include: Director's Message (Douglas F. Antczak); Research; 2008 Publications; Faculty Accomplishments; Research Laboratory Overviews; News and Events; Volunteer and Donor Highlights; Memorial Gift Program; Honor Roll of Giving; Financial Summary; Advisory Council; Faculty, Staff and Student Directory

    Immediate early protein of equid herpesvirus type 1 as a target for cytotoxic T-lymphocytes in the thoroughbred horse

    Get PDF
    Cytotoxic T-lymphocytes (CTLs) are associated with protective immunity against disease caused by equid herpesvirus type 1 (EHV-1). However, the EHV-1 target proteins for CTLs are poorly defined. This limits the development of vaccine candidates designed to stimulate strong CTL immunity. Here, classical CTL assays using lymphocytes from horses of three defined MHC class I types that experienced natural infection with EHV-1 and a modified vaccinia virus construct containing an EHV-1 gene encoding the immediate-early (IE) protein are reported. Horses homozygous for the equine leukocyte antigen (ELA)-A2 haplotype, but not the ELA-A5 haplotype, produced MHC-restricted CTL responses against the IE protein. Previously, horses homozygous for the ELA-A3 haplotype also mounted CTL responses against the IE protein. Both haplotypes are common in major horse breeds, including the Thoroughbred. Thus, the IE protein is an attractive candidate molecule for future studies of T-cell immunity to EHV-1 in the horse

    miRNA independent hepacivirus variants suggest a strong evolutionary pressure to maintain miR-122 dependence

    Get PDF
    Hepatitis C virus (HCV) requires the liver specific micro-RNA (miRNA), miR-122, to replicate. This was considered unique among RNA viruses until recent discoveries of HCV-related hepaciviruses prompting the question of a more general miR-122 dependence. Among hepaciviruses, the closest known HCV relative is the equine non-primate hepacivirus (NPHV). Here, we used Argonaute cross-linking immunoprecipitation (AGO-CLIP) to confirm AGO binding to the single predicted miR-122 site in the NPHV 5’UTR in vivo. To study miR-122 requirements in the absence of NPHV-permissive cell culture systems, we generated infectious NPHV/HCV chimeric viruses with the 5’ end of NPHV replacing orthologous HCV sequences. These chimeras were viable even in cells lacking miR-122, although miR-122 presence enhanced virus production. No other miRNAs bound this region. By random mutagenesis, we isolated HCV variants partially dependent on miR-122 as well as robustly replicating NPHV/HCV variants completely independent of any miRNAs. These miRNA independent variants even replicate and produce infectious particles in non-hepatic cells after exogenous delivery of apolipoprotein E (ApoE). Our findings suggest that miR-122 independent HCV and NPHV variants have arisen and been sampled during evolution, yet miR-122 dependence has prevailed. We propose that hepaciviruses may use this mechanism to guarantee liver tropism and exploit the tolerogenic liver environment to avoid clearance and promote chronicity

    SMAD1/5 signaling in the early equine placenta regulates trophoblast differentiation and chorionic gonadotropin secretion.

    Get PDF
    TGFβ superfamily proteins, acting via SMAD (Sma- and Mad-related protein)2/3 pathways, regulate placental function; however, the role of SMAD1/5/8 pathway in the placenta is unknown. This study investigated the functional role of bone morphogenetic protein (BMP)4 signaling through SMAD1/5 in terminal differentiation of primary chorionic gonadotropin (CG)-secreting trophoblast. Primary equine trophoblast cells or placental tissues were isolated from day 27-34 equine conceptuses. Detected by microarray, RT-PCR, and quantitative RT-PCR, equine chorionic girdle trophoblast showed increased gene expression of receptors that bind BMP4. BMP4 mRNA expression was 20- to 60-fold higher in placental tissues adjacent to the chorionic girdle compared with chorionic girdle itself, suggesting BMP4 acts primarily in a paracrine manner on the chorionic girdle. Stimulation of chorionic girdle-trophoblast cells with BMP4 resulted in a dose-dependent and developmental stage-dependent increase in total number and proportion of terminally differentiated binucleate cells. Furthermore, BMP4 treatment induced non-CG-secreting day 31 chorionic girdle trophoblast cells to secrete CG, confirming a specific functional response to BMP4 stimulation. Inhibition of SMAD2/3 signaling combined with BMP4 treatment further enhanced differentiation of trophoblast cells. Phospho-SMAD1/5, but not phospho-SMAD2, expression as determined by Western blotting was tightly regulated during chorionic girdle trophoblast differentiation in vivo, with peak expression of phospho-SMAD1/5 in vivo noted at day 31 corresponding to maximal differentiation response of trophoblast in vitro. Collectively, these experiments demonstrate the involvement of BMP4-dependent pathways in the regulation of equine trophoblast differentiation in vivo and primary trophoblast differentiation in vitro via activation of SMAD1/5 pathway, a previously unreported mechanism of TGFβ signaling in the mammalian placenta

    Genome Diversity and the Origin of the Arabian Horse

    Get PDF
    The Arabian horse, one of the world\u27s oldest breeds of any domesticated animal, is characterized by natural beauty, graceful movement, athletic endurance, and, as a result of its development in the arid Middle East, the ability to thrive in a hot, dry environment. Here we studied 378 Arabian horses from 12 countries using equine single nucleotide polymorphism (SNP) arrays and whole-genome re-sequencing to examine hypotheses about genomic diversity, population structure, and the relationship of the Arabian to other horse breeds. We identified a high degree of genetic variation and complex ancestry in Arabian horses from the Middle East region. Also, contrary to popular belief, we could detect no significant genomic contribution of the Arabian breed to the Thoroughbred racehorse, including Y chromosome ancestry. However, we found strong evidence for recent interbreeding of Thoroughbreds with Arabians used for flat-racing competitions. Genetic signatures suggestive of selective sweeps across the Arabian breed contain candidate genes for combating oxidative damage during exercise, and within the Straight Egyptian subgroup, for facial morphology. Overall, our data support an origin of the Arabian horse in the Middle East, no evidence for reduced global genetic diversity across the breed, and unique genetic adaptations for both physiology and conformation

    Improved reference genome for the domestic horse increases assembly contiguity and composition

    Get PDF
    Recent advances in genomic sequencing technology and computational assembly methods have allowed scientists to improve reference genome assemblies in terms of contiguity and composition. EquCab2, a reference genome for the domestic horse, was released in 2007. Although of equal or better quality compared to other first-generation Sanger assemblies, it had many of the shortcomings common to them. In 2014, the equine genomics research community began a project to improve the reference sequence for the horse, building upon the solid foundation of EquCab2 and incorporating new short-read data, long-read data, and proximity ligation data. Here, we present EquCab3. The count of non-N bases in the incorporated chromosomes is improved from 2.33 Gb in EquCab2 to 2.41 Gb in EquCab3. Contiguity has also been improved nearly 40-fold with a contig N50 of 4.5 Mb and scaffold contiguity enhanced to where all but one of the 32 chromosomes is comprised of a single scaffold
    corecore