50 research outputs found

    Effect of antioxidant supplementation on the total yield, oxidative stress levels and multipotency of bone marrow-derived human mesenchymal stromal cells

    Get PDF
    Bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the most frequently investigated cell type for potential regenerative strategies because they are relatively easy to isolate and are able to differentiate into several mesenchymal lineages. Unfortunately, during ex vivo culture, MSCs present gradual loss of differentiation potential and reduced clinical efficacy. Reactive oxygen species (ROS) are associated with oxidative damage and accumulate during MSC expansion. Because ROS are believed to be involved in the loss of multipotency, we hypothesized that compounds with antioxidant activity have the capacity to scavenge ROS, prevent cellular damage, and rescue culture-induced loss of multipotency. In this manuscript, we show that antioxidant supplementation can partially rescue the loss of alkaline phosphatase expression induced by oxidizing agents and increases the yield of hMSCs, when supplemented to a fresh bone marrow aspirate. Concomitantly, oxidative DNA damage and ROS levels in hMSCs were reduced by antioxidants. We conclude that antioxidant supplementation during MSC expansion reduces the DNA damage load and increases the MSC yield

    High throughput surface plasmon resonance imaging method for clinical detection of presence and strength of binding of IgM, IgG and IgA antibodies against SARS-CoV-2 during CoViD-19 infection

    Get PDF
    Surface Plasmon Resonance imaging (SPRi) was used to determine the presence and strength of binding of IgG, IgM and IgA against the Receptor Binding Domain (RBD) of SARS-CoV-2 in sera of 102 CoViD-19 and non-CoViD-19 patients. The SPRi assay simultaneously measures the antibody isotype levels and the strength of binding to the RBD of ultimate 384 patient samples in one run. It turns out that during the course of the disease, the IgG levels and strength of binding increased while generally the IgM and IgA levels go down. Recovered patients all show high strength of binding of the IgG type to the RBD protein. The anti-RBD immunoglobulins SPRi assay provides additional insights in the immune status of patients recovering from CoViD-19. This new high throughput method can be applied for the assessment of the quality of the immune reaction of healthy individuals to SARS-CoV-2 and its mutants in vaccination programs.•Surface Plasmon Resonance imaging is an unprecedented technology for high throughput screening of antibody profiling of CoViD19 patients.•Fingerprinting of isotypes IgM, IgG and IgA can be performed for 384 patients in one run.•An affinity maturation effect was shown for patients recovering from CoViD19

    Leukapheresis increases circulating tumour cell yield in non-small cell lung cancer, counts related to tumour response and survival

    Get PDF
    Background: Circulating tumour cells (CTCs) can be used to monitor cancer longitudinally, but their use in non-small cell lung cancer (NSCLC) is limited due to low numbers in the peripheral blood. Through diagnostic leukapheresis (DLA) CTCs can be obtained from larger blood volumes. Methods: Patients with all stages of NSCLC were selected. One total body blood volume was screened by DLA before and after treatment. Peripheral blood was drawn pre- and post DLA for CTC enumeration by CellSearch. CTCs were detected in the DLA product (volume equalling 2 × 108 leucocytes) and after leucocyte depletion (RosetteSep, 9 mL DLA product). Single-cell, whole-genome sequencing was performed on isolated CTCs. Results: Fifty-six patients were included. Before treatment, CTCs were more often detected in DLA (32/55, 58%) than in the peripheral blood (pre-DLA: 18/55, 33%; post DLA: 13/55, 23%, both at p < 0.01). CTCs per 7.5 mL DLA product were median 9.2 times (interquartile range = 5.6–24.0) higher than CTCs in 7.5 mL blood. RosetteSEP did not significantly improve CTC detection (pretreatment: 34/55, 62%, post treatment: 16/34, 47%) and CTCs per mL even decreased compared to DLA (p = 0.04). Patients with advanced-stage disease with DLA-CTC after treatment showed fewer tumour responses and shorter progression-free survival (PFS) than those without DLA-CTC (median PFS, 2.0 vs 12.0 months, p < 0.01). DLA-CTC persistence after treatment was independent of clinical factors associated with shorter PFS (hazard ratio (HR) = 5.8, 95% confidence interval (CI), 1.4–35.5, p = 0.02). All evaluable CTCs showed aneuploidy. Conclusions: DLA detected nine times more CTCs than in the peripheral blood. The sustained presence of CTCs in DLA after treatment was associated with therapy failure and shortened PFS. Trial registration: The study was approved by the Medical Ethical Committee (NL55754.042.15) and was registered in the Dutch trial register (NL5423)

    Designed Surface Topographies Control ICAM-1 Expression in Tonsil-Derived Human Stromal Cells

    Get PDF
    Fibroblastic reticular cells (FRCs), the T-cell zone stromal cell subtype in the lymph nodes, create a scaffold for adhesion and migration of immune cells, thus allowing them to communicate. Although known to be important for the initiation of immune responses, studies about FRCs and their interactions have been impeded because FRCs are limited in availability and lose their function upon culture expansion. To circumvent these limitations, stromal cell precursors can be mechanotranduced to form mature FRCs. Here, we used a library of designed surface topographies to trigger FRC differentiation from tonsil-derived stromal cells (TSCs). Undifferentiated TSCs were seeded on a TopoChip containing 2176 different topographies in culture medium without differentiation factors, then monitored cell morphology and the levels of ICAM-1, a marker of FRC differentiation. We identified 112 and 72 surfaces that upregulated and downregulated, respectively, ICAM-1 expression. By monitoring cell morphology, and expression of the FRC differentiation marker ICAM-1 via image analysis and machine learning, we discovered correlations between ICAM-1 expression, cell shape and design of surface topographies and confirmed our findings by using flow cytometry. Our findings confirmed that TSCs are mechano-responsive cells and identified particular topographies that can be used to improve FRC differentiation protocols

    H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    Get PDF
    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors

    H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    Get PDF
    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors

    H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    Get PDF
    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type–independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors
    corecore