381 research outputs found

    Trente ans d’images du Monde

    Get PDF
    Mappemonde est fondée dans les années 1980, alors que le thÚme de la mondialisation émerge dans la géographie française et la toute premiÚre image à cette échelle dans la revue se trouve dans le premier numéro (1986, 1). Depuis cette date, plus de 440 images du Monde y ont été publiées. Le Monde y est, le plus souvent, représenté pour analyser un phénomÚne à cette échelle ou évoquer les enjeux des représentations cartographiques à cette échelle. Il est plus rarement mobilisé pour contextualis..

    Plague Circulation and Population Genetics of the Reservoir Rattus rattus: The Influence of Topographic Relief on the Distribution of the Disease within the Madagascan Focus.

    Get PDF
    International audienceBACKGROUND: Landscape may affect the distribution of infectious diseases by influencing the population density and dispersal of hosts and vectors. Plague (Yersinia pestis infection) is a highly virulent, re-emerging disease, the ecology of which has been scarcely studied in Africa. Human seroprevalence data for the major plague focus of Madagascar suggest that plague spreads heterogeneously across the landscape as a function of the relief. Plague is primarily a disease of rodents. We therefore investigated the relationship between disease distribution and the population genetic structure of the black rat, Rattus rattus, the main reservoir of plague in Madagascar. METHODOLOGYPRINCIPAL FINDINGS: We conducted a comparative study of plague seroprevalence and genetic structure (15 microsatellite markers) in rat populations from four geographic areas differing in topology, each covering about 150-200 km(2) within the Madagascan plague focus. The seroprevalence levels in the rat populations mimicked those previously reported for humans. As expected, rat populations clearly displayed a more marked genetic structure with increasing relief. However, the relationship between seroprevalence data and genetic structure differs between areas, suggesting that plague distribution is not related everywhere to the effective dispersal of rats. CONCLUSIONSSIGNIFICANCE: Genetic diversity estimates suggested that plague epizootics had only a weak impact on rat population sizes. In the highlands of Madagascar, plague dissemination cannot be accounted for solely by the effective dispersal of the reservoir. Human social activities may also be involved in spreading the disease in rat and human populations

    Urban market gardening and rodent-borne pathogenic Leptospira in arid zones: a case study in Niamey, Niger

    Get PDF
    Leptospirosis essentially affects human following contact with rodent urine-contaminated water. As such, it was mainly found associated with rice culture, recreational activities and flooding. This is also the reason why it has mainly been investigated in temperate as well as warm and humid regions, while arid zones have been only very occasionally monitored for this disease. In particular, data for West African countries are extremely scarce. Here, we took advantage of an extensive survey of urban rodents in Niamey, Niger, in order to look for rodent-borne pathogenic[i] Leptospira[/i] species presence and distribution across the city. To do so, we used high throughput bacterial 16S-based metabarcoding, [i]lipL32[/i] gene-targeting RT-PCR, rrs gene sequencing and VNTR typing as well as GIS-based multivariate spatial analysis. Our results show that leptospires seem absent from the core city where usual [i]Leptospira[/i] reservoir rodent species (namely [i]R. rattus[/i] and [i]M. natalensis[/i]) are yet abundant. On the contrary, [i]L. kirschneri[/i] was detected in [i]Arvicanthis niloticus[/i] and [i]Cricetomys gambianus[/i], two rodent species that are restricted to irrigated cultures within the city. Moreover, the VNTR profiles showed that rodent-borne leptospires in Niamey belong to previously undescribed serovars. Altogether, our study points towards the importance of market gardening in maintain and circulation of leptospirosis within Sahelian cities. In Africa, irrigated urban agriculture constitutes a pivotal source of food supply, especially in the context of the ongoing extensive urbanization of the continent. With this in mind, we speculate that leptospirosis may represent a zoonotic disease of concern also in arid regions that would deserve to be more rigorously surveyed, especially in urban agricultural settings

    Study of Xenon Mobility in the Two Forms of MIL-53(Al) Using Solid-State NMR Spectroscopy

    Get PDF
    The Al-based metal–organic framework (MOF) MIL-53­(Al) exhibits a structural transition between a large-pore (<i>lp</i>) form and a narrow-pore (<i>np</i>) one. Such change is induced by temperature, external pressure, or the adsorption of guest molecules. <sup>129</sup>Xe solid-state NMR experiments under static and magic-angle spinning (MAS) conditions have been used to study the <i>lp</i>–<i>np</i> transition in MIL-53­(Al) initially loaded with xenon gas under a pressure of 5 × 10<sup>4</sup> Pa (at room temperature). The conversion of the <i>lp</i> form into the <i>np</i> one when the temperature decreases from 327 to 237 K and the reopening of the pores below 230 K are then observed. Furthermore, <sup>1</sup>H → <sup>129</sup>Xe cross-polarization under MAS (CPMAS) experiments demonstrate the possibility to observe the <i>np</i> phase at <i>T</i> ≀ 230 K, while the <i>lp</i> one is unseen because the xenon residence time is too short for successful cross-polarization transfer. Moreover, even for the <i>np</i> phase at 199 K, the xenon atoms still exhibit significant motion on time scale faster than a few milliseconds. We prove the exchange of Xe atoms between the <i>lp</i> and <i>np</i> forms at room temperature with the two-dimensional (2D) <sup>129</sup>Xe EXchange SpectroscopY (EXSY) NMR method. Using <sup>129</sup>Xe selective inversion recovery (SIR) experiments, the rate for this exchange has been measured at 43 ± 6 s<sup>–1</sup>

    A TLR9-adjuvanted vaccine formulated into dissolvable microneedle patches or cationic liposomes protects against leishmaniasis after skin or subcutaneous immunization

    Get PDF
    Re-emergence and geographic expansion of leishmaniasis is accelerating efforts to develop a safe and effective Leshmania vaccine. Vaccines using Leishmania recombinant antigens, such as LiHyp1, which is mostly present in the amastigote parasite form, are being developed as a next generation to crude killed parasite-based vaccines. The main objective of this work was to develop a LiHyp1-based vaccine and determine if it can induce protective immunity in BALB/c mice when administered using a dissolvable microneedle (DMN) patch by the skin route. The LiHyp1 antigen was incorporated into cationic liposomes (CL), with or without the TLR9 agonist, CpG. The LiHyp1-liposomal vaccines were characterized with respect to size, protein encapsulation rates and retention of their physical characteristics after incorporation into the DMN patch. DMN mechanical strength and skin penetration ability were tested. A vaccine composed of LiHyp1, CpG and liposomes and subcutaneously injected or a vaccine containing antigen and CpG in DMN patches, without liposomes, induced high antibody responses and significant levels of protection against L. donovani parasite infection. This study progresses the development of an efficacious leishmania vaccine by detailing promising vaccine formulations and skin delivery technologies and it addresses protective efficacy of a liposome-based dissolvable microneedle patch vaccine system

    Contrasted Patterns of Selection on MHC-Linked Microsatellites in Natural Populations of the Malagasy Plague Reservoir

    Get PDF
    Plague (Yersinia pestis infection) is a highly virulent rodent disease that persists in many natural ecosystems. The black rat (Rattus rattus) is the main host involved in the plague focus of the central highlands of Madagascar. Black rat populations from this area are highly resistant to plague, whereas those from areas in which the disease is absent (low altitude zones of Madagascar) are susceptible. Various lines of evidence suggest a role for the Major Histocompatibility Complex (MHC) in plague resistance. We therefore used the MHC region as a candidate for detecting signatures of plague-mediated selection in Malagasy black rats, by comparing population genetic structures for five MHC-linked microsatellites and neutral markers in two sampling designs. We first compared four pairs of populations, each pair including one population from the plague focus and one from the disease-free zone. Plague-mediated selection was expected to result in greater genetic differentiation between the two zones than expected under neutrality and this was observed for one MHC-class I-linked locus (D20Img2). For this marker as well as for four other MHC-linked loci, a geographic pattern of genetic structure was found at local scale within the plague focus. This pattern would be expected if plague selection pressures were spatially variable. Finally, another MHC-class I-linked locus (D20Rat21) showed evidences of balancing selection, but it seems more likely that this selection would be related to unknown pathogens more widely distributed in Madagascar than plague

    Plague Circulation and Population Genetics of the Reservoir Rattus rattus: The Influence of Topographic Relief on the Distribution of the Disease within the Madagascan Focus.

    Get PDF
    International audienceBACKGROUND: Landscape may affect the distribution of infectious diseases by influencing the population density and dispersal of hosts and vectors. Plague (Yersinia pestis infection) is a highly virulent, re-emerging disease, the ecology of which has been scarcely studied in Africa. Human seroprevalence data for the major plague focus of Madagascar suggest that plague spreads heterogeneously across the landscape as a function of the relief. Plague is primarily a disease of rodents. We therefore investigated the relationship between disease distribution and the population genetic structure of the black rat, Rattus rattus, the main reservoir of plague in Madagascar. METHODOLOGYPRINCIPAL FINDINGS: We conducted a comparative study of plague seroprevalence and genetic structure (15 microsatellite markers) in rat populations from four geographic areas differing in topology, each covering about 150-200 km(2) within the Madagascan plague focus. The seroprevalence levels in the rat populations mimicked those previously reported for humans. As expected, rat populations clearly displayed a more marked genetic structure with increasing relief. However, the relationship between seroprevalence data and genetic structure differs between areas, suggesting that plague distribution is not related everywhere to the effective dispersal of rats. CONCLUSIONSSIGNIFICANCE: Genetic diversity estimates suggested that plague epizootics had only a weak impact on rat population sizes. In the highlands of Madagascar, plague dissemination cannot be accounted for solely by the effective dispersal of the reservoir. Human social activities may also be involved in spreading the disease in rat and human populations

    A Whole-Genome Scan for Association With Invasion Success in the Fruit Fly Drosophila Suzukii Using Contrasts of Allele Frequencies Corrected for Population Structure

    Get PDF
    Evidence is accumulating that evolutionary changes are not only common during biological invasions but may also contribute directly to invasion success. The genomic basis of such changes is still largely unexplored. Yet, understanding the genomic response to invasion may help to predict the conditions under which invasiveness can be enhanced or suppressed. Here, we characterized the genome response of the spotted wing drosophila Drosophila suzukii during the worldwide invasion of this pest insect species, by conducting a genome-wide association study to identify genes involved in adaptive processes during invasion. Genomic data from 22 population samples were analyzed to detect genetic variants associated with the status (invasive versus native) of the sampled populations based on a newly developed statistic, we called C2, that contrasts allele frequencies corrected for population structure. We evaluated this new statistical framework using simulated data sets and implemented it in an upgraded version of the program BAYPASS. We identified a relatively small set of single-nucleotide polymorphisms that show a highly significant association with the invasive status of D. suzukii populations. In particular, two genes, RhoGEF64C and cpo, contained single-nucleotide polymorphisms significantly associated with the invasive status in the two separate main invasion routes of D. suzukii. Our methodological approaches can be applied to any other invasive species, and more generally to any evolutionary model for species characterized by nonequilibrium demographic conditions for which binary covariables of interest can be defined at the population level
    • 

    corecore