76 research outputs found

    Genetic polymorphism related to monocyte-macrophage function is associated with graft-versus-host disease

    Get PDF
    Despite detailed human leukocyte antigen (HLA) matching and modern immunosuppressive therapy, severe graft-versus-host disease (GvHD) remains a major hurdle for successful allogeneic hematopoietic stem cell transplantation (HSCT). As the genetic diversity in GvHD complicates the systematic discovery of associated variants across populations, we studied 122 GvHD-associated single nucleotide polymorphisms (SNPs) in 492 HLA-matched sibling HSCT donor-recipient pairs from Finland and Spain. The association between these candidate SNPs and grade III-IV acute GvHD and extensive chronic GvHD was assessed. The functional effects of the variants were determined using expression and cytokine quantitative trait loci (QTL) database analyses. Clear heterogeneity was observed in the associated markers between the two populations. Interestingly, the majority of markers, such as those annotated to IL1, IL23R, TLR9, TNF, and NOD2 genes, are related to the immunological response by monocytes-macrophages to microbes, a step that precedes GvHD as a result of intestinal lesions. Furthermore, cytokine QTL analysis showed that the GvHD-associated markers regulate IL1 beta, IFN gamma, and IL6 responses. These results support a crucial role for the anti-microbial response in GvHD risk. Furthermore, despite apparent heterogeneity in the genetic markers associated with GvHD, it was possible to identify a biological pathway shared by most markers in both populations.Peer reviewe

    Early age exposure to moisture and mould is related to FeNO at the age of 6 years

    Get PDF
    Background Exposure to indoor moisture damage and visible mold has been found to be associated with asthma and respiratory symptoms in several questionnaire-based studies by self-report. We aimed to define the prospective association between the early life exposure to residential moisture damage or mold and fractional exhaled nitric oxide (FeNO) and lung function parameters as objective markers for airway inflammation and asthma in 6-year-old children. Methods Home inspections were performed in children's homes when infants were on average 5 months old. At age 6 years, data on FeNO (n = 322) as well as lung function (n = 216) measurements were collected. Logistic regression and generalized additive models were used for statistical analyses. Results Early age major moisture damage and moisture damage or mold in the child's main living areas were significantly associated with increased FeNO levels (>75th percentile) at the age of 6 years (adjusted odds ratios, 95% confidence intervals, aOR (95% CI): 3.10 (1.35-7.07) and 3.16 (1.43-6.98), respectively. Effects were more pronounced in those who did not change residential address throughout the study period. For lung function, major structural damage within the whole home was associated with reduced FEV1 and FVC, but not with FEV1/FVC. No association with lung function was observed with early moisture damage or mold in the child's main living areas. Conclusion These results underline the importance of prevention and remediation efforts of moisture and mold-damaged buildings in order to avoid harmful effects within the vulnerable phase of the infants and children's immunologic development.Peer reviewe

    Crawling-induced floor dust resuspension affects the microbiota of the infant breathing zone

    Get PDF
    Background: Floor dust is commonly used for microbial determinations in epidemiological studies to estimate early-life indoor microbial exposures. Resuspension of floor dust and its impact on infant microbial exposure is, however, little explored. The aim of our study was to investigate how floor dust resuspension induced by an infant's crawling motion and an adult walking affects infant inhalation exposure to microbes. Results: We conducted controlled chamber experiments with a simplified mechanical crawling infant robot and an adult volunteer walking over carpeted flooring. We applied bacterial 16S rRNA gene sequencing and quantitative PCR to monitor the infant breathing zone microbial content and compared that to the adult breathing zone and the carpet dust as the source. During crawling, fungal and bacterial levels were, on average, 8- to 21-fold higher in the infant breathing zone compared to measurements from the adult breathing zone. During walking experiments, the increase in microbial levels in the infant breathing zone was far less pronounced. The correlation in rank orders of microbial levels in the carpet dust and the corresponding infant breathing zone sample varied between different microbial groups but was mostly moderate. The relative abundance of bacterial taxa was characteristically distinct in carpet dust and infant and adult breathing zones during the infant crawling experiments. Bacterial diversity in carpet dust and the infant breathing zone did not correlate significantly. Conclusions: The microbiota in the infant breathing zone differ in absolute quantitative and compositional terms from that of the adult breathing zone and of floor dust. Crawling induces resuspension of floor dust from carpeted flooring, creating a concentrated and localized cloud of microbial content around the infant. Thus, the microbial exposure of infants following dust resuspension is difficult to predict based on common house dust or bulk air measurements. Improved approaches for the assessment of infant microbial exposure, such as sampling at the infant breathing zone level, are needed.Peer reviewe

    Early age exposure to moisture damage and systemic inflammation at the age of 6 years

    Get PDF
    Cross-sectional studies have shown that exposure to indoor moisture damage and mold may be associated with subclinical inflammation. Our aim was to determine whether early age exposure to moisture damage or mold is prospectively associated with subclinical systemic inflammation or with immune responsiveness in later childhood. Home inspections were performed in children's homes in the first year of life. At age 6 years, subclinical systemic inflammation was measured by serum C-reactive protein(CRP) and blood leucocytes and immune responsiveness by ex vivo production of interleukin 1-beta(IL-1beta), IL-6 and tumor necrosis factor-alpha(TNF-alpha) in whole blood cultures without stimulation or after 24h stimulation with phorbol 12-myristate 13-acetate and ionomycin(PI), lipopolysaccharide(LPS) or peptidoglycan(PPG) in 251 to 270 children. Moisture damage in child's main living areas in infancy was not significantly associated with elevated levels of CRP or leucocytes at 6 years. In contrast, there was some suggestion for an effect on immune responsiveness, as moisture damage with visible mold was positively associated with LPS-stimulated production of TNF-alpha and minor moisture damage was inversely associated with PI-stimulated IL-1beta. While early life exposure to mold damage may have some influence on later immune responsiveness, it does not seem to increase subclinical systemic inflammation in later life. This article is protected by copyright. All rights reserved

    Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts

    Get PDF
    Background: Phenotypes of childhood-onset asthma are characterized by distinct trajectories and functional features. For atopy, definition of phenotypes during childhood is less clear. Objective: We sought to define phenotypes of atopic sensitization over the first 6 years of life using a latent class analysis (LCA) integrating 3 dimensions of atopy: allergen specificity, time course, and levels of specific IgE (sIgE). Methods: Phenotypes were defined by means of LCA in 680 children of the Multizentrische Allergiestudie (MAS) and 766 children of the Protection against allergy: Study in Rural Environments (PASTURE) birth cohorts and compared with classical nondisjunctive definitions of seasonal, perennial, and food sensitization with respect to atopic diseases and lung function. Cytokine levels were measured in the PASTURE cohort. Results: The LCA classified predominantly by type and multiplicity of sensitization (food vs inhalant), allergen combinations, and sIgE levels. Latent classes were related to atopic disease manifestations with higher sensitivity and specificity than the classical definitions. LCA detected consistently in both cohorts a distinct group of children with severe atopy characterized by high seasonal sIgE levels and a strong propensity for asthma; hay fever; eczema; and impaired lung function, also in children without an established asthma diagnosis. Severe atopy was associated with an increased IL-5/IFN-gamma ratio. A path analysis among sensitized children revealed that among all features of severe atopy, only excessive sIgE production early in life affected asthma risk. Conclusions: LCA revealed a set of benign, symptomatic, and severe atopy phenotypes. The severe phenotype emerged as a latent condition with signs of a dysbalanced immune response. It determined high asthma risk through excessive sIgE production and directly affected impaired lung function.Peer reviewe

    Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches

    Get PDF
    A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent component analysis (ICA). We estimated voxel-wise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal–parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust—yet frequently ignored—neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity
    corecore