8 research outputs found

    Mechanisms governing the fragmentation of glycerophospholipids containing choline and ethanolamine polar head groups

    No full text
    International audienceGlycerophospholipids are the major amphiphilic molecules found in the plasma membrane bilayer of all vertebrate cells. Involved in many biological processes, their huge structural diversity and large concentration scale make their thorough characterization extremely difficult in complex biological matrices. Mass spectrometry techniques are now recognized as being among the most powerful methods for the sensitive and comprehensive characterization of lipids. Depending on the experimental conditions used during electrospray ionization mass spectrometry experiments, glycerophospholipids can be detected as different molecular species (e.g. protonated, sodiated species) when analyzed either in positive or negative ionization modes or by direct introduction or hyphenated mass spectrometry-based methods. The observed ionized forms are characteristic of the corresponding phospholipid structures, and their formation is highly influenced by the polar head group. Although the fragmentation behavior of each phospholipid class has already been widely studied under low collision energy, there are no established rules based on charge-induced dissociation mechanisms for explaining the generation of fragment ions. In the present paper, we emphasize the crucial roles played by ion-dipole complexes and salt bridges within charge-induced dissociation processes. Under these conditions, we were able to readily explain almost all the fragment ions obtained under low-energy collision-induced dissociation for particular glycerophospholipids and lysoglycerophospholipids species including glycerophosphatidylcholines and glycerophosphatidylethanolamines. Thus, in addition to providing a basis for a better comprehension of phospholipid fragmentation processes, our work also highlighted some potentially new relevant diagnostic ions to signal the presence of particular lipid species

    Atypical cleavage of protonated N‐fatty acyl amino acids derived from aspartic acid evidenced by sequential MS3 experiments

    No full text
    International audienceLipidomics calls for information on detected lipids and conjugates whose structural elucidation by mass spectrometry requires to rationalization of their gas phase dissociations toward collision-induced dissociation (CID) processes. This study focused on activated dissociations of two lipoamino acid (LAA) systems composed of N-palmitoyl acyl coupled with aspartic and glutamic acid mono ethyl esters (as LAA(*D) and LAA(*E)). Although in MS/MS, their CID spectra show similar trends, e.g., release of water and ethanol, the [(LAA(*D/*E)+H)–C2H5OH]+ product ions dissociate via distinct pathways in sequential MS3 experiments. The formation of all the product ions is rationalized by charge-promoted cleavages often involving stepwise processes with ion isomerization into ion–dipole prior to dissociation. The latter explains the maleic anhydride or ketene neutral losses from N-palmitoyl acyl aspartate and glutamate anhydride fragment ions, respectively. Consequently, protonated palmitoyl acid amide is generated from LAA(*D), whereas LAA(*E) leads to the [*E+H–H2O]+ anhydride. The former releases ammonia to provide acylium, which gives the C n H(2n−1) and C n H(2n−3) carbenium series. This should offer structural information, e.g., to locate either unsaturation(s) or alkyl group branching present on the various fatty acyl moieties of lipo-aspartic acid in further studies based on MSn experiments

    Mechanistic study of competitive releases of H2O, NH3 and CO2 from deprotonated aspartic and glutamic acids: Role of conformation

    No full text
    The aims of this study were to highlight the impact of minor structural differences (e.g. an aminoacid side chain enlargement by one methylene group), on ion dissociation under collision-induced dissociation conditions, and to determine the underlying chemical mechanisms. Therefore, we compared fragmentations of deprotonated aspartic and glutamic acids generated in negative electrospray ionization. Energy-resolved mass spectrometry breakdown curves were recorded and MS3 experiments performed on an Orbitrap Fusion for high-resolution and high-mass accuracy measurements. Activated fragmentations were performed using both the resonant and non-resonant excitation modes (i.e., CID and HCD, respectively) in order to get complementary information on the competitive and consecutive dissociative pathways. These experiments showed a specific loss of ammonia from the activated aspartate but not from the activated glutamate. We mainly focused on this specific observed loss from aspartate. Two different mechanisms based on intramolecular reactions (similar to those occurring in organic chemistry) were proposed, such as intramolecular elimination (i.e. Ei-like) and nucleophilic substitution (i.e. SNi-like) reactions, respectively, yielding anions as fumarate and α lactone from a particular conformation with the lowest steric hindrance (i.e. with antiperiplanar carboxyl groups). The detected deaminated aspartate anion can then release CO2 as observed in the MS3 experimental spectra. However, quantum calculations did not indicate the formation of such a deaminated aspartate product ion without loss of carbon dioxide. Actually, calculations displayed the double neutral (NH3+CO2) loss as a concomitant pathway (from a particular conformation) with relative high activation energy instead of a consecutive process. This disagreement is apparent since the concomitant pathway may be changed into consecutive dissociations according to the collision energy i.e., at higher collision energy and at lower excitation conditions, respectively. The latter takes place by stabilization of the deaminated aspartate solvated with two residual molecules of water (present in the collision cell). This desolvated anion formed is an α lactone substituted by a methylene carboxylate group. The vibrational excitation acquired by [(D−H)−NH3]−during its isolation is enough to allow its prompt decarboxylation with a barrier lower than 8.4 kJ/mol. In addition, study of glutamic acid-like diastereomers constituted by a cyclopropane, hindering any side chain rotation, confirms the impact of the three-dimensional geometry on fragmentation pathways. A significant specific loss of water is only observed for one of these diastereomers. Other experiments, such as stable isotope labeling, need to be performed to elucidate all the observed losses from activated aspartate and glutamate anions. These first mechanistic interpretations enhance understanding of this dissociative pathway and underline the necessity of studying fragmentation of a large number of various compounds to implement properly new algorithms for de novo elucidation of unknown metabolites

    Overview of Erasmus+ NETCHEM project: ICT networking for overcoming technical and social barriers in instrumental analytical chemistry education

    Get PDF
    The paper briefly presents goals, main activities, challenges and outcomes of the NetChem project (http://www.netchem.ac.rs/) that was co-funded by the Erasmus+ Programme of European Union (project no. 573885-EPP-1-2016-1-RS-EPPKA2- CBHE-JP). The project has been started in October 2016 and with extension lasts until April 2020. Western Balkan region has been targeted by upgrading capacities for education in environmental and food analysis of Albania and Serbia in cooperation with partners from France, United Kingdom and Czech Republic. Dedicated NETCHEM platform and SQL database were created to improve the cooperation and educational capacities of Higher Education Institutions (HEIs) involved

    Treatment with octreotide LAR in clinically non-functioning pituitary adenoma: results from a case-control study

    No full text
    Surgical cure cannot be achieved in most patients with invasive non-functioning pituitary macroadenoma (NFPA). Short-term residual tumor treatment with somatostatin analogs has produced disappointing results. This prospective case-control study assessed the efficacy of chronic treatment with long acting octreotide (octreotide LAR) on tumor volume in patients harboring post-surgical NFPA residue. The study population comprised 39 patients with NFPAs not cured by surgery. All patients underwent somatostatin receptor scintigraphy at least 6 months after the last surgery. Patients with a positive pituitary level octreoscan at (n = 26) received octreotide LAR (20 mg every 28 days) for 6512 months (mean follow-up 37 \ub1 18 months) (Treated group). Moreover, a fragment of tumor tissue from patients in the treated group was retrospectively collected to assess the immunohistochemical expression of somatostatin receptor subtypes (SSTRs). The patients with a negative octreoscan (n = 13) formed the control group (mean follow-up 37 \ub1 16 months). Hormonal, radiological and visual field parameters were periodically assessed. In the treated group, all tumors expressed at least one SSTR subtype. The SSTR5 subtype was the most abundant, followed by SSTR3. The tumor residue increased in five of 26 patients (19%) in the treated group and in seven of 13 controls (53%). Visual field and pituitary function did not change in any patient. This study indicates that SSTR5 and SSTR3 are the most frequently expressed SSTR subtypes in NFPAs and supports a potential role of SSTR subtypes in stabilization of tumor remnant from NFPAs

    PeakForest: a multi-platform digital infrastructure for interoperable metabolite spectral data and metadata management

    No full text
    International audienceIntroduction Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories. Objectives To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management. Methods We developed the PeakForest infrastructure, an open-source Java tool with automatic programming interfaces that can be deployed locally to organize spectral data for metabolome annotation in laboratories. Standardized operating procedures and formats were included to ensure data quality and interoperability, in line with international recommendations and FAIR principles. Results PeakForest is able to capture and store experimental spectral MS and NMR metadata as well as collect and display signal annotations. This modular system provides a structured database with inbuilt tools to curate information, browse and reuse spectral information in data treatment. PeakForest offers data formalization and centralization at the laboratory level, facilitating shared spectral data across laboratories and integration into public databases. Conclusion PeakForest is a comprehensive resource which addresses a technical bottleneck, namely large-scale spectral data annotation and metabolite identification for metabolomics laboratories with multiple instruments. PeakForest databases can be used in conjunction with bespoke data analysis pipelines in the Galaxy environment, offering the opportunity to meet the evolving needs of metabolomics research. Developed and tested by the French metabolomics community, PeakForest is freely-available at https://github.com/peakforest
    corecore