1,214 research outputs found

    Towards understanding resprouting at the global scale

    Get PDF
    Understanding and predicting plant response to disturbance is of paramount importance in our changing world. Resprouting ability is often considered a simple qualitative trait and used in many ecological studies. Our aim is to show some of the complexities of resprouting while highlighting cautions that need be taken in using resprouting ability to predict vegetation responses across disturbance types and biomes. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the Mediterranean biome, there are differences in functional strategies to cope with water deficit between resprouters (dehydration avoiders) and nonresprouters (dehydration tolerators); however, there is little research to unambiguously extrapolate these results to other biomes. Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration not only of resprouting, but also other relevant traits (e.g. seeding, bark thickness) and the different correlations among traits observed in different biomes; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome (e.g. crown-fire Mediterranean ecosystems) can guide research in other ecosystems but should not be extrapolated at the global scale.This work was performed under the framework of the TREVOL projects (CGL2012-39938-C02-01 to J.G.P.) from the Spanish Government. A.L.J., R.B.P., A.V. and S.P. were supported by the following grants: IOS-1252232 (NSF), IOS-0845125 (NSF), CGL-2011-30531-CO2-02 (SURVIVE Project, Spain), ID-1120458 (Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT, Chile), respectively

    Exact particle and kinetic energy densities for one-dimensional confined gases of non-interacting fermions

    Full text link
    We propose a new method for the evaluation of the particle density and kinetic pressure profiles in inhomogeneous one-dimensional systems of non-interacting fermions, and apply it to harmonically confined systems of up to N=1000 fermions. The method invokes a Green's function operator in coordinate space, which is handled by techniques originally developed for the calculation of the density of single-particle states from Green's functions in the energy domain. In contrast to the Thomas-Fermi (local density) approximation, the exact profiles under harmonic confinement show negative local pressure in the tails and a prominent shell structure which may become accessible to observation in magnetically trapped gases of fermionic alkali atoms.Comment: 8 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Vacuum oscillation solution to the solar neutrino problem in standard and non-standard pictures

    Get PDF
    The neutrino long wavelength (just-so) oscillation is revisited as a solution to the solar neutrino problem. We consider just-so scenario in various cases: in the framework of the solar models with relaxed prediction of the boron neutrino flux, as well as in the presence of the non-standard weak range interactions between neutrino and matter constituents. We show that the fit of the experimental data in the just-so scenario is not very good for any reasonable value of the 8B^8B neutrino flux, but it substantially improves if the non-standard τ\tau-neutrino--electron interaction is included. These new interactions could also remove the conflict of the just-so picture with the shape of the SN 1987A neutrino spectrum. Special attention is devoted to the potential of the future real-time solar neutrino detectors as are Super-Kamiokande, SNO and BOREXINO, which could provide the model independent tests for the just-so scenario. In particular, these imply specific deformation of the original solar neutrino energy spectra, and time variation of the intermediate energy monochromatic neutrino (7Be^7Be and peppep) signals.Comment: Latex, 14 pages, 9 figures (avalilable by fax or postscript files requested to [email protected]) -- some textual and Latex errors are corrected and few references adde

    Degenerate Rotating Black Holes, Chiral CFTs and Fermi Surfaces I - Analytic Results for Quasinormal Modes

    Full text link
    In this work we discuss charged rotating black holes in AdS5×S5AdS_5 \times S^5 that degenerate to extremal black holes with zero entropy. These black holes have scaling properties between charge and angular momentum similar to those of Fermi surface operators in a subsector of N=4\mathcal{N}=4 SYM. We add a massless uncharged scalar to the five dimensional supergravity theory, such that it still forms a consistent truncation of the type IIB ten dimensional supergravity and analyze its quasinormal modes. Separating the equation of motion to a radial and angular part, we proceed to solve the radial equation using the asymptotic matching expansion method applied to a Heun equation with two nearby singularities. We use the continued fraction method for the angular Heun equation and obtain numerical results for the quasinormal modes. In the case of the supersymmetric black hole we present some analytic results for the decay rates of the scalar perturbations. The spectrum of quasinormal modes obtained is similar to that of a chiral 1+1 CFT, which is consistent with the conjectured field-theoretic dual. In addition, some of the modes can be found analytically.Comment: 41 pages, 1 figure, LaTeX; v2: typos corrected, references adde

    Intracranial EEG structure-function coupling predicts surgical outcomes in focal epilepsy

    Get PDF
    Alterations to structural and functional brain networks have been reported across many neurological conditions. However, the relationship between structure and function -- their coupling -- is relatively unexplored, particularly in the context of an intervention. Epilepsy surgery alters the brain structure and networks to control the functional abnormality of seizures. Given that surgery is a structural modification aiming to alter the function, we hypothesized that stronger structure-function coupling preoperatively is associated with a greater chance of post-operative seizure control. We constructed structural and functional brain networks in 39 subjects with medication-resistant focal epilepsy using data from intracranial EEG (pre-surgery), structural MRI (pre-and post-surgery), and diffusion MRI (pre-surgery). We investigated pre-operative structure-function coupling at two spatial scales a) at the global iEEG network level and b) at the resolution of individual iEEG electrode contacts using virtual surgeries. At global network level, seizure-free individuals had stronger structure-function coupling pre-operatively than those that were not seizure-free regardless of the choice of interictal segment or frequency band. At the resolution of individual iEEG contacts, the virtual surgery approach provided complementary information to localize epileptogenic tissues. In predicting seizure outcomes, structure-function coupling measures were more important than clinical attributes, and together they predicted seizure outcomes with an accuracy of 85% and sensitivity of 87%. The underlying assumption that the structural changes induced by surgery translate to the functional level to control seizures is valid when the structure-functional coupling is strong. Mapping the regions that contribute to structure-functional coupling using virtual surgeries may help aid surgical planning

    AMI-LA radio continuum observations of Spitzer c2d small clouds and cores: Perseus region

    Get PDF
    We present deep radio continuum observations of the cores identified as deeply embedded young stellar objects in the Perseus molecular cloud by the Spitzer c2d programme at a wavelength of 1.8 cm with the Arcminute Microkelvin Imager Large Array (AMI-LA). We detect 72% of Class 0 objects from this sample and 31% of Class I objects. No starless cores are detected. We use the flux densities measured from these data to improve constraints on the correlations between radio luminosity and bolometric luminosity, infrared luminosity and, where measured, outflow force. We discuss the differing behaviour of these objects as a function of protostellar class and investigate the differences in radio emission as a function of core mass. Two of four possible very low luminosity objects (VeLLOs) are detected at 1.8 cm.Comment: 18 pages, 9 figures, accepted MNRA

    Defining and unpacking the core concepts of pharmacology education

    Get PDF
    Pharmacology education currently lacks a research-based consensus on which core concepts all graduates should know and understand, as well as a valid and reliable means to assess core conceptual learning. The Core Concepts in Pharmacology Expert Group (CC-PEG) from Australia and New Zealand recently identified a set of core concepts of pharmacology education as a first step toward developing a concept inventory—a valid and reliable tool to assess learner attainment of concepts. In the current study, CC-PEG used established methodologies to define each concept and then unpack its key components. Expert working groups of three to seven educators were formed to unpack concepts within specific conceptual groupings: what the body does to the drug (pharmacokinetics); what the drug does to the body (pharmacodynamics); and system integration and modification of drug–response. First, a one-sentence definition was developed for each core concept. Next, sub-concepts were established for each core concept. These twenty core concepts, along with their respective definitions and sub-concepts, can provide pharmacology educators with a resource to guide the development of new curricula and the evaluation of existing curricula. The unpacking and articulation of these core concepts will also inform the development of a pharmacology concept inventory. We anticipate that these resources will advance further collaboration across the international pharmacology education community to improve curricula, teaching, assessment, and learning.Marina Santiago, Elizabeth A. Davis, Tina Hinton, Thomas A. Angelo, Alison Shield, Anna-Marie Babey, Barbara Kemp-Harper, Gregg Maynard, Hesham S. Al-Sallami, Ian F. Musgrave, Lynette B. Fernandes, Suong N. T. Ngo, Arthur Christopoulos, Paul J. Whit

    Follow-up observations at 16 and 33 GHz of extragalactic sources from WMAP 3-year data: I - Spectral properties

    Get PDF
    We present follow-up observations of 97 point sources from the Wilkinson Microwave Anisotropy Probe (WMAP) 3-year data, contained within the New Extragalactic WMAP Point Source (NEWPS) catalogue between declinations of -4 and +60 degrees; the sources form a flux-density-limited sample complete to 1.1 Jy (approximately 5 sigma) at 33 GHz. Our observations were made at 16 GHz using the Arcminute Microkelvin Imager (AMI) and at 33 GHz with the Very Small Array (VSA). 94 of the sources have reliable, simultaneous -- typically a few minutes apart -- observations with both telescopes. The spectra between 13.9 and 33.75 GHz are very different from those of bright sources at low frequency: 44 per cent have rising spectra (alpha < 0.0), where flux density is proportional to frequency^-alpha, and 93 per cent have spectra with alpha < 0.5; the median spectral index is 0.04. For the brighter sources, the agreement between VSA and WMAP 33-GHz flux densities averaged over sources is very good. However, for the fainter sources, the VSA tends to measure lower values for the flux densities than WMAP. We suggest that the main cause of this effect is Eddington bias arising from variability.Comment: 12 pages, 13 figures, submitted to MNRA
    corecore