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Summary

Understanding and predicting plant response to disturbance is of paramount importance in our
changing world. Resprouting ability is often considered a simple qualitative trait and used in many
ecological studies. Our aim is to show some of the complexities of resprouting while highlighting
cautions that need be taken in using resprouting ability to predict vegetation responses across
disturbance types and biomes. There are marked differences in resprouting depending on the
disturbance type, and fire is often the most severe disturbance because it includes both defoliation
and lethal temperatures. In the mediterranean biome, there are differences in functional strategies to
cope with water deficit between reprouters (dehydration avoiders) and non-resprouters (dehydration
tolerators); however, there is little research to unambiguously extrapolate these results to other
biomes. Furthermore, predictions of vegetation responses to changes in disturbance regimes require
consideration of not only resprouting but also other relevant traits (e.g., seeding, bark thickness) and
the different correlations among traits observed in different biomes; models lacking these details
would behave poorly at the global scale. Overall, the lessons learned from a given disturbance
regime and biome (e.g., crown-fire mediterranean ecosystems) can guide research in other
ecosystems but should not be extrapolated at the global scale.

Key words: cavitation, disturbance, drought regime, drought strategies, postfire strategies,
resprouting, xylem.
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Introduction

Resprouting refers to the ability of some plants to form new shoots after destruction of living tissues
from disturbance. It is common in many plants worldwide and thought to be common in ancient
floras (Pausas & Keeley 2014). Because resprouting enables the survival of individuals after
disturbance, it is a key plant functional trait in many ecosystems and has been reviewed elsewhere
(Bellingham & Sparrow 2000, Clarke et al. 2013, Pausas & Keeley 2014). Given the important
shifts in disturbance regimes in our changing world, understanding resprouting and predicting post-
disturbance responses is of paramount importance.

Resprouting is often considered a species-specific binary trait (Pausas et al. 2004), with some
species able to resprout and others lacking this ability (but see Vesk & Westoby 2004). However,
this is an overly simplistic view; resprouting is a mode of regeneration and therefore it is better
considered in the context of other modes such as seeding (Box 1). Classification of species as
resprouters vs non-resprouters coupled with seeding response, has been successfully used in
specific contexts (i.e., mediterranean ecosystems with crown-fire regimes, Pausas et al. 2004,
Ackerly 2004, Pausas & Keeley 2014), but it is uncertain that this would provide significant
explanatory power at the global scale. This is because resprouting is a trait that increases fitness
under many different disturbance types, occurs in a wide range of environments, is widespread in
many lineages, and is morphologically very diverse (Keeley et al. 2012). Below we review
important considerations in understanding resprouting at the global scale and using this trait for
accurate predictions in a changing world. Specifically we address the following questions: (1) Since
global change includes regime changes in many disturbances (e.g., drought, fire, herbivory and
wind), to what extent does a single qualitative trait, like resprouting ability, is useful for predicting
global change responses? (2) One of the main global change drivers is the increased frequency and
intensity of droughts; the higher resources allocated to the root system by resprouters allows them
not only to accumulate reserves for resprouting, but also to access more stable water sources. Thus,
we ask to what extent does the differences between resprouters and non-resprouters affect their
resistance to drought? And (3) Can we use resprouting to improve our prediction of vegetation
response to global change in global vegetation models? By answering these questions, we highlight
some pitfalls in understanding plant resprouting at the global scale.

Does disturbance-type matter?

Resprouting has been studied as a response to many disturbances, including wind, freezing,
drought, and large animals; however, much focus has been on fire. Consequently, there is
considerable information on postfire resprouting ability in trait databases (e.g., FEIS-USDA Forest
Service, Paula et al. 2009). This information is mostly binary at the species level. If the ability to
resprout was intrinsic to the species and independent of the type of disturbance (e.g., Zeppel et al.
2015) then the cumulative information in the databases could be used for predicting vegetation
responses to any disturbance. The basis of this hypothesis is that resprouting species have dormant
buds (or bud-forming tissues) and accumulate reserves (nonstructural carbohydrates) that are
mobilised in response to a biomass removal from any disturbance or stress factor. In this
framework, it has been suggested that the ability to resprout after fire could be an indicator of the
capacity to recover after drought, and thus be a useful proxy for predicting vegetation dynamics in a
warming world (Zeppel et al. 2015).

However, there are major differences between fire and other disturbances that may influence
resprouting and limit generalizations. Although disturbance typically leads to defoliation, fire, due
to high temperatures, causes additional impacts and some species with an innate capacity for
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resprouting may not resprout after fire due to the lethal effects of the fire. Some plants have
resprouting buds with very little protection that are killed by the heat of a fire but not by other
disturbances. Even for fire survivors, the heat from fire may nucleate cavitation and deform xylem
conduits leading to postfire water stress (Michaletz et al. 2012). Consequently, most plants that
resprout after fire are also likely to resprout after many other types of disturbances, but the opposite
is not necessarily true. Supporting this, there is evidence for lower resprouting ability after fire than
after clipping (see compilation by Vesk & Westoby 2004 and Vesk et al. 2004). There are also cases
in which plants resprout after fire but may fail to regenerate after drought. For instance, root
systems are often protected from fires by the soil, but they are vulnerable to drought disturbance
(cavitation, Pratt et al. 2007); thus, in the case of a very intense drought, extensive embolism
formation in the shoot and root may preclude resprouting, even for a species that commonly
resprout after a fire (see next section).

Additionally, fire not only defoliates a plant and has lethal effects on meristemic tissues (buds,
cambium), it also depletes the litter layer, changes nutrient dynamics and kills interacting species
(antagonistic, mutualistic and pathogen species). In addition, there is a flush of new resource after
fire, but not after other disturbances. Consequently, many disturbances produce different
community and ecosystem dynamics compared with fire (e.g., Nguyen-Xuan et al. 2000, Te Beest et
al. 2015).

When determining whether or not a species is a postfire resprouter, it is important to consider that
on a landscape scale fires are heterogeneous. There may be some plants that experience low fire
intensity and are only partially defoliated; these plants may successfully recover by resprouting new
leaves and shoots. However, this resprouting is not indicative of the postfire resprouting ability of
the species. Postfire resprouters are defined as those species that generate new shoots following full
scorching of the plant (Box 1; Gill 1981, Pausas et al. 2004; Pausas & Keeley 2014). Many postfire
non-resprouters can also produce new shoots and survive when they are only partially scorched (eg.
Hanson & North 2006, Fernandes et al. 2008).

Even in the case of fire, different fire regimes can generate different pressures that select for
different traits (Pausas 2015). Fire affects plants very differently in ecosystems under crown fire
regimes (e.g., shrublands) and those under understory fire regimes (e.g., some conifer forest and
open woodlands), and these two fire regimes can coexist at the landscape scale. The sharp boundary
between them represents a tipping point in which the selective factors for life history characteristics
change state abruptly (Keeley et al. 2012). Despite radical differences in fire intensity and
frequency, both systems have resprouting and non-resprouting species, but for very different
reasons that are tied to the different selective environments. For example, crown fires select for
non-resprouters that recruit seedlings after fire from in situ seed banks whereas forest ecosystems
with understory fire regimes often comprise trees that are non-resprouters but persist due to their
tall stature, clear boles due to self-pruning of dead branches and thick bark (Pausas 2015a,b).

Overall it seems that not all disturbances act with the same mechanism and produce the same plant
and ecosystem responses, and equating the recovery from postfire resprouting with recovery from
any other disturbance is an over-simplification. To what extent this simplification may be useful
would depend on the specific question addressed, but the differences need to be kept in mind.
Specifically, in the context of global change, predicting the response of plants to the disturbance by
frequent droughts is of paramount importance. A clear example of the dissimilarity between
resprouting and post-drought recovery includes species that survive drought periods by initially
dropping their leaves and recover them after the drought; among these species there are a number of
non-resprouters (e.g., Cistus species, Werner et al. 1999). Given that postfire resprouting is not
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equivalent to drought response, we now ask what is the relation between these two processes.

Resprouting and drought resistance

Resprouters vs non-resprouters

Resprouting carries a cost of storing resources below-ground to maintain and protect a bud bank
and support rapid post-disturbance regrowth (Pate et al. 1990; Schwil & Ackerly 2005; Moreira et
al., 2012). In contrast, non-resprouters allocate the corresponding resources to other functions such
as rapid growth and reproduction. In addition, resprouters survive and accumulate additional below
ground biomass through multiple disturbances, thus their roots are frequently older and larger (i.e.,
they can explore a larger soil volume) than those of non-resprouters, even though shoots may be
equal in height. All this implies that resprouters tend to have a higher root-to-shoot ratio that could
provide greater access to water resources than non-resprouters. However, non-resprouters often
coexist with resprouters in the same environment, and even tend to dominate in dry environments
(see below). Thus we hypothesize that non-resprouters have developed physiological mechanisms
for higher dehydration tolerance than resprouters (Keeley et al. 2012, Vilagrosa et al. 2014). Our
global analysis suggests that the xylem of non-resprouting species is more resistant to dehydration-
induced cavitation (P50) than that of resprouters (Fig. 1a, Notes S1 and S2). This result contrasts
with the conclusions of Zeppel et al. (2015) and is likely attributable to their smaller dataset with
some errors in assignment of resprouting (see Notes S1 for details).

Our observation that non-resprouters are more resistant to cavitation (Fig. 1a) is driven mainly by
species in the mediterranean biome (Fig. 1b, Table 1). Comparisons between resprouting and non-
resprouting species have been most extensively examined in this biome, and thus it is instructive to
focus on it as a model. Numerous studies of cavitation resistance in California chaparral (Jacobsen
et al., 2007; Pratt et al., 2007), and the Mediterranean basin (Hernandez et al. 2011; Vilagrosa et al.,
2014) support the pattern of greater tolerance in non-resprouters. Some support has also been found
in the mediterranean-climate regions of South Africa (Pratt et al., 2012). Additionally, there are
other traits that segregate out according to resprouting ability that also support this pattern. For
example, mediterranean-climate non-resprouters generally have more structurally robust leaves (i.e.
lower specific leaf area), greater xylem tissue density with lower water storage capacity, lower leaf
area to xylem area of shoots (particularly for evergreen taxa), and higher vessel implosion
resistance (Notes S3). All of this suggests that, in these ecosystems, there is a stronger
environmental pressure for developing dehydration tolerance mechanisms in non-resprouters than in
resprouters. In this sense, it has been hypothesized that these mechanism are due to the different
regeneration niche of the two resprouting life histories (Pausas & Keeley 2014): many species
recruit seedlings just after fire (i.e., postfire seeders, many of then are non-resprouters, Box 1), and
thus the seasonally dry open-canopy environment has selected for dehydration tolerance; in
contrast, obligate resprouters tend to successfully recruit seedlings in more shaded conditions. In
support of this, seedlings of mediterranean non-resprouters typically have much greater survival in
post-fire open canopy conditions than seedlings of co-occurring resprouter species (e.g. Thomas &
Davis, 1989).

To fully understand species response to drought it is useful to frame the response in the context of
different drought regimes (McDowell et al. 2008). In this framework, non-resprouters generally fit
into a classification of tissue-dehydration tolerators (Box 2); i.e., they are more likely to resist
droughts of low to moderate intensity and may be able to do so for a long time frame, particularly if
their shallow roots allow them to respond to small pulses of rain. In fact, non-resprouters generally
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have traits associated with greater levels of productivity when water is available (Notes S3), which
is an important part of the suite of traits defining the functional strategy of this life history type. In
mediterranean-climate landscapes worldwide, there is field evidence suggesting that non-
resprouters tend to dominate in sites that stay dry for longer (e.g., equator-facing slopes), while
resprouters in sites with more reliable water throughout the year (Keeley et al. 2012). Examples of
this pattern can be found in California (Meentemeyer & Moody, 2002), in the Mediterranean Basin
(Pausas et al., 1999) or in Australia (Clarke & Knox 2002, Pausas & Bradstock 2007).

In contrast, for droughts of the highest intensity, non-resprouters are predicted to succumb to
catastrophic hydraulic failure and suffer the greatest mortality because their shallow roots do not
allow to maintain tissue hydration and they frequently reach negative water potentials that exceed
cavitation thresholds (Fig. Box 2). A recent study conducted during an intense record drought in
California, found that it was the non-resprouters that suffered the greatest mortality among
established adult plants. In addition, the species with the greatest cavitation resistance (i.e. most
negative P50) were the ones that had the greatest mortality (Paddock et al., 2013; Fig. 2). Other than
the lack of resprouting ability, the characteristics shared by the species most vulnerable to short-
term, high intensity drought was their shallow rooting habit and an inability to minimize tissue
dehydration, presumably due to lack of stomatal control, leaf shedding, or low levels of capacitance.
Combined, these data illustrate the susceptibility of non-resprouters relative to resprouters in mature
stands during high intensity droughts, and points out that resistance to cavitation (e.g., P50) is not
necessarily a good indicator of drought survival.

Overall there is a clear pattern in mediterranean-type environments suggesting that resprouters and
non-resprouters have different mechanisms to deal with water deficit. To say that non-resprouters
are more vulnerable to drought as recently suggested (Zeppel et al. 2015) is incomplete because it
ignores the existence of different drought resistance mechanisms and the differential responses of
non-resprouters and resprouters to different drought regimes. It would be useful to test for
physiological differences between resprouting abilities in other ecosystems to evaluate the
generality beyond mediterranean-type climate regions. This effort could provide a robust niche-
based framework for predicting drought response at a broad scale.

Vulnerability to drought during resprouting

During post-disturbance resprouting, plants mobilize stored resources to grow new shoots (Moreira
et al. 2012), and this could jeopardize their tolerance to drought stress (O’Brien et al. 2014),
especially if rapidly expanding tissues are ontogenetically sensitive to dehydration (Saruwatari &
Davis 1989). Thus, resprouts are likely to be more susceptible to drought injury than non-disturbed
adults. This has been shown for chaparral resprouting species subject to an extreme drought during
the postfire recovery period, where resprouts of burned plants had higher water-stress induced
cavitation, higher depletion of carbohydrate reserves, and higher mortality than unburned plants of
the same species (Pratt et al. 2014). A manipulative experiment with a common resprouting
chaparral shrub, Adenostoma fasciculatum (chamise; R+S+; Fig. 3), also demonstrates the impact
that drought conditions can have on resprouting: watering treatment increased post-fire survival
during the first dry season while an experimental drought treatment resulted in a 2-fold increase in
post-fire mortality (i.e., ~75% mortality) compared to watered plants (Fig. 3B).

There are at least two reasons why resprouting individuals are more sensitive to drought. First,
resprouting shoots generally have higher stomatal condunctace and a xylem that is more vulnerable
to cavitation, compared to undisturbed plants (Fig. 4; Ramirez et al., 2012; Pratt et al., 2014). And
second, if substantial aboveground biomass is lost during the disturbance, then considerable
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carbohydrates have to be mobilized from underground stores to grow new shoots (Moreira et al.
2012). At the same time, root function must be sustained by mobilizing carbohydrates until
significant shoot growth generates a surplus of photosynthate. If during this process CO2 uptake is
limited by stomatal restriction due to drought, then carbohydrates could be depleted leading to
mortality (McDowell et al., 2008; Pratt et al., 2014).

Functional syndromes and modelling vegetation dynamics

The use of a single disturbance-related trait, such as resprouting, to generalise the response to
disturbance at the global scale may be too simplistic. One of the reasons is that in different
environments, resprouting is associated with a different set of traits (including other disturbance-
related traits), and thus resprouters and non-resprouters may not respond in the same way in all
biomes (Pausas 2001). For instance, in Mediterranean fire-prone ecosystems, non-resprouters tend
to form a persistent seedbank in the soil or in the canopy (seeder species, R-S+, Box 1; Pausas et al.
2004, Keeley et al. 2012). Species of these types regenerate very well after fire by recruiting new
individuals, and the number of individuals in these species often increases abruptly after fire, even
under a drought (Pratt et al. 2014). Non-resprouting seeders recruit in open conditions postfire
(Pausas & Keeley 2014) and are the most resistant to cavitation (see R-S+; Fig 1¢); they are those
that conform most clearly to the dehydration tolerant strategy (Box 2).

These trait correlations are contingent on biogeographic history and thus are ecosystem-dependent.
For instance, in many savanna woodlands, non-resprouting species do not tend to form a seedbank
but are often associated with having a very thick protective bark; in such ecosystems the bark
protects the vital tissues of the plant (Pausas 2015a) and trees are not damaged by fire (understory-
fire ecosystems). In other cases, some non-resprouters have widely dispersed seeds, and even
though local populations may not regenerate well after fire there may recruitment postfire from
neighbour populations (metapopulation dynamics; e.g., some Asteraceae). Yet other non-resprouters
may lack the ability to accumulate a seedbank and to disperse efficiently, and thus they recover
slowly and they may experience local extinction after recurrent fires (e.g. Bowman et al. 2014).
Consequently, to estimate post-disturbance regeneration at the global scale, a multi-trait approach
(i.e, functional types or syndromes) is more appropriate (Pausas 2001). Predicting the dominance of
resprouting along disturbance gradients (e.g., Bellingham & Sparrow 2000) may have predictive
value at relatively small scales (e.g., within a biome), but will necessarily lack generality (e.g.,
among biomes) if the correlated traits are not considered. Even within the same biome there may be
biogeographic and physical differences that explain divergences in trait correlations and syndromes.
Examples of this within biome trait divergence can be found in multi-continental biomes like the
mediterranean (Pausas et al., 2006), the tropical savanna (Dantas & Pausas 2013) and the boreal
biome (Roger et al. 2015), or when there is a strong shift in community structure that acts as a
tipping point in the selective regime (as in the savanna-forest mosaics, Dantas et al. 2013, or the
mediterranean chaparral-conifererous forest boundaries, Keeley et al. 2012). Consequently, trait
combinations need to be considered for predicting vegetation responses at large scale.

Many of the traits and trait combinations relevant for post-disturbance dynamics were included in
early vegetation dynamic models working at small scale (e.g., Shugart & Noble 1981, Pausas 1999)
and only recently have these traits been included in some global vegetation dynamic models. A step
forward in global modelling was recently presented by Kelley et al. (2014) who included
resprouting, together with bark thickness, for predicting vegetation and carbon dynamics in
Australia. However, there are several reasons to expect that their model would behave poorly at the
global scale. This includes their overestimation of resprouting capacity (they considered some non-
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resprouting species to be resprouters; Notes S1) and their assumption that resprouters have a thicker
bark than non-resprouters (Fig. 4 in Kelley et al. 2014). This assumption is only valid for trees with
epicormic (stem) resprouting; there are many species with basal resprouting and thin bark (Pausas
2015a), and also many eucalypts with epicormic resprouting have a relatively thin bark because
their protection mechanism is based on sinking their buds deeply into the trunk wood (Burrows
2002). Finally, they also included in their recruitment module of the model that the recruitment of
resprouters was 10% that of the non-resprouters, which is unlikely to be general. For instance, in
mediterranean ecosystems, recruitment of non-resprouting seeders is much higher than resprouters
in the postfire year, but much lower in the years between fires. In non-mediterranean ecosystems,
the difference in recruitment between resprouters and non-resprouters is probably quite different as
postfire seeders are a unique syndrome of the mediterranean biome.

In summary, recent incorporations of disturbance-related traits such as resprouting in global
vegetation models is a significant innovation; however, there is still need for improvement. Given
the different carbon allocation patterns in resprouters and non-resprouters, the incorporation of
these traits may have implications in the predicted carbon budget. Global models typically include
climate-based functional types as their aim is to predict climatic-related changes. However, given
the overwhelming evidence that disturbance regimes are also changing, the incorporation of
disturbance-based functional types (e.g., Pausas 2015) is urgently needed. Developing models that
accurately include plant disturbance responses at the global scale is certainly a challenge for the
next-generation global dynamic models.

Concluding remarks: beyond binary responses

Postfire resprouting of species is often considered as a binary trait in many species, especially in
mediterranean species where the frequency distribution of postfire resprouting tends to follow a
binomial pattern (Pausas et al. 2004, Vesk et al. 2004). This is because in mediterranean climates,
fires tend to be of very high intensity, and intermediate responses may be evolutionarily unstable
(Pausas & Keeley 2014). However, in many ecosystems fires are typically less intense because they
are more frequent (savannas), because the environment is wetter (tropical or montain forests), or
because fuels are low (arid systems). In such ecosystems, the proportion of resprouted individuals
may range widely without showing a clear binomial distribution (e.g., Vesk & Westoby 2004, Fig.
5). The causes of such variation are difficult to generalise and there is a clear need to improve our
knowledge of resprouting behaviour outside the mediterranean biome. For instance, of the ca 500
species for which P50 values were compiled in Notes S1, we were able to assign the resprouting
ability to 90% of the mediterranean species but to less than 50% of the non-mediterranean ones.
Understanding resprouting in other biomes means going beyond binary responses and trying to
understand resprouting variability. The dichotomy of resprouting vs non-resprouting species may
explain a high proportion of variance in mediterranean ecosystems but probably little variance at the
global scale. In addition, because fire intensities vary with vegetation type and climate, it may be
difficult to compare resprouting across biomes. That is, a plant that resprouts after a fire in a tropical
ecosystem could fail to resprout if subjected to a mediterranean high intensity fire. Consequently,
the effect of disturbance on resprouting requires standardisation (e.g., by disturbance severity) in
order to successfully compile a global resprouting database.

An additional layer of complexity is that resprouting, as a functional trait, is a very complex and
morphologically and anatomically diverse trait. Plants may resprout from buds located in a variety
of organs such as stems, roots, root crown, rhizomes, lignotubers, or bulbs (Clarke et al. 2013) and
these may be related to a variety of evolutionary pressures. Given that resprouting is an ancestral
trait in plants (Pausas & Keeley 2014), it is also likely that the adaptive importance of resprouting
has changed over evolutionary time. For instance, resprouting from a lignotuber is a trait tightly
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linked to fire-prone ecosystems and likely to evolve as response to fire (Keeley et al. 2011);
however, resprouting from rhizomes, despite conferring fitness benefits to plants living in fire-prone
ecosystems, is also common in many plants from non-fire prone ecosystems, and thus could be a
response to a range of disturbance pressures. In addition, disentangling among disturbace is not
always easy; for instance, the contention that resprouting of Hawaiian trees reflects an adaptation to
drought because it increases along a gradient of increasing aridity (e.g., Busby et al. 2010) is
confounded by the fact that fires in the Hawaiian Islands likewise increase along the same gradient
during ENSO events (Chu ef al. 2002). Disaggregating resprouting in the context of multiple types
of resprouting, and disentangling the proportion of trait variance that is explained by each selective
pressure (disturbance) is not an easy task, but the compilation of global databases together with
time-calibrated phylogenies may provide a fruitful pathway.

In conclusion, there is a number of issues amd cautions that need to be considered before using
resprouting ability to predict vegetation responses across disturbance types and biomes. There are
marked differences in resprouting, depending on the disturbance type, and fire is often the most
severe disturbance. The relationship between postfire resprouting and drought resistance is well
established for the mediterranean biome (Box 2, Fig. 1), although more work is needed in
mediterranean ecosystems of the Southern Hemisphere. Preliminary results in other biomes are not
yet conclusive (Table S1), and classifying the resprouting ability in those biomes becomes more
complex (Fig. 5). There is a lack of physiological studies on resprouting outside of the
mediterranean biome to unambiguously use this trait as a surrogate for drought response and
mortality at the global scale. Modelling exercises need to consider the different response of the
species depending on the drought regime (specifically, duration and intensity; Box 2); they also
need to consider that correlations between resprouting and other disturbance response traits vary
with biome and continent, and thus the success of a species in response to a disturbance most likely
results from a related set of traits. Studies of longer term droughts aimed at different resprouting
types are generally lacking, but recent protracted droughts in California are facilitating ongoing
natural experiments.
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BOXES

BOX 1. Basic concepts

Postfire traits and strategies

Postfire resprouting (R): the ability to generate new shoots from dormant buds after stems have
been fully scorched by fire. This term is preferable to sprouting, which refers to initiation of
new shoots throughout the life cycle of a plant. Species are typically classified as resprouters
(R+) or nonresprouters (R-) depending on resprouting ability.

Postfire seeding (S): the ability to generate a fire-resistant seed bank with seeds that germinate
profusely after fires (fire-cued germination). Typically, such species restrict recruitment to a
single pulse after a fire. Seeds may be stored in the soil or in the canopy. Species are typically
classified as seeders (S+) or nonseeders (S-) depending on whether seeds display fire-cued
germination and recruitment in post-fire pulses. Note that the term ‘seeders’ refers strictly to
postfire conditions, and cannot be attributed to plants that regenerate by seeds in other
conditions.

Obligate resprouters (R+S-): plants that solely rely on resprouting to regenerate after fire
(resprouters without postfire seeding ability). These plants do not germinate after fire because
they lack a fire-resistant seed bank. Note that obligate resprouters might reproduce by seeds
during the fire-free interval, but the terminology of seeders and resprouters refers to the postfire
conditions.

Facultative seeders (R+S+): plants that have both mechanisms for regenerating after fire, that is,
they are able to resprout and to germinate after fire.

Obligate seeders (R-S+): plants that do not resprout and rely on seeding to regenerate their
population after fire (nonresprouters with postfire seeding ability).

Postfire colonizers (R-S-): plants that lack a mechanism for local post fire persistence, but they can
recruit after fire by seeds dispersed from unburned patches or from populations outside the fire
perimeter (metapopulation dynamics).

Drought-related strategies

Water stress, drought stress, dehydration stress: the stress due to a water deficit.

Drought regime: different aspects of a drought that can have different effects on plants. Two key
aspects are intensity and duration of water deficits (Box 2); two additional factors are
temperature and vapour pressure deficits.

Drought resistance: the ability to survive a drought. This can be achieved by tolerating or avoiding
tissue dehydration.

Dehydration (Drought) avoidance: the strict meaning of “drought,” as a meteorological term, is a
prolonged absence of precipitation, extending over geographical space, and thus cannot be
“avoided” by plants per se. However, plants can avoid tissue dehydration caused by drought
through deep roots, stomatal closure, growth near a water source, tissue water storage, and
shedding of leaves (in the case of drought deciduous species).

Dehydration (Drought) tolerance: a drought resistance mode whereby tissues experience significant
dehydration but avoid injury. In some cases injurious strain may be sustained, but plants are
able to either tolerate it or repair it.

Anisohydric: a form of stomatal regulation that leads to tissue water deficits, measured at midday,
when the available water in the environment declines.

Isohydric: a form of stomatal regulation that leads to stable water status, typically measured at
midday, in response to fluctuating water availability.
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BOX 2. Drought resistance strategies
Plants with different regulatory strategies with respect to water status are hypothesized to be
differentially affected by drought regime, which include drought intensity and duration (McDowell
et al. 2008). At one end of a continuum are species that dehydrate as the available moisture declines
(dehydration tolerators). These species generally have shallow roots, they often suffer important
water potential oscillations (weak stomatal control, i.e., anisohydric regulation; Box 1), and they
lack sufficient water stores to avoid dehydration. The anisohydric regulation allows continued gas
exchange during drought; and a shallow rooting habit enables a rapid response to pulses of
moisture, but at the expense of greater tissue dehydration (Brodribb et al., 2014). Thus, these
species maintain dehydration tolerance mechanisms such as high resistance to xylem cavitation and
mechanically strong lignified tissues (high wood density and low specific leaf area) with low water
storage capacity. At the opposite end of the spectrum are species that tightly regulate their water
status within a narrow range (dehydration avoiders). This is accomplished by strict stomatal
control and low water potential oscilations (isohydric regulation, Box 1) or leaf shedding as
available moisture declines, and these species typically access stable water reservoirs with extensive
roots or have increased tissue water storage capacity. Studies in both adults and seedlings suggest
that mediterranean resprouters tend to correspond to dehydration avoiders while mediterranean non-
resprouters to dehydration tolerators (Notes S3). Note that there are non-resprouters with a strong
dehydration tolerance that also have mechanisms to partially avoid tissue dehydration, such as
Cistus species that drop their leaves under extreme drought conditions (Werner et al. 1999).
Short-term droughts of the highest intensity are hypothesized to be most lethal to
dehydration tolerant species over short time-scales (Fig. Box 2). This is because shallow soil
moisture may reach low levels causing tissues to dehydrate below a critical threshold that leads to
catastrophic xylem dysfunction (Davis et al., 2002, Hoffmann et al. 2011, Paddock et al. 2013). In
contrast, longer term and lower intensity droughts that do not deplete shallow soil water may be
resisted by dehydration tolerant species. For dehydration avoiding species, a protracted drought of a
sufficient intensity could lead to mortality due to carbon/energy deficits that may arise due to
protracted stomatal closure (isohydric regulation), reduced canopy photosynthesis due to leaf
shedding and ultimately the inability to maintain immune responses or meet respiratory demands of
an extensive root system (Plaut et al., 2012) (Fig. Box 2). During the resprouting process,
resprouters may be vulnerable to drought mortality caused either by carbohydrate depletion and/or
hydraulic failure (Fig. Box 2 right); this is because stored carbohydrate reserves must maintain
heterotropic root function as well as rapid shoot elongation, and postfire shoot recovery is also
associated with greater susceptibility to hydraulic failure (Fig. 4; See section “Vulnerability to
drought during resprouting”).
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Figure in Box 2. Conceptual model depicting two key aspects of drought, the duration and
intensity, and how they link with species that tolerate dehydration and those that avoid dehydration.
Coloured areas are the safety zone for each type of species; blank regions correspond to the risky
drought conditions: the risk of carbohydrate limitation (under a long drought) and the risk of
hydraulic failure (under an intense droughts). In Mediterranean conditions, non-resprouters
(seeders) are generally dehydration tolerant, whereas obligate resprouters are dehydration avoiders
(left panel). During the process of resprouting, plants are more vulnerable to drought mortality
caused by both carbohydrate depletion and/or hydraulic failure (smaller safe zone; right panel).
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Figures

Fig. 1. Relationship between resistance to xylem cavitation (P50, MPa) and resprouting ability in
angiosperm species from different biomes (left) and for a subset of mediterranean species (center).
The third figure (right) shows the combination of two traits for the mediterranean species:
resprouting (R+/R-, i.e. yes/no) and postfire seeding (S+/S-, i.e. yes/no); number of species
considered in each case are in brackets (from bibliographic references see Table S1 for details).
Resistance to xylem cavitation is expressed as the water potential (MPa) at which a plant loses 50%
of hydraulic conductivity (see Notes S1 for more details and Notes S2 for statistics).
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Fig. 2. Mortality during an intense drought is related to cavitation resistance (P50) in seven
mediterranean species of the Californian chaparral. P50 is the water potential at 50% loss of
hydraulic conductivity (more negative values correspond to greater levels of cavitation resistance).
The figure shows that species with greater cavitation resistance exhibited greater mortality during
an intense drought. Green symbols are for evergreen resprouters; yellow symbol are evergreen
nonresprouters; the white symbol refers to a drought-deciduous species. The line indicates the linear
regression; adjusted R? and the p-value of this regression are also shown (Data from Paddock et al.,
2013).
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Fig. 3. (A) Postfire rainout shelter experiment in Santa Monica Mountains, southern California. Flat
roofed shelters (- water treatment, far left) excluded 100% of wet season precipitation. Shelters with
angled roof panels (ambient and + water treatments; center & right) allowed ambient rainfall to fall
on the plots. In addition, water was added to one of the treatments (+water treatment; right) in
simulated rainfall events that mimicked an extension of the rainy season. A total of 9-5x5 m plots
and n = 294 chamise shrubs (4denostoma fasciculatum) were included in the experiment. (B)
Results of the watering treatment effect on post-fire resprouting of chamise expressed as the relative
frequency of shrubs that resprouted (yellow) and died (red) after fire. The amount of water available
during the first dry season after a fire significantly affected the number of plants that survived and
resprouted (Chisq = 18.43, df =2, p <0.001). Note that the ambient treatment likely has lower than
usual resrprouting survival because the study was conducted during a natural drought.
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Fig. 4. The vulnerability to water-stress induced cavitation of plants during resprouting may vary
compared to the vulnerability of plants that are not currently recovering from disturbance. (A) The
chaparral shrub species Heteromeles arbutifolia (Rosaceae) displays a significant shift in the
cavitation resistance of resprouting stems one-year post-fire compared to adjacent unburned plants
measured at the same time and same site (Jacobsen et al., unpublished data; same pattern described
for this species at a different site in Ramirez et al. 2012). (B) Data for this species collected over a
longer period of time suggest that this shift in vulnerability may persist until two years post-fire
(data from Kaneakua, 2011). Each point represents a mean of samples from > 6 individuals &+ 1 SE.
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Fig. 5. Proportion of species with low (<25% of the individuals), moderate and high (> 75% of
individuals) postfire resprouting in 111 tropical plant species from Latin America and Northern
Australia (Notes S3). There is an important proportion of species with intermediate resprouting
capacity.
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Notes S1 Reanalysis of the global P50 in relation to resprouting ability

In a recent study, Zeppel et al. (2015) concluded that “trait differences between resprouting
and nonresprouting species suggest that more intense and severe drought is required to induce
mortality in resprouting species than in nonresprouting woody plants.” To support this
conclusion, the authors used a dataset on species resistance to xylem cavitation (i.e., the water
potential at which a plant loses 50% of xylem hydraulic conductivity; P50) compiled by Choat et
al. (2012) and they searched for the postfire resprouting ability of species from different trait
databases. From the 480 species in Choat et al. (2012) they were able to assign the resprouting
ability (yes/no) to 269 species (56%; 172 angiosperms and 97 gymnosperms). Their analysis
showed that angiosperm resprouters were more cavitation resistant than non-resprouters
(they did not find differences for gymnosperms). Because the authors did not publish their
resprouting classifications and declined a request to share their classification, their results are
not easy to replicate. We performed a similar exercise with an improved P50 dataset and found
a different result: the xylem of nonresprouter species was more resistant to cavitation (lower
P50 values) than resprouters (figure below). Our results are consistent with numerous previous
studies of cavitation resistance comparing resprouters to non-resprouters (Jacobsen et al.,
2007b; Pratt et al., 2008; Pratt et al., 2012b; Vilagrosa et al., 2014). In addition, P50 is not
always a good indicator of drought resistance, as extreme drought conditions can cause
mortality to species with very low P50 (Fig 2 in main text; Hoffman et al. 2011; see Box 1 for the
variety of responses depending on the drought regime).

The discrepancy in the results between the Zeppel et al. (2015) study and our new
analysis could reflect some of the complexities in understanding resprouting. It is possible that
we obtained the resprouting ability for a very different set of species, or that we found
different resprouting responses for the same species, or both. Our approach was based on
published references, and we assigned species as resprouter or non-resprouter only if there
were clear evidences of postfire resprouting; we define postfire resprouters as those species
that generate new shoots once the plant is fully scorched (Gill 1981, Pausas et al. 2004; Pausas
& Keeley 2014). Observations of resprouting after light fires are not indicative of the
resprouting ability of the plant because many typical non-resprouters, if they are only partially
scorched (defoliated) can produce new shoots and survive. Different criteria on resprouting is a
plausible explanation for the contrasted results, as illustrated in the genus Abies: most fire
ecologist would suggest that Abies species are not postfire resprouters (e.g. FEIS database),
while Zeppel et al. (2015) explicitly said that this genus contain several resprouting species (in



their words, “Pinus, Juniperus and Abies contain the most resprouting species within
gymnosperms”). Their classification is probably based on the observation that under a light fire
many non-resprouting species, including Abies (e.g., Hanson & North 2006), may survive and
their crown recover from unaffected buds in branches. Deviations from the classification used
in our analysis by the Zeppel et al. (2015) study could perhaps also be derived from their use of
the Kelley et al. (2014) classifications; Kelley et al. (2014) classified some highly cavitation
resistant Californian species as resprouters (Ceanothus spp. subgenus Cerastes and
Arctostaphylos glauca) when they are unequivocally non-resprouters. Without the database
used by Zeppel et al. (2015) for their analysis we cannot know the exact reason for the different
results; nevertheless, our analysis suggests that the results by Zeppel et al. (2015) cannot not be
supported (see Supplemental Table S1 for resprouting classification and references as analysed
in the present study).

A second reason why the analysis by Zeppel et al. (2015) may potentially misrepresent
the drought responses of resprouting versus non-resprouting species is that their analysis
included studies which used different methods for constructing vulnerability curves and P50
values, which was confounded with resprouting type (Fig. S1, Table S1). This may especially
influence the Choat et al. (2012) dataset because they reported only a single P50 value from a
single study for a given species rather than an across study mean. Some researchers do not
flush out emboli prior to generating a vulnerability curve, which generally has the effect to
make P50 values more negative, i.e. more resistant to cavitation (Sperry et al., 2012; Hacke et
al., 2015). It is currently debated as to whether it is best practice to flush or not flush stems
prior to generation of a vulnerability curve (Wang et al., 2014; Hacke et al., 2015; Jansen et al.,
2015), but that need not concern us here. The best practice to analyse resprouters and non-
resprouters is to compare across data that are not confounded by errors introduced by
differences in methods. Laboratories that consistently do not flush stems prior to analyses have
primarily analysed resprouting species, thus in the Zeppel et al. (2015) analysis, the resprouter
group contained a mix of flushed and unflushed curves. By contrast, the non-resprouters data
were largely based on flushed curves.

Our preliminary analyses suggested that the P50 estimated using both flushed and
unflushed studies tended to be more negative than the P50 estimated from studies that only
included flushed studies; although the magnitude of the difference was not large. To address
this confounding factor, we generated a new database that differed from that of Choat et al.
(2012) in three ways: First, we included many more studies than the Choat et al. (2012)
database. In many cases the newly included data were from species already in the database for
which we took an average from across additional studies to arrive at a value for a particular
species. Second, we specifically identified studies that reported data from flushed vulnerability
curves, so that the present study and future studies can control for disparities in methods.
Lastly, we added additional studies that have been conducted in the last three years, which
added many new species to the database. Our results are consistent across analyses, but they
are strengthened by the inclusion of only studies that are controlled for flushing (figure below;
Table S1 for a complete list of species P50s, references for these values, and flushing
identifications).
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Figure Notes S1. Relationship between resistance to xylem cavitation (P50, MPa) and
resprouting ability in angiosperms. Species are grouped in resprouters (R+), non-resprouters (R-
), or 'Unknown' (with the number of species in brackets) from bibliographic references (see
Table S1 for details). P-values refer to the difference in P50 between resprouters and
nonresprouters. Different plots refer to different sets of P50 data as follows: (A) P50 from
Choat et al. (2012); (B) Selected cases from Choat et al. (2012) that use flushed curves methods;
(C) An enlarged dataset (more species and using means for species for which P50 have been
reported across multiple studies); and (D) as C but only using values obtained using flushed
methods (this is the dataset used in Figure 1 of the main text and in Notes S2). The data is
available in Table S1 (file Table_S1_Global-P50-Resp-Data_2015.06.xls).
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Notes S2 Statistical comparison of P50 between resprouting life histories

Table: Mean P50 values (n: number of species considered) for resprouters (R+) and non-
resprouters (R-) considering plants from all biomes, from the Mediterranean biome only, and
from all biomes excluding the Mediterranean. The statistical tests refer to the comparison of
P50 values (obtained using the flushed methods) between R+ and R- in standard cross-species
analyses (ANOVA) and in phylogenetically-controlled analyses (phy). See Fig. 1 and Notes S1 for
visualizing the variability.

R+ R- test
Mean n Mean n ANOVA (F, p) phy
All biomes (Fig. 1a, S1d) -2.71 201 -4.32 41 28.7, p <0.0001 p <0.0001
Mediterranean (Fig. 1b) -3.07 94 -4.89 25 8.75, p =0.0003 p < 0.0001
Non-mediterranean -2.40 107 -3.40 16 7.5, p =0.0006 p=0.26

Phylogenetically-controlled analysis: We first generated the topology of a phylogenetic tree for
the species considered in each analysis using the Phylomatic software (Webb et al. 2008) on the
basis of a magatree (APG Il 2009). Then, nodes where dated based on Wikstrom et al. (2001)
and Verdu & Pausas (2013); undated nodes where adjusted using the BLADJ algorithm available
in Phylocom. We tested the differences between resprouting abilities by means of a generalized
estimating equation (GEE), which is a procedure that uses a GLM approach incorporating the
phylogenetic relatedness among species as a correlation matrix in the model (Paradis and
Claude 2002).
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Notes S3 Functional differences between resprouters and nonresprouters

Summary of functional differences between resprouters (R+) and non-resprouters (R-) in

Mediterranean-type ecosystems.

Functional trait R+ R- References

Cavitation resistance Lower Higher Jacobsen et al. 2007b, Pratt et al
2007b, Hernandez et al. 2011, Pratt et
al., 2012, Vilagrosa et al. 2014

Vessel length Shorter |Longer |Jacobsen et al. 2007b

Vessel density (number/area) Lower Higher Vilagrosa et al., 2014

Specific leaf area (SLA) Higher Lower Paula & Pausas 2006, Hernandez et al.
2011, Pratt et al. 2012, Pratt et al.,
2007b, Ramirez et al., 2012, Pugnaire
et al., 2006

Leaf area to xylem area of shoots Higher Lower Ackerly 2004

Carbon assimilation per area when | Lower Higher Hernandez et al. 2011, Galle et al.

water is available 2011; Pratt et al. 2012, Pugnaire et al.,
2006

Stomatal conductance (gs max) Lower Higher Hernandez et al. 2011; Galle et al.
2011;Vilagrosa et al., 2014; Ramirez et
al., 2012b; Pratt et al., 2012, Pugnaire
et al., 2006

Instantaneous water-use efficiency |Higher Lower Hernandez et al. 2011; Vilagrosa et al.,

(WUE) 2014

Specific root length (SRL) Lower Higher Paula & Pausas 2011

Seedling root/shoot ratio Higher Lower Pratt et al., 2012; Pugnaire et al., 2006

Xylem water storage capacity Higher Lower Pratt et al. 2007a

Minimum seasonal W,, Higher Lower Jacobsen et al., 2008; Pratt et al.,

2007b; Paddock et al., 2013
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