17 research outputs found

    Potential of Genome Editing to Improve Aquaculture Breeding and Production

    Get PDF
    Aquaculture is an increasingly important component of global food security, and there is major potential for genetic improvement to contribute to sustainable production. The high fecundity and external fertilisation of most aquaculture species are amenable to the application of genetic improvement technologies, including genome editing using CRISPR/Cas9. Disease resistance is a major target trait for improvement, and CRISPR/Cas9 offers new opportunities to fix existing alleles, to perform introgression-by-editing of alleles from wild populations or related species, and to create de novo alleles. Combining in vivo and in vitro screening approaches has the potential to identify functional disease resistance alleles for downstream functional testing and application. Using genome editing to achieve 100% sterility of production animals is a promising avenue to prevent interbreeding of escapees with wild stocks

    Unraveling Divergent Transcriptomic Profiles: A Comparative Single-Cell RNA Sequencing Study of Epithelium, Gingiva, and Periodontal Ligament Tissues

    No full text
    The periodontium comprising periodontal ligament (PDL), gingiva, and epithelium play crucial roles in maintaining tooth integrity and function. Understanding tissue cellular composition and gene expression is crucial for illuminating periodontal pathophysiology. This study aimed to identify tissue-specific markers via scRNA-Seq. Primary human PDL, gingiva, and epithelium tissues (n = 7) were subjected to cell hashing and sorting. scRNA-Seq library preparation using 10× Genomics protocol and Illumina sequencing was conducted. The analysis was performed using Cellranger (v3.1.0), with downstream analysis via R packages Seurat (v5.0.1) and SCORPIUS (v1.0.9). Investigations identified eight distinct cellular clusters, revealing the ubiquitous presence of epithelial and gingival cells. PDL cells evolved in two clusters with numerical superiority. The other clusters showed varied predominance regarding gingival and epithelial cells or an equitable distribution of both. The cluster harboring most cells mainly consisted of PDL cells and was present in all donors. Some of the other clusters were also tissue-inherent, while the presence of others was environmentally influenced, revealing variability across donors. Two clusters exhibited genetic profiles associated with tissue development and cellular integrity, respectively, while all other clusters were distinguished by genes characteristic of immune responses. Developmental trajectory analysis uncovered that PDL cells may develop after epithelial and gingival cells, suggesting the inherent PDL cell-dominated cluster as a final developmental stage. This single-cell RNA sequencing study delineates the hierarchical organization of periodontal tissue development, identifies tissue-specific markers, and reveals the influence of environmental factors on cellular composition, advancing our understanding of periodontal biology and offering potential insights for therapeutic interventions

    Role of chaperone-assisted selective autophagy (CASA) in mechanical stress protection of periodontal ligament cells

    No full text
    Objective!#!The periodontal ligament (PDL) is exposed to constant mechanical forces potentiated by orthodontic tooth movement (OTM). The aim of our study was to investigate the involvement of chaperone-assisted selective autophagy (CASA) in mechanosensing and cellular adaption to forces in the PDL.!##!Materials and methods!#!Human PDL cells were loaded with 2.5, 5, and 10% of static mechanical strain for 24 h in vitro. Untreated cells served as controls. Gene expression of HSPA8, HSPB8, BAG3, STUB1, SYNPO2 was investigated via RT-qPCR (Quantitative reverse transcription PCR). Western blot evidenced protein expression of these molecules and of Filamin A. In vivo analyses of CASA were performed via immunohistochemistry on teeth with and without OTM.!##!Results!#!CASA machinery genes were inherently expressed in PDL cells and exhibited transcriptional induction upon mechanical strain. Protein analyses underlined these findings, even though modulation upon force exertion also demonstrated a decrease for some molecules and loading strengths. In vivo results evidenced again the uniform upregulation of HSPA8, HSPB8, BAG3, STUB1, SYNPO2 and Filamin A in teeth with OTM compared to controls. Experiments generally evidenced a pronounced variability in the expression between donors both on the gene and protein level.!##!Conclusions!#!Our study is the first to identify both the expression and functional relevance of CASA in the PDL. The data reflect its probable central role in adequate adaption to forces exerted by OTM and in mechanical stress protection of cells. Deeper knowledge of the CASA pathway will allow better assessment of predisposing factors regarding side effects during mechanical force application that can be used in orthodontic practice

    Accuracy of Digital Orthodontic Treatment Planning: Assessing Aligner-Directed Tooth Movements and Exploring Inherent Intramaxillary Side Effects

    No full text
    Background: The attainment of precise posterior occlusion alignment necessitates a deeper understanding of the clinical efficacy of aligner therapy. This study aims to determine whether the treatment goals defined in the virtual planning of aligner therapy are effectively implemented in clinical practice, with a particular focus on the influence of distalization distances on potential vertical side effects. Methods: In this retrospective, non-interventional investigation, a cohort of 20 individuals undergoing Invisalign® treatment was examined. Pre- and post-treatment maxillary clinical and ClinCheck® casts were superimposed utilizing a surface–surface matching algorithm on palatal folds, median palatine raphe, and unmoved teeth as the stable references. The effectivity of planned versus clinical movements was evaluated. Groupings were based on distalization distances, planned vertical movements, and Class II elastic prescription. Statistics were performed with a two-sample t-test and p-value Results: Clinically achieved distalization was significantly lower than virtually planned distalization, regardless of additional vertical movements, where a lack of implementation was contingent upon the extent of distalization, with no mitigating effects observed with the application of Class II elastics. Intriguingly, no adverse vertical side effects were noted; however, the intended intrusions or extrusions, as per the therapeutic plans, remained unattainable regardless of the magnitude of distalization. Conclusions: These findings underscore the imperative for future investigations to delve deeper into the intricacies surrounding translational mesio-distal and vertical movements, thereby enhancing predictability within orthodontic practice. To facilitate successful clinical implementation of vertical and translational movements via aligners, the incorporation of sliders emerges as a promising strategy for bolstering anchorage reinforcement

    Estradiol Modulates the Expression Pattern of Myosin Heavy Chain Subtypes via an ERα-Mediated Pathway in Muscle-Derived Tissues and Satellite Cells

    No full text
    Background: Muscle-derived satellite cells (MDSCs) express MHC molecules intimately related to muscle function, which is supposed to be affected by local estrogen (E2) levels. However, cellular targets and molecular mechanisms involved are poorly understood. Methods: Genioglossus (GG) muscle tissues and MDSCs were derived from SHAM, ovariectomized or ovariectomized and 17 β-estradiol injected rats (n=10 ⁄ group). ERα, ERβ, MHC expression and underlying regulatory mechanisms were investigated by RT-PCR, western blot and immunohistochemistry, inter alia upon selective antagonist exposure and Si-RNA transfection. MDSC viability and cell cycle were examined by MTT and flow cytometry. Results: E2 upregulated MHC-I and downregulated MHC-IIb expression in MDSCs. E2 mediated effects on these molecules were inhibited by ERα-selective antagonist MPP and si-ERα, whereas they persisted upon exposure to ERβ-selective antagonist PHTPP. ERα was significantly higher expressed in muscle tissues compared to ERβ. ER positive stainings were fewer in the ovariectomized than in the SHAM group. Injection of E2 only increased the positive staining of ERα, but not of ERβ. Conclusion: Results suggest that E2 regulates MHC expression mainly through an ERα-mediated pathway with opposing effects on MHC-I and MHC-IIb. Thus, different hormonal processes that impact muscular pathophysiology presumably govern the functional properties of these molecules

    Treatment Efficiency of Maxillary and Mandibular Orovestibular Tooth Expansion and Compression Movements with the Invisalign<sup>®</sup> System in Adolescents and Adults

    No full text
    Objectives: Aligners are an effective and esthetic orthodontic treatment option for permanent and mixed dentition. There are only a few studies dealing with the effectiveness of orovestibular tooth movement using aligners and applying adequate examination methods. In the present retrospective study, the aligner efficiency of orovestibular movements for the entire dentition was systematically evaluated using 3D superimposition, taking into account the influence of jaw, tooth type and Invisalign® system. Methods: Group 1 (n = 18 adults, Invisalign®) and Group 2 (n = 17 adolescents, Invisalign® Teen) were treated with Invisalign® Ex30 aligner material and Invisalign® specific auxiliary means. In this non-interventional retrospective study, pre- and post-treatment maxillary and mandibular plaster cast models were scanned and superimposed with ClinChecks® via Surface–Surface Matching Algorithm on unmoved teeth providing stable references. Effectivity of planned versus clinically realized movements was evaluated for each tooth. Statistics were performed with a t-test and Bonferroni–Holm correction (α = 0.05). Results: Orovestibular movement efficiency was excellent without statistical significance regarding jaw, tooth type or Invisalign® system. Mandibular translational tooth movements were highly effective, and outstanding for premolars (91–98%). Maxillary translational tooth movements were successful for incisors and premolars, but less effective for canines and molars. Almost all teeth were moderately or very effectively corrected by crown tipping, performing better for mandibular (70–92%) than maxillary (22–31%) canines as much as for adolescent upper front teeth (81–85%) and lower canines (92%). Conclusions: Aligners are able to effectively implement translational orovestibular movements, supported by tilting the crowns for even more efficient implementation of the movements. This phenomenon was observed in our studies for all teeth in both jaws, regardless of the Invisalign® system used. Treatment planning should nevertheless take into account the individual patient parameters with regard to the movements to be performed in order to make the aligner therapy as successful as possible in terms of realizing the desired therapeutic goal
    corecore