541 research outputs found

    On the Stellar Kinematics and Mass of the Virgo Ultra-Diffuse Galaxy VCC 1287

    Get PDF
    Here, we present a kinematical analysis of the Virgo cluster ultra-diffuse galaxy (UDG) VCC 1287 based on data taken with the Keck Cosmic Web Imager (KCWI). We confirm VCC 1287's association both with the Virgo cluster and its globular cluster (GC) system, measuring a recessional velocity of $1116 \pm 2\ \mathrm{km\ s^{-1}}.Wemeasureastellarvelocitydispersion(. We measure a stellar velocity dispersion (19 \pm 6\ \mathrm{km\ s^{-1}})andinferbothadynamicalmass() and infer both a dynamical mass (1.11^{+0.81}_{-0.81} \times 10^{9} \ \mathrm{M_{\odot}})andmasstolightratio() and mass to light ratio (13^{+11}_{-11}$) within the half light radius (4.4 kpc). This places VCC 1287 slightly above the well established relation for normal galaxies, with a higher mass to light ratio for its dynamical mass than normal galaxies. We use our dynamical mass, and an estimate of GC system richness, to place VCC 1287 on the GC number -- dynamical mass relation, finding good agreement with a sample of normal galaxies. Based on a total halo mass derived from GC counts, we then infer that VCC 1287 likely resides in a cored or low concentration dark matter halo. Based on the comparison of our measurements to predictions from simulations, we find that strong stellar feedback and/or tidal effects are plausibly the dominant mechanisms in the formation of VCC 1287. Finally, we compare our measurement of the dynamical mass with those for other UDGs. These dynamical mass estimates suggest relatively massive halos and a failed galaxy origin for at least some UDGs.Comment: 13 pages, 10 figures with an additional 5 pages and 5 figures in appendices. Accepted for publication in MNRAS. v2: with small updates from publication formatting and a minor plotting fix for Fig. 1

    The assembly history of the nearest S0 galaxy NGC 3115 from its kinematics out to six half-light radii

    Get PDF
    Using new and archival data, we study the kinematic properties of the nearest field S0 galaxy, NGC 3115, out to 6.5\sim6.5 half-light radii (ReR_\mathrm{e}) from its stars (integrated starlight), globular clusters (GCs) and planetary nebulae (PNe). We find evidence of three kinematic regions with an inner transition at 0.2 Re\sim0.2\ R_\mathrm{e} from a dispersion-dominated bulge (Vrot/σ<1V_\mathrm{rot}/\sigma <1) to a fast-rotating disk (Vrot/σ>1V_\mathrm{rot}/\sigma >1), and then an additional transition from the disk to a slowly rotating spheroid at 22.5Re\sim2-2.5\, R_\mathrm{e}, as traced by the red GCs and PNe (and possibly by the blue GCs beyond 5Re\sim5\, R_\mathrm{e}). From comparison with simulations, we propose an assembly history in which the original progenitor spiral galaxy undergoes a gas-rich minor merger that results in the embedded kinematically cold disk that we see today in NGC 3115. At a later stage, dwarf galaxies, in mini mergers (mass-ratio << 1:10), were accreted building-up the outer slowly rotating spheroid, with the central disk kinematics largely unaltered. Additionally, we report new spectroscopic observations of a sample of ultra-compact dwarfs (UCDs) around NGC 3115 with the Keck/KCWI instrument. We find that five UCDs are inconsistent with the general rotation field of the GCs, suggesting an \textit{ex-situ} origin for these objects, i.e. perhaps the remnants of tidally stripped dwarfs. A further seven UCDs follow the GC rotation pattern, suggesting an \textit{in-situ} origin and, possibly a GC-like nature.Comment: 22 pages (including 3 pages of Appendix material), 14 figures, published in MNRA

    Serum biochemistry panels in African buffalo: Defining reference intervals and assessing variability across season, age and sex

    Get PDF
    Serum biochemical parameters can be utilized to evaluate the physiological status of an animal, and relate it to the animal’s health. In order to accurately interpret individual animal biochemical results, species-specific reference intervals (RI) must be established. Reference intervals for biochemical parameters differ between species, and physiological differences including reproductive status, nutritional resource availability, disease status, and age affect parameters within the same species. The objectives of this study were to (1) establish RI for biochemical parameters in managed African buffalo (Syncerus caffer), (2) assess the effects of age, sex, pregnancy, and season on serum biochemistry values, and (3) compare serum biochemistry values from a managed herd to a free-ranging buffalo herd and to values previously published for captive (zoo) buffalo. Season profoundly affected all biochemistry parameters, possibly due to changes in nutrition and disease exposure. Age also affected all biochemical parameters except gamma glutamyl transferase and magnesium, consistent with patterns seen in cattle. Sex and reproductive status had no detectable effects on the parameters that were measured. The biochemical profiles of managed buffalo were distinct from those observed in the free-ranging herd and captive buffalo. Biochemical differences between buffalo from captive, managed, and free-ranging populations may be related to nutritional restriction or lack of predation in the context of management or captivity. The reference intervals provided in this study, in addition to the seasonal and age-related patterns observed, provide a foundation for health investigations that may inform management strategies in this ecologically and economically important species

    On the stellar kinematics and mass of the Virgo ultradiffuse galaxy VCC 1287

    Get PDF
    Here, we present a kinematical analysis of the Virgo cluster ultradiffuse galaxy (UDG) VCC 1287 based on data taken with the Keck Cosmic Web Imager (KCWI). We confirm VCC 1287\u27s association both with the Virgo cluster and its globular cluster (GC) system, measuring a recessional velocity of 1116 ± 2 km s-1. We measure a stellar velocity dispersion (19 ± 6 km s-1) and infer both a dynamical mass (1.110.81+0.81×109 M1.11^{+0.81}_{-0.81} \times 10^{9} \ \mathrm{M_{\odot }}) and mass-To-light ratio (M/L) (1311+1113^{+11}_{-11}) within the half-light radius (4.4 kpc). This places VCC 1287 slightly above the well-established relation for normal galaxies, with a higher M/L for its dynamical mass than normal galaxies. We use our dynamical mass, and an estimate of GC system richness, to place VCC 1287 on the GC number-dynamical mass relation, finding good agreement with a sample of normal galaxies. Based on a total halo mass derived from GC counts, we then infer that VCC 1287 likely resides in a cored or low-concentration dark matter halo. Based on the comparison of our measurements to predictions from simulations, we find that strong stellar feedback and/or tidal effects are plausibly the dominant mechanisms in the formation of VCC 1287. Finally, we compare our measurement of the dynamical mass with those for other UDGs. These dynamical mass estimates suggest relatively massive haloes and a failed galaxy origin for at least some UDGs

    Keck Spectroscopy of the Coma Cluster Ultra-Diffuse Galaxy Y358: Dynamical Mass in a Wider Context

    Get PDF
    We examine ultra-diffuse galaxies (UDGs) and their relation to non-UDGs in mass-radius-luminosity space. We begin by publishing Keck/KCWI spectroscopy for the Coma cluster UDG Y358, for which we measure both a recessional velocity and velocity dispersion. Our recessional velocity confirms association with the Coma cluster and Y358's status as a UDG. From our velocity dispersion (19 ±\pm 3 km s1^{-1}) we calculate a dynamical mass within the half-light radius which provides evidence for a core in Y358's dark matter halo. We compare this dynamical mass, along with those for globular cluster (GC)-rich/-poor UDGs in the literature, to mass profiles for isolated, gas-rich UDGs and UDGs in the NIHAO/FIRE simulations. We find GC-poor UDGs have dynamical masses similar to isolated, gas-rich UDGs, suggesting an evolutionary pathway may exist between the two. Conversely, GC-rich UDGs have dynamical masses too massive to be easily explained as the evolution of the isolated, gas-rich UDGs. The simulated UDGs match the dynamical masses of the GC-rich UDGs. However, once compared in stellar mass -- halo mass space, the FIRE/NIHAO simulated UDGs do not match the halo masses of either the isolated, gas-rich UDGs or the GC-rich UDGs at the same stellar mass. Finally, we supplement our data for Y358 with other UDGs that have measured velocity dispersions in the literature. We compare this sample to a wide range of non-UDGs in mass-radius-luminosity space, finding UDGs have a similar locus to non-UDGs of similar luminosity with the primary difference being their larger half-light radii.Comment: 16 pages, 9 figures, accepted for publication in MNRA

    Stellar velocity dispersion and dynamical mass of the ultra diffuse galaxy NGC 5846_UDG1 from the keck cosmic web imager

    Get PDF
    The ultra diffuse galaxy in the NGC 5846 group (NGC 5846 UDG1) was shown to have a large number of globular cluster (GC) candidates from deep imaging as part of the VEGAS survey. Recently, Muller et al. published a velocity dispersion, based ¨ on a dozen of its GCs. Within their quoted uncertainties, the resulting dynamical mass allowed for either a dark matter free or a dark-matter-dominated galaxy. Here, we present spectra from KCWI that reconfirms membership of the NGC 5846 group and reveals a stellar velocity dispersion for UDG1 of σ GC = 17 ± 2 km s−1. Our dynamical mass, with a reduced uncertainty, indicates a very high contribution of dark matter within the effective radius. We also derive an enclosed mass from the locations and motions of the GCs using the tracer mass estimator, finding a similar mass inferred from our stellar velocity dispersion. We find no evidence that the galaxy is rotating and is thus likely pressure supported. The number of confirmed GCs, and the total number inferred for the system (∼45), suggests a total halo mass of ∼2 × 1011 M. A cored mass profile is favoured when compared to our dynamical mass. Given its stellar mass of 1.1 × 108 M, NGC 5846 UDG1 appears to be an ultra diffuse galaxy with a dwarf-like stellar mass and an overly massive halo

    The assembly history of the nearest S0 galaxy NGC 3115 from its kinematics out to six half-light radii

    Get PDF
    Using new and archival data, we study the kinematic properties of the nearest field S0 galaxy, NGC 3115, out to ∼6.5 half-light radii (Re) from its stars (integrated starlight), globular clusters (GCs), and planetary nebulae (PNe). We find evidence of three kinematic regions with an inner transition at ∼0.2 Re from a dispersion-dominated bulge (Vrot/σ \u3c 1) to a fast-rotating disc (Vrot/σ \u3e 1), and then an additional transition from the disc to a slowly rotating spheroid at ∼ 2-2.5Re, as traced by the red GCs and PNe (and possibly by the blue GCs beyond ∼ 5Re). From comparison with simulations, we propose an assembly history in which the original progenitor spiral galaxy undergoes a gas-rich minor merger that results in the embedded kinematically cold disc that we see today in NGC 3115. At a later stage, dwarf galaxies, in mini mergers (mass ratio \u3c 1:10), were accreted building up the outer slowly rotating spheroid, with the central disc kinematics largely unaltered. Additionally, we report new spectroscopic observations of a sample of ultracompact dwarfs (UCDs) around NGC 3115 with the Keck/KCWI instrument.We find that five UCDs are inconsistent with the general rotation field of the GCs, suggesting an ex situ origin for these objects, i.e. perhaps the remnants of tidally stripped dwarfs. A further seven UCDs follow the GC rotation pattern, suggesting an in situ origin and, possibly a GC-like nature

    The stellar populations of quiescent ultra-diffuse galaxies from optical to mid-infrared spectral energy distribution fitting

    Get PDF
    We use spectral energy distribution (SED) fitting to place constraints on the stellar population properties of 29 quiescent ultra-diffuse galaxies (UDGs) across different environments. We use the fully Bayesian routine PROSPECTOR coupled with archival data in the optical, near, and mid-infrared from Spitzer and Wide-field Infrared Survey Explorer under the assumption of an exponentially declining star formation history. We recover the stellar mass, age, metallicity, dust content, star formation time scales, and photometric redshifts (photo-zs) of the UDGs studied. Using the mid-infrared data, we probe the existence of dust in UDGs. Although its presence cannot be confirmed, we find that the inclusion of small amounts of dust in the models brings the stellar populations closer to those reported with spectroscopy. Additionally, we fit the redshifts of all galaxies. We find a high accuracy in recovering photo-zs compared to spectroscopy, allowing us to provide new photo-z estimates for three field UDGs with unknown distances. We find evidence of a stellar population dependence on the environment, with quiescent field UDGs being systematically younger than their cluster counterparts. Lastly, we find that all UDGs lie below the mass–metallicity relation for normal dwarf galaxies. Particularly, the globular cluster (GC)-poor UDGs are consistently more metal-rich than GC-rich ones, suggesting that GC-poor UDGs may be puffed-up dwarfs, while most GC-rich UDGs are better explained by a failed galaxy scenario. As a byproduct, we show that two galaxies in our sample, NGC 1052-DF2 and NGC 1052-DF4, share equivalent stellar population properties, with ages consistent with 8 Gyr. This finding supports formation scenarios where the galaxies were formed together

    Development and Validation of the Behavioral Tendencies Questionnaire

    Get PDF
    At a fundamental level, taxonomy of behavior and behavioral tendencies can be described in terms of approach, avoid, or equivocate (i.e., neither approach nor avoid). While there are numerous theories of personality, temperament, and character, few seem to take advantage of parsimonious taxonomy. The present study sought to implement this taxonomy by creating a questionnaire based on a categorization of behavioral temperaments/tendencies first identified in Buddhist accounts over fifteen hundred years ago. Items were developed using historical and contemporary texts of the behavioral temperaments, described as “Greedy/Faithful”, “Aversive/Discerning”, and “Deluded/Speculative”. To both maintain this categorical typology and benefit from the advantageous properties of forced-choice response format (e.g., reduction of response biases), binary pairwise preferences for items were modeled using Latent Class Analysis (LCA). One sample (n1 = 394) was used to estimate the item parameters, and the second sample (n2 = 504) was used to classify the participants using the established parameters and cross-validate the classification against multiple other measures. The cross-validated measure exhibited good nomothetic span (construct-consistent relationships with related measures) that seemed to corroborate the ideas present in the original Buddhist source documents. The final 13-block questionnaire created from the best performing items (the Behavioral Tendencies Questionnaire or BTQ) is a psychometrically valid questionnaire that is historically consistent, based in behavioral tendencies, and promises practical and clinical utility particularly in settings that teach and study meditation practices such as Mindfulness Based Stress Reduction (MBSR)
    corecore