208 research outputs found

    Residual DNA analysis in influenza vaccine processing

    Get PDF
    In cell-based influenza vaccine production, the European Pharmacopoeia demands a host cell residual DNA concentration of less than 10 ng per dose. To reliably measure residual DNA in both process samples and final vaccine using quantitative PCR, DNA preparation prior to analysis is a necessity. Samples from the vaccine purification process contain different buffers, salts, and cell-based compounds, and vary 3–4 logs in DNA concentration from harvest to the final product, which all put strain on the DNA preparation. For accurate determination of DNA concentration, recovery is of high importance. There are many commercially available DNA preparation kits that use different techniques to bind DNA, from spin columns with a DNA-binding membrane or medium (resin) to magnetic beads. However, these kits are mainly developed to purify DNA fragments from gel electrophoresis or genomic DNA from tissues such as blood or cultured cells, and do not have recovery as a priority. Few kits are intended for residual DNA determination in samples with high concentration of a protein or virus product. In this study, prototype media for DNA preparation, in bind-elute and batch mode, were evaluated for recovery, hands-on time, and throughput. In batch mode, recoveries of \u3e 80% were achieved, but the technique exhibited matrix effects on real process samples. In bind-elute mode, recoveries of 40%–60% were achieved after elution. However, recovery could be improved by determination of DNA concentration, while keeping DNA bound to the medium

    Long-term detection of SARS-CoV-2 antibodies after infection and risk of re-infection

    Get PDF
    OBJECTIVES: To evaluate long-term sensitivity for detection of total antibodies against SARS-CoV-2 METHODS: From week 41, 2020, through week 26, 2021, all Danish blood donations were tested for SARS-CoV-2 antibodies with the Wantai assay. The results were linked with polymerase chain reaction (PCR) test results from the Danish Microbiological Database (MiBa). RESULTS: During the study period, 105,646 non-vaccinated Danish blood donors were tested for SARS-CoV-2 antibodies, and 3,806 (3.6%) had a positive PCR test before the blood donation. Among the donors with a positive PCR test, 94.2% subsequently also had a positive antibody test. The time between the positive PCR test and the antibody test was up to 15 months and there was no evidence of a decline in proportion with detectable antibodies over time. A negative serological result test was associated with a higher incidence of re-infection (Incidence Rate Ratio = 0.102 (95% confidence interval (CI): 0.039–0.262)). CONCLUSION: Among healthy blood donors, 94.2% developed SARS-CoV-2 antibodies after infection, and a lack of detectable antibodies was associated with re-infection

    Antibody response following the third and fourth SARS-CoV-2 vaccine dose in individuals with common variable immunodeficiency

    Get PDF
    BackgroundThe antibody response after vaccination is impaired in common variable immunodeficiency (CVID).ObjectiveWe aimed to study the spike receptor-binding domain IgG antibody (anti-S-RBD) levels during a four-dose SARS-CoV-2 vaccination strategy and after monoclonal antibody (mAB) treatment in CVID. Moreover, we assessed the anti-S-RBD levels in immunoglobulin replacement therapy (IgRT) products.MethodsIn an observational study, we examined anti-S-RBD levels after the second, third, and fourth dose of mRNA SARS-CoV-2 vaccines. Moreover, we measured anti-S-RBD after treatment with mAB. Finally, anti-S-RBD was assessed in common IgRT products. Antibody non-responders (anti-S-RBD < 7.1) were compared by McNemar’s test and anti-S-RBD levels were compared with paired and non-paired Wilcoxon signed rank tests as well as Kruskal–Wallis tests.ResultsAmong 33 individuals with CVID, anti-S-RBD levels increased after the third vaccine dose (165 BAU/ml [95% confidence interval: 85; 2280 BAU/ml], p = 0.006) and tended to increase after the fourth dose (193 BAU/ml, [−22; 569 BAU/ml], p = 0.080) compared to the previous dose. With increasing number of vaccinations, the proportion of patients who seroconverted (anti-S-RBD ≥ 7.1) increased non-significantly. mAB treatment resulted in a large increase in anti-S-RBD and a higher median level than gained after the fourth dose of vaccine (p = 0.009). IgRT products had varying concentrations of anti-S-RBD (p < 0.001), but none of the products seemed to affect the overall antibody levels (p = 0.460).ConclusionMultiple SARS-CoV-2 vaccine doses in CVID seem to provide additional protection, as antibody levels increased after the third and fourth vaccine dose. However, anti-S-RBD levels from mAB outperform the levels mounted after vaccination.Clinical ImplicationsBoosting with SARS-CoV-2 vaccines seems to improve the antibody response in CVID patients.Capsule summaryThe third and possibly also the fourth dose of mRNA SARS-CoV-2 vaccine in CVID improve the antibody response as well as stimulate seroconversion in most non-responders

    Development and validation of a new clinical decision support tool to optimize screening for retinopathy of prematurity

    Get PDF
    Background/Aims Prematurely born infants undergo costly, stressful eye examinations to uncover the small fraction with retinopathy of prematurity (ROP) that needs treatment to prevent blindness. The aim was to develop a prediction tool (DIGIROP-Screen) with 100% sensitivity and high specificity to safely reduce screening of those infants not needing treatment. DIGIROP-Screen was compared with four other ROP models based on longitudinal weights. Methods Data, including infants born at 24–30 weeks of gestational age (GA), for DIGIROP-Screen development (DevGroup, N=6991) originate from the Swedish National Registry for ROP. Three international cohorts comprised the external validation groups (ValGroups, N=1241). Multivariable logistic regressions, over postnatal ages (PNAs) 6–14 weeks, were validated. Predictors were birth characteristics, status and age at first diagnosed ROP and essential interactions. Results ROP treatment was required in 287 (4.1%)/6991 infants in DevGroup and 49 (3.9%)/1241 in ValGroups. To allow 100% sensitivity in DevGroup, specificity at birth was 53.1% and cumulatively 60.5% at PNA 8 weeks. Applying the same cut-offs in ValGroups, specificities were similar (46.3% and 53.5%). One infant with severe malformations in ValGroups was incorrectly classified as not needing screening. For all other infants, at PNA 6–14 weeks, sensitivity was 100%. In other published models, sensitivity ranged from 88.5% to 100% and specificity ranged from 9.6% to 45.2%. Conclusions DIGIROP-Screen, a clinical decision support tool using readily available birth and ROP screening data for infants born GA 24–30 weeks, in the European and North American populations tested can safely identify infants not needing ROP screening. DIGIROP-Screen had equal or higher sensitivity and specificity compared with other models. DIGIROP-Screen should be tested in any new cohort for validation and if not validated it can be modified using the same statistical approaches applied to a specific clinical setting

    Pathways from research to sustainable development: insights from ten research projects in sustainability and resilience

    Get PDF
    Drawing on collective experience from ten collaborative research projects focused on the Global South, we identify three major challenges that impede the translation of research on sustainability and resilience into better-informed choices by individuals and policy-makers that in turn can support transformation to a sustainable future. The three challenges comprise: (i) converting knowledge produced during research projects into successful knowledge application; (ii) scaling up knowledge in time when research projects are short-term and potential impacts are long-term; and (iii) scaling up knowledge across space, from local research sites to larger-scale or even global impact. Some potential pathways for funding agencies to overcome these challenges include providing targeted prolonged funding for dissemination and outreach, and facilitating collaboration and coordination across different sites, research teams, and partner organizations. By systematically documenting these challenges, we hope to pave the way for further innovations in the research cycle

    Complement C4 Copy Number Variation is Linked to SSA/Ro and SSB/La Autoantibodies in Systemic Inflammatory Autoimmune Diseases

    Get PDF
    Objective Copy number variation of the C4 complement components, C4A and C4B, has been associated with systemic inflammatory autoimmune diseases. This study was undertaken to investigate whether C4 copy number variation is connected to the autoimmune repertoire in systemic lupus erythematosus (SLE), primary Sjögren's syndrome (SS), or myositis. Methods Using targeted DNA sequencing, we determined the copy number and genetic variants of C4 in 2,290 well-characterized Scandinavian patients with SLE, primary SS, or myositis and 1,251 healthy controls. Results A prominent relationship was observed between C4A copy number and the presence of SSA/SSB autoantibodies, which was shared between the 3 diseases. The strongest association was detected in patients with autoantibodies against both SSA and SSB and 0 C4A copies when compared to healthy controls (odds ratio [OR] 18.0 [95% confidence interval (95% CI) 10.2–33.3]), whereas a weaker association was seen in patients without SSA/SSB autoantibodies (OR 3.1 [95% CI 1.7–5.5]). The copy number of C4 correlated positively with C4 plasma levels. Further, a common loss-of-function variant in C4A leading to reduced plasma C4 was more prevalent in SLE patients with a low copy number of C4A. Functionally, we showed that absence of C4A reduced the individuals’ capacity to deposit C4b on immune complexes. Conclusion We show that a low C4A copy number is more strongly associated with the autoantibody repertoire than with the clinically defined disease entities. These findings may have implications for understanding the etiopathogenetic mechanisms of systemic inflammatory autoimmune diseases and for patient stratification when taking the genetic profile into account.publishedVersio

    Predicted basal metabolic rate and cancer risk in the European Prospective Investigation into Cancer and Nutrition

    Get PDF
    Emerging evidence suggests that a metabolic profile associated with obesity may be a more relevant risk factor for some cancers than adiposity per se. Basal metabolic rate (BMR) is an indicator of overall body metabolism and may be a proxy for the impact of a specific metabolic profile on cancer risk. Therefore, we investigated the association of predicted BMR with incidence of 13 obesity-related cancers in the European Prospective Investigation into Cancer and Nutrition (EPIC). BMR at baseline was calculated using the WHO/FAO/UNU equations and the relationships between BMR and cancer risk were investigated using multivariable Cox proportional hazards regression models. A total of 141,295 men and 317,613 women, with a mean follow-up of 14 years were included in the analysis. Overall, higher BMR was associated with a greater risk for most cancers that have been linked with obesity. However, among normal weight participants, higher BMR was associated with elevated risks of esophageal adenocarcinoma (hazard ratio per 1-standard deviation change in BMR [HR1-SD]: 2.46; 95% CI 1.20; 5.03) and distal colon cancer (HR1-SD: 1.33; 95% CI 1.001; 1.77) among men and with proximal colon (HR1-SD: 1.16; 95% CI 1.01; 1.35), pancreatic (HR1-SD: 1.37; 95% CI 1.13; 1.66), thyroid (HR1-SD: 1.65; 95% CI 1.33; 2.05), postmenopausal breast (HR1-SD: 1.17; 95% CI 1.11; 1.22) and endometrial (HR1-SD: 1.20; 95% CI 1.03; 1.40) cancers in women. These results indicate that higher BMR may be an indicator of a metabolic phenotype associated with risk of certain cancer types, and may be a useful predictor of cancer risk independent of body fatness

    The Baltic Health Index (BHI) : Assessing the social–ecological status of the Baltic Sea

    Get PDF
    1. Improving the health of coastal and open sea marine ecosystems represents a substantial challenge for sustainable marine resource management, since it requires balancing human benefits and impacts on the ocean. This challenge is often exacerbated by incomplete knowledge and lack of tools that measure ocean and coastal ecosystem health in a way that allows consistent monitoring of progress towards predefined management targets. The lack of such tools often limits capabilities to enact and enforce effective governance. 2. We introduce the Baltic Health Index (BHI) as a transparent, collaborative and repeatable assessment tool. The Index complements existing, more ecological-oriented, approaches by including a human dimension on the status of the Baltic Sea, an ecosystem impacted by multiple anthropogenic pressures and governed by a multitude of comprehensive national and international policies. Using a large amount of social–ecological data available, we assessed the health of the Baltic Sea for nine goals that represent the status towards set targets, for example, clean waters, biodiversity, food provision, natural products extraction and tourism. 3. Our results indicate that the overall health of the Baltic Sea is suboptimal (a score of 76 out of 100), and a substantial effort is required to reach the management objectives and associated targets. Subregionally, the lowest BHI scores were measured for carbon storage, contaminants and lasting special places (i.e. marine protected areas), albeit with large spatial variation. 4. Overall, the likely future status of all goals in the BHI averaged for the entire Baltic Sea is better than the present status, indicating a positive trend towards a healthier Baltic Sea. However, in some Baltic Sea basins, the trend for specific goals was decreasing, highlighting locations and issues that should be the focus of management priorities. 5. The BHI outcomes can be used to identify both pan-Baltic and subregional scale management priorities and to illustrate the interconnectedness between goals linked by cumulative pressures. Hence, the information provided by the BHI tool and its further development will contribute towards the fulfilment of the UN Agenda 2030 and its Sustainability Development Goals

    Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disease in which the formation of extracellular aggregates of amyloid beta (Aβ) peptide, fibrillary tangles of intraneuronal tau and microglial activation are major pathological hallmarks. One of the key molecules involved in microglial activation is galectin-3 (gal3), and we demonstrate here for the first time a key role of gal3 in AD pathology. Gal3 was highly upregulated in the brains of AD patients and 5xFAD (familial Alzheimer’s disease) mice and found specifically expressed in microglia associated with Aβ plaques. Single-nucleotide polymorphisms in the LGALS3 gene, which encodes gal3, were associated with an increased risk of AD. Gal3 deletion in 5xFAD mice attenuated microglia-associated immune responses, particularly those associated with TLR and TREM2/DAP12 signaling. In vitro data revealed that gal3 was required to fully activate microglia in response to fibrillar Aβ. Gal3 deletion decreased the Aβ burden in 5xFAD mice and improved cognitive behavior. Interestingly, a single intrahippocampal injection of gal3 along with Aβ monomers in WT mice was sufficient to induce the formation of long-lasting (2 months) insoluble Aβ aggregates, which were absent when gal3 was lacking. High-resolution microscopy (stochastic optical reconstruction microscopy) demonstrated close colocalization of gal3 and TREM2 in microglial processes, and a direct interaction was shown by a fluorescence anisotropy assay involving the gal3 carbohydrate recognition domain. Furthermore, gal3 was shown to stimulate TREM2–DAP12 signaling in a reporter cell line. Overall, our data support the view that gal3 inhibition may be a potential pharmacological approach to counteract AD.This work was supported by Grants from the Swedish Research Council, and the Strong Research Environment MultiPark (Multidisciplinary Research in Parkinson’s and Alzheimer’s Disease at Lund University), Bagadilico (Linné consortium sponsored by the Swedish Research Council), the Swedish Alzheimer’s Foundation, Swedish Brain Foundation, A.E. Berger Foundation, Gyllenstiernska Krapperup Foundation, the Royal Physiographic Society, Crafoord Foundation, Olle Engkvist Byggmästare Foundation, Wiberg Foundation, G&J Kock Foundation, Stohnes Foundation, Swedish Dementia Association and the Medical Faculty at Lund University. This work was supported by Grant SAF2015-64171R (Spanish MINECO/FEDER, UE), by Instituto de Salud Carlos III (ISCiii) of Spain, co-financed by FEDER funds from European Union through grants PI15/00796 and PI18/01557 (to AG), PI15/00957 and PI18/01556 (to JV), and CIBERNED (to AG and JV), by Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucia Proyecto de Excelencia (CTS-2035) (to JV and AG), and by Malaga University grant PPIT.UMA.B1.2017/26 (to RSV). AV and GCB received funding from the Innovative Medicines Initiative 2 Joint Undertaking under Grant agreement no. 115976 (PHAGO). CIBERNED “Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid (Spain)”. HL and AF were supported by the Swedish Research Council, the Swedish Brain Foundation, the Alzheimer Foundation and the Åhlén Foundation. UJN was supported by Grants from the Knut and Alice Wallenberg Foundation (KAW 2013.0022) and the Swedish Research Council (Grant no. 621-2012-2978).Peer reviewe
    corecore