88 research outputs found

    Variable responses of hawkmoths to nectar-depleted plants in two native Petunia axillaris (Solanaceae) populations

    Get PDF
    Pollination success of deceptive orchids is affected by the density and distribution of nectar providing plant species and overall plant density. Here we extended the framework of how plant density can affect pollination to examine how it may promote the success of plant intraspecific cheaters. We compared hawkmoth behaviour in two native populations of Petunia axillaris, where we simultaneously offered rewarding and manually depleted P. axillaris. We asked whether pollinator foraging strategies change as a function of plant density and whether such changes may differentially affect nectarless plants. We observed the first choice and number of flowers visited by pollinators and found that in the dense population, pollinators visited more flowers on rewarding plants than on nectar-depleted plants. In the sparse population, such discrimination was absent. As we found no differences in nectar volume between plants of the two populations, the observed differences in plant density may be temporal. We reason that if differences were more permanent, an equivalent of the remote habitat hypothesis prevails: in a sparse population, cheating plants benefit from the absence of inter- and intraspecific competitors because pollinators tend to visit all potential resources. In a denser population, a pollinator's optimal foraging strategy involves more selectivity. This would cause between-plant competition for pollinators in a pollinator-limited context, which applies to most hawkmoth-pollinated systems. We propose that nectar-provisioning of plants can be density-dependant, with cheaters able to persist in low density area

    Variable responses of hawkmoths to nectar-depleted plants in two native Petunia axillaris (Solanaceae) populations

    Get PDF
    Abstract Pollination success of deceptive orchids is affected by the density and distribution of nectar providing plant species and overall plant density. Here we extended the framework of how plant density can affect pollination to examine how it may promote the success of plant intraspecific cheaters. We compared hawkmoth behaviour in two native populations of Petunia axillaris, where we simultaneously offered rewarding and manually depleted P. axillaris. We asked whether pollinator foraging strategies change as a function of plant density and whether such changes may differentially affect nectarless plants. We observed the first choice and number of flowers visited by pollinators and found that in the dense population, pollinators visited more flowers on rewarding plants than on nectar-depleted plants. In the sparse population, such discrimination was absent. As we found no differences in nectar volume between plants of the two populations, the observed differences in plant density may be temporal. We reason that if differences were more permanent, an equivalent of the remote habitat hypothesis prevails: in a sparse population, cheating plants benefit from the absence of inter-and intraspecific competitors because pollinators tend to visit all potential resources. In a denser population, a pollinator's optimal foraging strategy involves more selectivity. This would cause between-plant competition for pollinators in a pollinator-limited context, which applies to most hawkmoth-pollinated systems. We propose that nectar-provisioning of plants can be density-dependant, with cheaters able to persist in low density areas

    RNF12 X-linked intellectual disability mutations disrupt E3 ligase activity and neural differentiation

    Get PDF
    Summary: X-linked intellectual disability (XLID) is a heterogeneous syndrome affecting mainly males. Human genetics has identified >100 XLID genes, although the molecular and developmental mechanisms underpinning this disorder remain unclear. Here, we employ an embryonic stem cell model to explore developmental functions of a recently identified XLID gene, the RNF12/RLIM E3 ubiquitin ligase. We show that RNF12 catalytic activity is required for proper stem cell maintenance and neural differentiation, and this is disrupted by patient-associated XLID mutation. We further demonstrate that RNF12 XLID mutations specifically impair ubiquitylation of developmentally relevant substrates. XLID mutants disrupt distinct RNF12 functional modules by either inactivating the catalytic RING domain or interfering with a distal regulatory region required for efficient ubiquitin transfer. Our data thereby uncover a key function for RNF12 E3 ubiquitin ligase activity in stem cell and neural development and identify mechanisms by which this is disrupted in intellectual disability. : Bustos et al. show that the RNF12 E3 ubiquitin ligase regulates stem cell maintenance and neuronal differentiation. They demonstrate that RNF12/RLIM mutations identified in X-linked intellectual disability patients disrupt regions required for catalytic activity, which leads to compromised stem cell maintenance and abnormal neural differentiation. Keywords: ubiquitin, protein ubiquitylation, E3 ubiquitin ligase, proteasomal degradation, RNF12/RLIM, intellectual disability, X-linked intellectual disability, embryonic stem cells, neural differentiatio

    Host taxon-derived Sarcoptes mite in European wild animals revealed by microsatellite markers

    Get PDF
    Ten markers specific to Sarcoptes mites were used in applying microsatellite genotyping to individual Sarcoptes mites collected in three European countries from 15 wild mammal populations belonging to 10 host species. The results showed that geographical separation had real biological significance for the definition of mite sub-populations, and that the degree of genetic exchange occurring between mites from different localities was apparently related to the geographical distance between locations. Wild host-derived mite populations were found to be clustered into three main groups: herbivore-, carnivore- and omnivore-derived Sarcoptes populations, with the omnivore-derived group located halfway between the herbivore- and carnivore-derived Sarcoptes populations. The separation between these three mite groups was better supported than the geographical separations; nevertheless, a kind of sub-clustering was detected within each of these three groups that separates mite populations into their geographical localities (countries). The lack of gene flow between Sarcoptes populations may have improved parasitic adaptations and led to what we refer to as a host-taxon-derived (carnivore host-, herbivore host- and omnivore host-derived) Sarcoptes mite found on European wild animals. Our results demonstrate that Sarcoptes is not a single panmictic population, even within each geographical location. This finding will have important ramifications for the study of the genetic structure of populations, life cycles, diagnosis and the monitoring protocols of the ubiquitous Sarcoptes mite, and could thus contribute to a better understanding of its associated epidemiology, which is of pivotal interest for wildlife biological conservation. © 2010 Elsevier Ltd. All rights reserved.Peer Reviewe

    Synthesis and crystal structure of 1,4,10,13-tetraoxa-7,16-diazoniumcyclo-octadecane bis(4-chloro-2-methyl-phenoxyacetate)

    Get PDF
    The title compound was prepared by the reaction of 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane with 4-chloro-2-methyl-phenoxyacetic acid in a ratio of 1:2. The structure has been proved by the data of elemental analysis, IR spectroscopy, NMR (1H, 13C) technique and by X-ray diffraction analysis. Intermolecular hydrogen bonds between the azonium protons and oxygen atoms of the carboxylate groups were found. Immunoactive properties of the title compound have been screened. The compound has the ability to suppress spontaneous and Con A-stimulated cell proliferation in vitro and therefore can be considered as immunodepressant

    The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition

    Get PDF
    Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines
    corecore