15 research outputs found
Temporal variability in large grazer space use in an experimental landscape
Land use, climate change, and their interaction each have great potential to affect grazing systems. With anticipated more frequent and extensive future drought, a more complete understanding of the mechanisms that determine large grazer landscape-level distribution under varying climatic conditions is integral to ecosystem management. Using an experimental setting with contrasting fire treatments, we describe the inter-annual variability of the effect of landscape topography and disturbance from prescribed spring fire on large grazer space use in years of variable resource availability. Using GPS telemetry, we investigated space use of plains bison (Bison bison bison) as they moved among watersheds managed with variable experimental burn treatments (1-, 2-, 4-, and 20-year burn intervals) during a seven-year period spanning years of average-to-above average forage production and severe drought. At the landscape scale, bison more strongly favored high-elevation and recently burned watersheds with watersheds burned for the first time in 2 or 4 yr consistently showing higher use relative to annually burned watersheds. In particular, watersheds burned for the first time in 4 yr were avoided to lesser extent than other more frequently burned watersheds during the dormant season. This management type also maintained coupling between bison space use and post-fire regrowth across post-drought growing season months, whereas watersheds with more frequent fire-return intervals attracted bison in only the first month post-fire. Hence, fire frequency played a role in maintaining the coupling of grazer and post-fire regrowth, the fire–grazer interaction, in response to drought-induced reduction in fuel loads. Moreover, bison avoided upland habitat in poor forage production years, when forage regrowth is less likely to occur in upland than in lowland habitats. Such quantified responses of bison to landscape features can aid future conservation management efforts and planning to sustain fire–grazer interactions and resulting spatial heterogeneity in grassland ecosystems
Temporal variability in large grazer space use in an experimental landscape
Land use, climate change, and their interaction each have great potential to affect grazing systems. With anticipated more frequent and extensive future drought, a more complete understanding of the mechanisms that determine large grazer landscape-level distribution under varying climatic conditions is integral to ecosystem management. Using an experimental setting with contrasting fire treatments, we describe the inter-annual variability of the effect of landscape topography and disturbance from prescribed spring fire on large grazer space use in years of variable resource availability. Using GPS telemetry, we investigated space use of plains bison (Bison bison bison) as they moved among watersheds managed with variable experimental burn treatments (1-, 2-, 4-, and 20-year burn intervals) during a seven-year period spanning years of average-to-above average forage production and severe drought. At the landscape scale, bison more strongly favored high-elevation and recently burned watersheds with watersheds burned for the first time in 2 or 4 yr consistently showing higher use relative to annually burned watersheds. In particular, watersheds burned for the first time in 4 yr were avoided to lesser extent than other more frequently burned watersheds during the dormant season. This management type also maintained coupling between bison space use and post-fire regrowth across post-drought growing season months, whereas watersheds with more frequent fire-return intervals attracted bison in only the first month post-fire. Hence, fire frequency played a role in maintaining the coupling of grazer and post-fire regrowth, the fire–grazer interaction, in response to drought-induced reduction in fuel loads. Moreover, bison avoided upland habitat in poor forage production years, when forage regrowth is less likely to occur in upland than in lowland habitats. Such quantified responses of bison to landscape features can aid future conservation management efforts and planning to sustain fire–grazer interactions and resulting spatial heterogeneity in grassland ecosystems
Nesting biology of the bee Caupolicana yarrowi.
20 pages : illustrations (some color), color maps ; 26 cm.
Appendix: Use of nectar by the desert bee Caupolicana yarrowi (Colletidae) in cell construction / James H. Cane and Jerome G. Rozen, Jr.The first part of this publication, written by a group of participants in Bee Course 2018, results from the discovery of three nests of Caupolicana yarrowi (Cresson, 1875) at the base of the Chiricahua Mountains in southeastern Arizona. The nests are deep with branching laterals that usually connect to large vertical brood cells by an upward turn before curving downward and attaching to the top of the chambers. This loop of the lateral thus seems to serve as a "sink trap," excluding rainwater from reaching open cells during provisioning. Although mature larvae had not yet developed, an egg of C. yarrowi was discovered floating on the provisions allowing an SEM examination of its chorion, the first such study for any egg of the Diphaglossinae. Larval food for this species at this site came from Solanum elaeagnifolium Cav. (Solanaceae). Nests were parasitized by Triepeolus grandis (Friese, 1917) (Epeolini), which previously was known to attack only Ptiloglossa (Diphaglossinae: Caupolicanini). The subterranean nest cells of the desert bee Caupolicana yarrowi (Colletidae), which are enveloped by a casing of hardened soil that easily separates from the surrounding matrix, are discussed in a separate appendix. Chemical analysis revealed the casing to be rich in reducing sugars, indicating that the mother bee had regurgitated floral nectar onto the rough interior walls of the cell cavity before smoothing and waterproofing them. This novel use of nectar in nest construction is compared with that of other bee species that bring water to a nest site to soften soil for excavation
Temporal Information Processing in Short- and Long-Term Memory of Patients with Schizophrenia
Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension. This could contribute to symptomatic cognitive deficits and strategic inefficiency in schizophrenia
The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study
Background:
Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy.
Methods:
Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored.
Results:
A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays.
Conclusions:
IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients
Data from: Effects of grasshoppers on prairies: herbivore composition matters more than richness in three grassland ecosystems
1. Understanding how biodiversity affects ecosystem processes is a key question in ecology. Previous research has found that increasing plant diversity often enhances many ecosystem processes, but less is known about the role of consumer diversity to ecosystem processes, especially in terrestrial ecosystems. Furthermore, we do not know how general biodiversity responses are among ecosystem types. 2. We examined the role of insect herbivore (Orthoptera) diversity on plant production using parallel field experiments in three grassland ecosystems (mixed grass prairie, tallgrass prairie, and coastal tallgrass prairie) to determine if the effects of grasshopper diversity were consistent among sites. 3. Using mesocosms, we manipulated Orthopteran species richness (0, 1, 2, 3, or 4 species), functional richness (number of functional feeding groups present; 0, 1, or 2 functional groups), and functional composition (composition of functional groups present; mixed feeders only, grass feeders only, both mixed feeders and grass feeders). Diversity treatments were maintained throughout the experiment by replacing dead individuals. Plant biomass was destructively sampled at the end of the experiment. 4. We found no effect of species richness or functional richness on plant biomass. However, herbivore functional composition was important, and effects were qualitatively similar across sites: the presence of only grass feeding species reduced plant biomass more than either mixed feeding species alone or both groups together. Orthopterans had consistent effects across a range of abiotic conditions, as well as different plant community and orthopteran community compositions. 5. Our results suggest that functional composition of insect herbivores affects plant communities in grasslands more than herbivore species richness or functional richness, and this pattern was robust among grassland types