34 research outputs found

    Structural and Functional Characterization of a New Double Variant Haemoglobin (HbG-Philadelphia/Duarte α268Asn→Lysβ262Ala→Pro)

    Get PDF
    We report the first case of cosegregation of two haemoglobins (Hbs): HbG-Philadelphia [α68(E17)Asn → Lys] and HbDuarte [β62(E6)Ala → Pro]. The proband is a young patient heterozygous also for β°-thalassaemia. We detected exclusively two haemoglobin variants: HbDuarte and HbG-Philadelphia/Duarte. Functional study of the new double variant HbG-Philadelphia/Duarte exhibited an increase in oxygen affinity, with a slight decrease of cooperativity and Bohr effect. This functional behaviour is attributed to β62Ala → Pro instead of α68Asn → Lys substitution. Indeed, HbG-Philadelphia isolated in our laboratory from blood cells donor carrier for this variant is not affected by any functional modification, whereas purified Hb Duarte showed functional properties very similar to the double variant. NMR and MD simulation studies confirmed that the presence of Pro instead of Ala at the β62 position produces displacement of the E helix and modifications of the tertiary structure. The substitution α68(E17)Asn → Lys does not cause significant structural and dynamical modifications of the protein. A possible structure-based rational of substitution effects is suggested

    Beyond The Cloud, How Should Next Generation Utility Computing Infrastructures Be Designed?

    Get PDF
    To accommodate the ever-increasing demand for Utility Computing (UC) resources, while taking into account both energy and economical issues, the current trend consists in building larger and larger data centers in a few strategic locations. Although such an approach enables to cope with the actual demand while continuing to operate UC resources through centralized software system, it is far from delivering sustainable and efficient UC infrastructures. We claim that a disruptive change in UC infrastructures is required: UC resources should be managed differently, considering locality as a primary concern. We propose to leverage any facilities available through the Internet in order to deliver widely distributed UC platforms that can better match the geographical dispersal of users as well as the unending demand. Critical to the emergence of such locality-based UC (LUC) platforms is the availability of appropriate operating mechanisms. In this paper, we advocate the implementation of a unified system driving the use of resources at an unprecedented scale by turning a complex and diverse infrastructure into a collection of abstracted computing facilities that is both easy to operate and reliable. By deploying and using such a LUC Operating System on backbones, our ultimate vision is to make possible to host/operate a large part of the Internet by its internal structure itself: A scalable and nearly infinite set of resources delivered by any computing facilities forming the Internet, starting from the larger hubs operated by ISPs, government and academic institutions to any idle resources that may be provided by end-users. Unlike previous researches on distributed operating systems, we propose to consider virtual machines (VMs) instead of processes as the basic element. System virtualization offers several capabilities that increase the flexibility of resources management, allowing to investigate novel decentralized schemes.Afin de supporter la demande croissante de calcul utilitaire (UC) tout en prenant en compte les aspects énergétique et financier, la tendance actuelle consiste à construire des centres de données (ou centrales numériques) de plus en plus grands dans un nombre limité de lieux stratégiques. Cette approche permet sans aucun doute de satisfaire la demande tout en conservant une approche centralisée de la gestion de ces ressources mais elle reste loin de pouvoir fournir des infrastructures de calcul utilitaire efficaces et durables. Après avoir indiqué pourquoi cette tendance n'est pas appropriée, nous proposons au travers de ce rapport, une proposition radicalement différente. De notre point de vue, les ressources de calcul utilitaire doivent être gérées de manière à pouvoir prendre en compte la localité des demandes dès le départ. Pour ce faire, nous proposons de tirer parti de tous les équipements disponibles sur l'Internet afin de fournir des infrastructures de calcul utilitaire qui permettront de part leur distribution de prendre en compte plus efficacement la dispersion géographique des utilisateurs et leur demande toujours croissante. Un des aspects critique pour l'émergence de telles plates-formes de calcul utilitaire ''local'' (LUC) est la disponibilité de mécanismes de gestion appropriés. Dans la deuxième partie de ce document, nous défendons la mise en oeuvre d'un système unifié gérant l'utilisation des ressources à une échelle sans précédent en transformant une infrastructure complexe et hétérogène en une collection d'équipements virtualisés qui seront à la fois plus simples à gérer et plus sûrs. En déployant un système de type LUC sur les coeurs de réseau, notre vision ultime est de rendre possible l'hébergement et la gestion de l'Internet sur sa propre infrastructure interne: un ensemble de ressources extensible et quasiment infini fourni par n'importe quel équipement constituant l'Internet, partant des gros noeud réseaux gérés par les ISPs, les gouvernements et les institutions acadèmiques jusqu'à n'importe quelle ressource inactive fournie par les utilisateurs finaux. Contrairement aux approches précédentes appliquées aux systèmes distribués, nous proposons de considérer les machines virtuelles comme la granularité élémentaire du système (à la place des processus). La virtualisation système offre plusieurs fonctionnalités qui améliorent la flexibilité de la gestion de ressources, permettant l'étude de nouveaux schémas de décentralisation

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients

    Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19

    Get PDF
    Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage

    Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes

    Get PDF
    Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19

    The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males

    Get PDF
    The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore