17 research outputs found

    Wide-Band X-Ray Spectra and Images of the Starburst Galaxy M82

    Get PDF
    The ASCA results of the starburst galaxy M82 are presented. The X-rays in the 0.5--10 keV band exhibit a thin thermal spectrum with emission lines from highly ionized magnesium, silicon, and sulfur, as well as a hard tail extending to higher than 10keV energy. The soft X-rays are spatially extended, while the hard X-rays show an unresolved point-like structure with possible a long-term flux variability. The flux ratio of the emission lines and the spatially extended structure in the low-energy band indicate that at least two-temperature thin thermal plasmas are present. The abundances of the oxygen, neon, magnesium, silicon, sulfur, and iron in the thin thermal plasmas are found to be significantly lower than the cosmic value. Neither type-Ia nor type-II supernova explosions can reproduce the observed abundance ratio. The origin of the unresolved hard X-rays is uncertain, but is probably an obscured low-luminosity AGN.Comment: 25 pages, 8 figure

    X-Ray Transients in the Advanced LIGO/Virgo Horizon

    Get PDF
    Advanced LIGO and Advanced Virgo will be all-sky monitors for merging compact objects within a few hundred megaparsecs. Finding the electromagnetic counterparts to these events will require an understanding of the transient sky at low redshift (z < 0.1). We performed a systematic search for extragalactic, low redshift, transient events in the XMM-Newton Slew Survey. In a flux limited sample, we found that highly variable objects comprised 10% of the sample, and that of these, 10% were spatially coincident with cataloged optical galaxies. This led to 4 × 10−4 transients per square degree above a flux threshold of 3 × 10^(−12) erg cm^−2 s^−1 (0.2–2 keV) which might be confused with LIGO/Virgo counterparts. This represents the first extragalactic measurement of the soft X-ray transient rate within the Advanced LIGO/Virgo horizon. Our search revealed six objects that were spatially coincident with previously cataloged galaxies, lacked evidence for optical active galactic nuclei, displayed high luminosities ~10^(43) erg s^−1, and varied in flux by more than a factor of 10 when compared with the ROSAT All-Sky Survey. At least four of these displayed properties consistent with previously observed tidal disruption events

    Revealing the High Energy Emission from the Obscured Seyfert Galaxy MCG -5-23-16 with Suzaku

    Get PDF
    We report on a 100 ks Suzaku observation of the bright, nearby (z=0.008486) Seyfert 1.9 galaxy MCG -5-23-16. The broad-band (0.4-100 keV) X-ray spectrum allows us to determine the nature of the high energy emission with little ambiguity. The X-ray continuum consists of a cutoff power-law of photon index Γ=1.9\Gamma=1.9, absorbed through Compton-thin matter of column density NH=1.6×1022N_{\rm H}=1.6\times10^{22} cm−2^{-2}. A soft excess is observed below 1 keV and is likely a combination of emission from scattered continuum photons and distant photoionized gas. The iron K line profile is complex, showing narrow neutral iron Kα\alpha and KÎČ\beta emission, as well as a broad line which can be modeled by a moderately inclined accretion disk. The line profile shows either the disk is truncated at a few tens of gravitational radii, or the disk emissivity profile is relatively flat. A strong Compton reflection component is detected above 10 keV, which is best modeled by a combination of reflection off distant matter and the accretion disk. The reflection component does not appear to vary. The overall picture is that this Seyfert 1.9 galaxy is viewed at moderate (50 degrees) inclination through Compton-thin matter at the edge of a Compton-thick torus covering 2π2\pi steradians, consistent with unified models.Comment: 14 pages, inc 9 figures. Accepted for publication in PASJ (Suzaku Special Issue

    A search for AGN in the most extreme UV-selected starbursts using the European VLBI Network

    Full text link
    We have used the European VLBI Network (EVN) to observe a sample of Lyman Break Analogs (LBAs), nearby (z < 0.3) galaxies with properties similar to the more distant Lyman Break Galaxies (LBGs). The study of LBGs may help define the feed-back relationship between black holes (BHs) and their host galaxies. Previous VLA observations have shown that the kpc-scale radio emission from LBAs is dominated by starbursts. The main targets of this VLBI experiment were selected because they possessed emission-line properties between starbursts and Type 2 (obscured) AGN. Eight targets (three star-forming LBAs, four composite LBAs, and one Type 1 AGN) were observed at 5 GHz, four of which were also observed at 1.7 GHz. One star-forming LBA and one composite LBA were detected above 5 \sigma at 1.7 GHz (only), while the AGN was detected at 5 GHz. In both LBAs, the radio luminosity (LR) exceeds that expected from supernovae (remnants) based on a comparison with Arp220, Arp229A and Mrk273, by factors of 2 - 8. The composite LBA exhibits a compact core emitting around 10% of the VLA flux density. The high Tb of 3.5E7 K and excess core L_R with respect to the L_R/L_X relation of radio-quiet AGN indicate that this LBA possesses an obscured AGN (MBH ~ E5-E7 M_sun). While weak AGN may co-exist with the starbursts as shown in at least one of the LBAs, their contribution to the total radio flux is fairly minimal. Our results show that the detection of such weak AGN presents a challenge at radio, X-ray and optical emission-line wavelengths at z ~ 0.2, indicating the great difficulties that need to be overcome in order to study similar processes at high redshift when these types of galaxies were common.Comment: 10 pages, 4 figures, accepted for publication in MNRA

    Local Lyman Break Galaxy Analogs: The Impact of Massive Star-forming Clumps on the Interstellar Medium and the Global Structure of Young, Forming Galaxies

    Get PDF
    We present HST UV/optical imaging, Spitzer mid-IR photometry, and optical spectroscopy of a sample of 30 low-redshift (z=0.1-0.3) galaxies chosen from SDSS/GALEX to be accurate local analogs of the high-z Lyman Break Galaxies. The Lyman Break Analogs (LBAs) are similar in mass, metallicity, dust, SFR, size and gas velocity dispersion, thus enabling a detailed investigation of processes that are important at high-z. The optical emission line properties of LBAs are also similar to those of LBGs, indicating comparable conditions in their ISM. In the UV, LBAs are characterized by complexes of massive star-forming "clumps", while in the optical they most often show evidence for (post-)mergers/interactions. In 6 cases, we find an extremely massive (>10^9 Msun) compact (R~100 pc) dominant central object (DCO). The DCOs are preferentially found in LBAs with the highest mid-IR luminosities and correspondingly high SFRs (15-100 Msun/yr). We show that the massive SF clumps (including the DCOs) have masses much larger than the nuclear super star clusters seen in normal late type galaxies. However, the DCOs have masses, sizes, and densities similar to the excess-light/central-cusps seen in typical elliptical galaxies with masses similar to the LBA galaxies. We suggest that the DCOs form in present-day examples of the dissipative mergers at high redshift that are believed to have produced the central-cusps in local ellipticals. More generally, the properties of the LBAs are consistent with the idea that instabilities in a gas-rich disk lead to very massive star-forming clumps that eventually coalesce to form a spheroid. We speculate that the DCOs are too young at present to be growing a supermassive black hole because they are still in a supernova-dominated outflow phase.Comment: The Astrophysical Journal, In Press (22 pages, 16 figures). For the full version with high-resolution colour figures, see: http://www.mpa-garching.mpg.de/~overzier/Overzier_LBApaper09.pd

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033
    corecore