542 research outputs found
Two distance-regular graphs
We construct two families of distance-regular graphs, namely the subgraph of
the dual polar graph of type B_3(q) induced on the vertices far from a fixed
point, and the subgraph of the dual polar graph of type D_4(q) induced on the
vertices far from a fixed edge. The latter is the extended bipartite double of
the former
Flow instabilities of magnetic flux tubes II. Longitudinal flow
Flow-induced instabilities are relevant for the storage and dynamics of
magnetic fields in stellar convection zones and possibly also in other
astrophysical contexts. We continue the study started in the first paper of
this series by considering the stability properties of longitudinal flows along
magnetic flux tubes. A linear stability analysis was carried out to determine
criteria for the onset of instability in the framework of the approximation of
thin magnetic flux tubes. In the non-dissipative case, we find Kelvin-Helmholtz
instability for flow velocities exceeding a critical speed that depends on the
Alfv{\'e}n speed and on the ratio of the internal and external densities.
Inclusion of a friction term proportional to the relative transverse velocity
leads to a friction-driven instability connected with backward (or negative
energy) waves. We discuss the physical nature of this instability. In the case
of a stratified external medium, the Kelvin-Helmholtz instability and the
friction-driven instability can set in for flow speeds significantly lower than
the Alfv{\'e}n speed. Dissipative effects can excite flow-driven instability
below the thresholds for the Kelvin-Helmholtz and the undulatory (Parker-type)
instabilities. This may be important for magnetic flux storage in stellar
convection zones and for the stability of astrophysical jets.Comment: accepted by Astronomy & Astrophysic
Coronal magnetic field measurement using loop oscillations observed by Hinode/EIS
We report the first spectroscopic detection of a kink MHD oscillation of a solar coronal structure by the Extreme-Ultraviolet Imaging Spectrometer (EIS) on the Japanese Hinode satellite. The detected oscillation has an amplitude of 1 kms−1 in the Doppler shift of the FeXII 195 Å spectral line (1.3 MK), and a period of 296 s. The unique combination of EIS’s spectroscopic and imaging abilities
enables us to measure simultaneously the mass density and length of the oscillating loop. This enables us to measure directly the magnitude of the local magnetic field, the fundamental coronal plasma parameter, as 39 ± 8 G, with unprecedented accuracy. This proof of concept makes EIS an exclusive instrument for the full scale implementation of the MHD coronal seismological technique
Coronal loop seismology using multiple transverse loop oscillation harmonics
Context. TRACE observations (23/11/1998 06:35:57−06:48:43 UT) in the 171 Å bandpass of an active region are studied. Coronal loop oscillations are observed after a violent disruption of the equilibrium.
Aims. The oscillation properties are studied to give seismological estimates of physical quantities, such as the density scale height.
Methods. A loop segment is traced during the oscillation, and the resulting time series is analysed for periodicities.
Results. In the loop segment displacement, two periods are found: 435.6 ± 4.5 s and 242.7 ± 6.4 s, consistent with the periods of the fundamental and 2nd harmonic fast kink oscillation. The small uncertainties allow us to estimate the density scale height in the loop to be 109 Mm, which is about double the estimated hydrostatical value of 50 Mm.
Because a loop segment is traced, the amplitude dependence along the loop is found for each of these oscillations. The obtained spatial information is used as a seismological tool to give details about the geometry of the observed loop
Fast magnetoacoustic waves in curved coronal loops. I, Trapped and leaky modes
A study of vertically polarised fast magnetoacoustic waves in a curved coronal loop is presented. The loop is modeled as a semi-circular magnetic slab in the zero plasma-β limit. The governing equations for linear waves are derived. We show that the wave mode behaviour depends on the slope of the equilibrium density profile, which is modeled as a piece-wise continuous power law curve of index α. For all profiles, except for α = −4, wave modes are not trapped in the loop and leak out into the external medium through wave tunneling. The particular case of α = −4, which corresponds to a linearly increasing Alfvén speed profile, is examined in more detail as this is the only model that can support trapped wave modes. We compare the results with a straight slab model and find similar behaviour. Coupling between sausage and kink wave modes has not been found in the model
Resonantly damped oscillations of longitudinally stratified coronal loops
Soon after coronal loop oscillations were observed by TRACE spacecraft for the first time in 1999, various theoretical models have been put forward to explain the rapid damping of the oscillations of these intriguing objects. Coronal loop oscillations are often interpreted as fast kink modes of a straight cylindrical magnetic flux tube with immovable edges modelling dense photospheric plasma at the ends of the loop. Taking this model as a basis we use cold plasma approximation and consider the tube to be thin to simplify the problem and be able to deal with it analytically. In its equilibrium state the tube is permeated by a homogeneous magnetic field directed along the tube axis. We include the effect of stratification in our model supposing that plasma density varies along the tube. There is also density inhomogeneity in the radial direction confined in a layer with thickness much smaller than the radius of the tube. Considering the system of linearized MHD equations we study the dependence of the spectrum of tube oscillations and its damping due to resonant absorption on the parameters of the unperturbed state. The implication of the obtained results on coronal seismology is discussed
Standing sausage waves in photospheric magnetic waveguides
By focusing on the oscillations of the cross-sectional area and the intensity of magnetic waveguides located in the lower solar atmosphere, we aim to detect and identify magnetohydrodynamic (MHD) sausage waves. Capturing several series of high-resolution images of pores and sunspots and employing wavelet analysis in conjunction with empirical mode decomposition (EMD) makes the MHD wave analysis possible. For this paper, two sunspots and one pore (with a light bridge) were chosen as representative examples of MHD waveguides in the lower solar atmosphere. The sunspots and pore display a range of periods from 4 to 65 minutes. The sunspots support longer periods than the pore - generally enabling a doubling or quadrupling of the maximum pore oscillatory period. All of these structures display area oscillations indicative of MHD sausage modes and in-phase behaviour between the area and intensity, presenting mounting evidence for the presence of the slow sausage mode within these waveguides. The presence of fast and slow MHD sausage waves has been detected in three different magnetic waveguides in the lower solar photosphere. Furthermore, these oscillations are potentially standing harmonics supported in the waveguides which are sandwiched vertically between the temperature minimum in the lower solar atmosphere and the transition region. Standing harmonic oscillations, by means of solar magneto-seismology, may allow insight into the sub-resolution structure of photospheric MHD waveguides
Contaminants in northern fulmars (Fulmarus glacialis) exposed to plastic
Northern fulmars are seabirds which feed exclusively at sea, and as such, they are useful indicators of ocean health. Marine plastic pollution is an ever-increasing and global issue that affects the northern fulmar as they are frequently found to have ingested plastic. In this report we investigate whether the amount of ingested plastic affects the concentration of certain plastic-adsorbed toxicants in their tissues. Marine plastic pollution is a field of utmost importance. It is our hope that this continues to be an area which receives increased attention in order to elucidate the potential harmful effects plastics have on the northern fulmar and ocean health, in general
- …