826 research outputs found

    The one dimensional Kondo lattice model at partial band filling

    Full text link
    The Kondo lattice model introduced in 1977 describes a lattice of localized magnetic moments interacting with a sea of conduction electrons. It is one of the most important canonical models in the study of a class of rare earth compounds, called heavy fermion systems, and as such has been studied intensively by a wide variety of techniques for more than a quarter of a century. This review focuses on the one dimensional case at partial band filling, in which the number of conduction electrons is less than the number of localized moments. The theoretical understanding, based on the bosonized solution, of the conventional Kondo lattice model is presented in great detail. This review divides naturally into two parts, the first relating to the description of the formalism, and the second to its application. After an all-inclusive description of the bosonization technique, the bosonized form of the Kondo lattice hamiltonian is constructed in detail. Next the double-exchange ordering, Kondo singlet formation, the RKKY interaction and spin polaron formation are described comprehensively. An in-depth analysis of the phase diagram follows, with special emphasis on the destruction of the ferromagnetic phase by spin-flip disorder scattering, and of recent numerical results. The results are shown to hold for both antiferromagnetic and ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure

    Interactions between iron and organic carbon in a sandy beach subterranean estuary

    Get PDF
    Understanding the behavior of terrestrially derived dissolved organic carbon (DOC) through subterranean estuaries (STEs) is essential for determining the carbon budget in coastal waters. However, few studies exist on the interaction of organic carbon (OC) and iron (Fe) in these dynamic systems, where fresh groundwater mixes with recirculated seawater. Here, we focused on the origin and behavior of DOC, and we quantified the relative proportion of OC trapped by reactive Fe-hydroxides along a sandy beach STE. The ή13C-DOC signal in beach groundwater seems to respond rapidly to OC inputs. Our results show a terrestrial imprint from the aquifer matrix dominated by the degradation of particulate organic carbon (POC) issue from an old soil horizon composed of terrestrial plant detritus (14C dating ~800 to 700 years B.P) which is buried below the Holocene sand. Even though the system can be sporadically affected by massive inputs of marine OC, this transient marine imprint seems to be rapidly evacuated from the STE. As reported in soil and in marine mud, Fe–OC trapping occurs in the sandy sediment of the STE. At the groundwater–seawater interface, newly precipitated reactive Fe-hydroxides interact with and trap terrestrial OC independently of the DOC origin in beach groundwater. The molecular fractionation of DOC along the STE and preferential trapping of terrestrial compounds favor the in situ degradation and/or export of non-Fe-stabilized marine-derived molecules to coastal waters. These findings support the idea that the sandy beach STE acts as a transient sink for terrestrial OC at the land–sea interface and contributes to the regulation of marine vs. terrestrial carbon exports to coastal waters

    The prevalence, characteristics and effectiveness of Aichi Target 11 ' s "other effective area-based conservation measures" (OECMs) in Key Biodiversity Areas

    Get PDF
    Aichi Target 11 of the CBD Strategic Plan for Biodiversity commits countries to the effective conservation of areas of importance for biodiversity, through protected areas and “other effective area-based conservation measures” (OECMs). However, the prevalence and characteristics of OECMs are poorly known, particularly in sites of importance for biodiversity. We assess the prevalence of potential OECMs in 740 terrestrial Key Biodiversity Areas (KBAs) outside known or mapped protected areas across ten countries. A majority of unprotected KBAs (76.5%) were at least partly covered by one or more potential OECMs. The conservation of ecosystem services or biodiversity was a stated management aim in 73% of these OECMs. Local or central government bodies managed the highest number of potential OECMs, followed by local and indigenous communities and private landowners. There was no difference between unprotected KBAs with or without OECMs in forest loss or in a number of state-pressure-response metrics.The project was funded by the CCI Collaborative Fun

    The prevalence, characteristics and effectiveness of Aichi Target 11's "other effective area‐based conservation measures" (OECMs) in key biodiversity areas

    Get PDF
    Aichi Target 11 of the CBD Strategic Plan for Biodiversity commits countries to the effective conservation of areas of importance for biodiversity, through protected areas and "other effective area-based conservation measures" (OECMs). However, the prevalence and characteristics of OECMs are poorly known, particularly in sites of importance for biodiversity. We assess the prevalence of potential OECMs in 740 terrestrial Key Biodiversity Areas (KBAs) outside known or mapped protected areas across ten countries. A majority of unprotected KBAs (76.5%) were at least partly covered by one or more potential OECMs. The conservation of ecosystem services or biodiversity was a stated management aim in 73% of these OECMs. Local or central government bodies managed the highest number of potential OECMs, followed by local and indigenous communities and private landowners. There was no difference between unprotected KBAs with or without OECMs in forest loss or in a number of state-pressure-response metrics

    A strand-passage conformation of DNA gyrase is required to allow the bacterial toxin, CcdB, to access its binding site

    Get PDF
    DNA gyrase is the only topoisomerase able to introduce negative supercoils into DNA. Absent in humans, gyrase is a successful target for antibacterial drugs. However, increasing drug resistance is a serious problem and new agents are urgently needed. The naturally-produced Escherichia coli toxin CcdB has been shown to target gyrase by what is predicted to be a novel mechanism. CcdB has been previously shown to stabilize the gyrase ‘cleavage complex’, but it has not been shown to inhibit the catalytic reactions of gyrase. We present data showing that CcdB does indeed inhibit the catalytic reactions of gyrase by stabilization of the cleavage complex and that the GyrA C-terminal DNA-wrapping domain and the GyrB N-terminal ATPase domain are dispensable for CcdB's action. We further investigate the role of specific GyrA residues in the action of CcdB by site-directed mutagenesis; these data corroborate a model for CcdB action based on a recent crystal structure of a CcdB–GyrA fragment complex. From this work, we are now able to present a model for CcdB action that explains all previous observations relating to CcdB–gyrase interaction. CcdB action requires a conformation of gyrase that is only revealed when DNA strand passage is taking place

    Correlating Radiomic Features of Heterogeneity on CT with Circulating Tumor DNA in Metastatic Melanoma

    Get PDF
    Clinical imaging methods, such as computed tomography (CT), are used for routine tumor response monitoring. Imaging can also reveal intratumoral, intermetastatic, and interpatient heterogeneity, which can be quantified using radiomics. Circulating tumor DNA (ctDNA) in the plasma is a sensitive and specific biomarker for response monitoring. Here we evaluated the interrelationship between circulating tumor DNA mutant allele fraction (ctDNAmaf), obtained by targeted amplicon sequencing and shallow whole genome sequencing, and radiomic measurements of CT heterogeneity in patients with stage IV melanoma. ctDNAmaf and radiomic observations were obtained from 15 patients with a total of 70 CT examinations acquired as part of a prospective trial. 26 of 39 radiomic features showed a significant relationship with log(ctDNAmaf). Principal component analysis was used to define a radiomics signature that predicted ctDNAmaf independent of lesion volume. This radiomics signature and serum lactate dehydrogenase were independent predictors of ctDNAmaf. Together, these results suggest that radiomic features and ctDNAmaf may serve as complementary clinical tools for treatment monitoring

    Epstein-Barr Virus-Induced Gene 3 (EBI3): A Novel Diagnosis Marker in Burkitt Lymphoma and Diffuse Large B-Cell Lymphoma

    Get PDF
    The distinction between Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), two types of mature aggressive B-cell lymphomas that require distinct treatments, can be difficult because of forms showing features intermediate between DLBCL and BL (here called BL/DLBCL). They can be discriminated by the presence of c-myc translocations characteristic of BL. However, these are not exclusive of BL and when present in DLBCL are associated with lower survival. In this study, we show that Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed among BL and DLBCL. Analysis of gene expression data from 502 cases of aggressive mature B-cell lymphomas available on Gene Expression Omnibus and immunohistochemical analysis of 184 cases of BL, BL/DLBCL or DLBCL, showed that EBI3 was not expressed in EBV-positive or -negative BL cases, whereas it was expressed by over 30% of tumoral cells in nearly 80% of DLBCL cases, independently of their subtypes. In addition, we show that c-myc overexpression represses EBI3 expression, and that DLBCL or BL/DLBCL cases with c-myc translocations have lower expression of EBI3. Thus, EBI3 immunohistochemistry could be useful to discriminate BL from DLBCL, and to identify cases of BL/DLBCL or DLBCL with potential c-myc translocations

    A Roadmap for HEP Software and Computing R&D for the 2020s

    Get PDF
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    • 

    corecore