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Simple Summary: The analysis of circulating tumor DNA (ctDNA) concentrations in blood plasma and
the radiomic analysis of tumor images (i.e., quantification of textural features on medical imaging) have
both been used to provide information about cancer progression. The purpose of this study was to assess
a link between these two different modalities in order to determine whether results from one can be used
to predict outcomes from the other. The results show that radiomics features can predict ctDNA levels in
patients with metastatic melanoma even when controlling for confounding influences such as tumor
volume. This establishes the potential for new biomarkers of tumor progression that could combine the
specificity of ctDNA assays with the high-resolution spatial information obtained by imaging.

Abstract: Clinical imaging methods, such as computed tomography (CT), are used for routine
tumor response monitoring. Imaging can also reveal intratumoral, intermetastatic, and interpatient
heterogeneity, which can be quantified using radiomics. Circulating tumor DNA (ctDNA) in the
plasma is a sensitive and specific biomarker for response monitoring. Here we evaluated the
interrelationship between circulating tumor DNA mutant allele fraction (ctDNAmaf ), obtained by
targeted amplicon sequencing and shallow whole genome sequencing, and radiomic measurements
of CT heterogeneity in patients with stage IV melanoma. ctDNAmaf and radiomic observations were
obtained from 15 patients with a total of 70 CT examinations acquired as part of a prospective trial.
26 of 39 radiomic features showed a significant relationship with log(ctDNAmaf ). Principal component
analysis was used to define a radiomics signature that predicted ctDNAmaf independent of lesion
volume. This radiomics signature and serum lactate dehydrogenase were independent predictors
of ctDNAmaf. Together, these results suggest that radiomic features and ctDNAmaf may serve as
complementary clinical tools for treatment monitoring.
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1. Introduction

Detection of circulating tumor DNA (ctDNA) in the plasma is a promising tool for treatment
monitoring of cancer patients and is an area of intensive research interest. Fragments of DNA are
released either as a consequence of tumor cell death, or are shed from rapidly proliferating cancer
cells [1]. The presence of tumor-specific mutations allows ctDNA to be distinguished from the
circulating cell-free DNA derived from normal cells, and the sensitivity for detecting these can be
enhanced by targeting patient-specific mutations sequenced from individual tumor biopsies [2,3].
The fractional concentration of a given somatic mutation in a background of wild-type fragments at the
same nucleotide position is frequently used as a metric to quantify ctDNA, and is termed the variant
or mutant allele fraction (ctDNAmaf ). ctDNA is a powerful, minimally invasive tool for real-time
sampling of multifocal clonal evolution and can be used to assess changes in disease burden over
time [4]. Recent developments in sequencing technologies have made the detection and quantification
of ctDNA feasible and practicable for translation into routine clinical practice [5,6]. Plasma ctDNAmaf
has been shown to strongly correlate with total tumor burden in a number of tumor types and may
provide earlier prediction of clinical response compared to traditional biomarkers [3,7–10]. Changes in
ctDNA have been shown to be a sensitive and specific way of monitoring patient response to both
chemotherapy and radiotherapy [11,12]. Despite the advantages of this approach, morphological
imaging techniques, such as computed tomography (CT), remain the standard of care to monitor
treatment response and form the basis of the Response Evaluation Criteria In Solid Tumors (RECIST),
which are used in many clinical trials [13].

An important unanswered clinical question is how the use of ctDNA may provide additional
information to complement conventional imaging approaches to improve patient management.
In contrast to circulating biomarkers, imaging probes spatial tumor heterogeneity within and between
lesions, and between patients [14,15]. Imaging also provides information on temporal changes in this
spatial heterogeneity during natural disease progression and in response to a particular intervention,
such as drug treatment. Radiomics is an emerging field within radiology that quantitatively assesses
this image heterogeneity and can reveal patterns that are not apparent on visual inspection [16].
These approaches have been used to mine medical imaging data in a wide range of studies to
assess for clinically useful predictor variables [17]. For example, radiomic metrics have been used in
cancer studies to relate tumor image features with clinical biomarkers and survival outcomes [18,19].
Recent studies have also shown that radiomic techniques can be used to provide imaging descriptors of
molecular phenotypes in tumors. There is increasing evidence that some of these quantitative metrics
of heterogeneity may have a biological basis [8,18].

The primary aim of this study was to identify the extent to which quantitative radiomic features on
CT can predict the ctDNA mutant allele fraction measured in plasma samples taken contemporaneously
in patients with metastatic melanoma. The rationale underlying this hypothesis is that tumor
heterogeneity may reflect underlying biological characteristics such as cell death or rapid proliferation
that may predispose towards the release of ctDNA [20]. A secondary goal was to determine how
much additional unique information each technique provides, and therefore the potential benefit in
undertaking both methods simultaneously as part of a multimodal integrative cancer care approach.
Although plasma ctDNA levels have been shown to correlate with overall tumor burden [10,21,22],
imaging is usually a more accurate method for quantifying this and may be more sensitive than ctDNA
in the context of low tumor volume. This study compared the interrelationship between ctDNA
burden and a range of commonly used radiomic metrics of heterogeneity measured on CT, in patients
receiving systemic therapy. Metastatic melanoma was chosen as an exemplar given the high tumor
mutational burden generally present in this cancer type [23]. Fifteen patients receiving routine systemic
therapy and regular CT response assessments, underwent serial ctDNA measurements (comprising
targeted amplicon sequencing, TAm-Seq, and/or shallow whole genome sequencing, sWGS) as part of
the MelResist prospective observational study (https://crukcambridgecentre.org.uk/trials/melresist).

https://crukcambridgecentre.org.uk/trials/melresist
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The aim of the study was to see if radiomic features were related to or could independently predict
ctDNAmaf concentrations observations of melanoma lesions over time and throughout treatment.

2. Results

A flow-chart summarizing the methodology for this study is shown in Figure 1 and the strategy
for statistical analysis is displayed in Figure 2.

Figure 1. Workflow showing the study design. (a) Fifteen patients with metastatic melanoma were
studied. Computed tomography (CT) imaging was performed throughout routine systemic therapy
with concurrent blood sampling for ctDNA analysis. ctDNA was analyzed using TAm-Seq targeting
BRAF V600 (chr7:140453136) or NRAS Q61 (chr1:115256530) mutations and/or shallow whole genome
sequencing analyzing copy number changes using ichorCNA. Tumor regions of interest were outlined
on CT and analyzed for radiomic features (shape, histogram, and texture). (b) The radiomic features
were used to predict ctDNAmaf : data were preprocessed using a z-score and/or other transformations,
before linear mixed models were used in the prediction process. Patient dependence, parameter
sensitivities (e.g., the effect of outliers), and the independent effect of lesion volume were all controlled
for in the analysis. Principal component analysis (PCA) was used to select the best performing features
to derive a radiomics signature for ctDNAmaf.

Radiomic and ctDNAmaf observations were derived from the lesion data and blood samples
collected at time-points before, during, and after differing treatment regimes, in 15 metastatic melanoma
patients (details shown in Table 1). One patient (P12) did not have usable ctDNA measurements and
was not included in the analysis. In instances of blood samples that were acquired on different dates
to that of the CT imaging, an interpolated mutant allele fraction was calculated from the samples
closest in date to the imaging using linear interpolation. The median of the absolute interval between
blood-sampling and imaging was 10 (inter-quartile range: 4, 34) days.
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Figure 2. Flow-chart illustrating the detailed statistical analysis methods. The radiomic feature variables
and the ctDNAmaf response variable were both transformed for optimal statistical comparison.
In most cases, including that of ctDNAmaf, the logarithmic transform proved the most effective
approach. For some of the further analyses (e.g., LASSO, other global models, and PCA), the features
were standardized using a z-score transformation. Mixed linear models were then applied either
feature-by-feature or globally using a LASSO or stepwise model for dependent data, with the features
(F ) used to predict ctDNAmaf as the response variable. For the feature-by-feature models, a sensitivity
analysis was carried out to examine the robustness of the modeling approaches to outliers. The models
were validated through the use of simulated random data. Each modelling process was repeated with
lesion volume (v) explicitly written into the model in order to examine the effect of the radiomic models
in addition to the predictive value of lesion volume alone. Finally, the best five features yielded by the
feature-by-feature linear mixed models, controlling for volume effects, were selected and subjected to
a PCA. This resulted in a radiomics signature for prediction of log(ctDNAmaf ). The efficacy of this
signature was assessed against that of 2500 simulated datasets, which allowed for the evaluation of
the null hypothesis, i.e., that there was no significant predictive effect of the radiomic features upon
ctDNAmaf.
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Table 1. Clinical characteristics of study cohort.
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− 1.
3 Fractional volume was calculated over the sum of volumes of lesions imaged on standard CT.
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ctDNAmaf measurements were acquired by either shallow whole genome sequencing (sWGS)
using ichorCNA or tagged amplicon deep sequencing (TAm-Seq) targeting genomic regions in
BRAF and NRAS genes (BRAF V600 (chr7:140453136) (C > T) or NRAS Q61 (chr1:115256530) (G > T).
These differing measures were compared by using plasma samples collected from individual patients on
the same day. There was good agreement between the two measures of ctDNAmaf with a concordance
correlation coefficient (CCC [24]) and 95% confidence interval of 0.64 (0.37, 0.81), confirming that the
use of both approaches was appropriate for this study (Figure S1).

Table S1 shows the original, noninterpolated ctDNA data acquired through both sWGS and
TAm-Seq; Table S2 shows the ctDNAmaf values interpolated at the CT imaging time-points.

2.1. Change in the Volume of Lesions over Time and Radiomic Feature Extraction

Figure 3 shows tumor volume plotted against time for all lesions in all patients, and demonstrates
significant intertumoral and interpatient heterogeneity.

Figure 3. (a) Comparison of lesion volume for individual lesions in each subject measured on CT
against date. Day 0 represents the date of first imaging. These graphs show considerable variation
in tumor growth between patients and across time points. The largest lesion in each case showed
volume variations which reflected standard RECIST 1.1 measurements. (b) ctDNAmaf by days elapsed
from baseline measurement. Red line shows TAm-Seq mutation rate; black line shows shallow whole
genome tumor fraction.

Radiomic features were calculated for the largest lesion in each patient. The largest lesion was
defined as that with the greatest volume at any time-point and was tracked across imaging visits.
This lesion in each case showed volume changes over time that corresponded with the overall RECIST
1.1 outcomes (see Table 1). Table 1 also shows the baseline fraction of total tumor volume, summed
over imaged lesions only, which was accounted for by the largest lesion.

Radiomic features were selected from the set of shape, histogram, and texture measurements
reported by the analysis software employed (LIFEx v3.40, Laboratory of Translational Imaging in
Oncology, Orsay, France) [25]. Figure S2 displays the relationship between each radiomic feature and
log(ctDNAmaf ) after the scale transformation used to linearize their relationship with the response
variable (ctDNAmaf ), decrease heteroscedasticity, and minimize the effect of outliers. Inspection of
the feature scatterplots showed that (i) observations of the same feature on the same patients tended
to cluster together, suggesting some level of within-participant dependence; (ii) the assumption of
bivariate normality for log(ctDNAmaf ) when paired with each feature seemed reasonable; (iii) there
were outliers, justifying the use of a robust estimator (which down-weighted observations considered
as outliers) as a sensitivity analysis.



Cancers 2020, 12, 3493 14 of 28

2.2. Comparison of Radiomic Features and ctDNAmaf without Controlling for Lesion Volume

Previous studies have shown a correlation between radiomic features and tumor
volume [9,10,21,22]. We therefore analyzed our data using two distinct approaches—with and without
adjusting for lesion volume—to establish that any observed relationship between ctDNAmaf and
radiomic features was not simply a reflection of the underlying relationship with lesion volume (as
measured by the continuous variable in cubic millimetres, and not to the categorized description of
volume summarized in Table 1.)

The analysis of the relationship between the 39 extracted radiomic features and log(ctDNAmaf )
without correcting for lesion volume was first undertaken by performing a feature-by-feature analysis
by means of random intercept mixed linear models (MLM) with log(ctDNAmaf ) as the response
(i.e., the variable being predicted). In these models the feature of interest was included as a fixed effect
predictor and the patient was a random effect, to take into account the within-patient dependence.
Figure S3 shows the marginal R-squared (y-axis) and the p-values with a false discovery rate (FDR)
multiplicity correction for a combined set of real and random features (x-axis), color-coded by feature
type, for all feature-by-feature mixed linear models. The majority of the real features (26 of 39)
showed a significant relationship with log(ctDNAmaf ) after a multiplicity correction. The ability of
the multiplicity correction to distinguish genuine from nongenuine relationships between features
and ctDNAmaf was assessed by considering an additional set of 100 randomly generated features.
Only one of these random features was selected by the model, indicating that the multiplicity correction
performed well. The most predictive features were able to explain around 45% of the measured
variance of the log(ctDNAmaf ) values.

Table 2 reports the Wald t-statistics, corresponding p-values with and without a FDR multiplicity
correction, and marginal R-squared estimates for the most significant of a combined set of real and
random features (the complete data are shown in Table S3). Interestingly, lesion volume correlated
very strongly with ctDNAmaf and was one of the features showing the highest significance levels
(p = 4.2 × 10−8). Figure S4 shows the relationship between the radiomic features that showed a
significant correlation with log(ctDNAmaf ). It is notable that many of the radiomic features strongly
correlate with each other. Robust analyses led to similar conclusions, indicating that outliers did not
have a significant impact on the estimation (Figure S5).

Subsequently, global analysis was performed by means of two model selection procedures
suitable for data with intrapatient dependence (least absolute shrinkage and selection operator, LASSO,
for dependent data; stepwise models) to define the set of radiomic features best able to predict
log(ctDNAmaf ). These analyses considered log(ctDNAmaf ) as the response variable and the set of
3 radiomic features on the transformed scale as predictors. Both model selection procedures selected
the same set of features as the best predictors: LRHGE (long-run high gray level emphasis), GLNUz
(gray level nonuniformity zone length) and StdDev (standard deviation).
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Table 2. Comparison of radiomic features to log(ctDNAmaf ) without controlling for lesion volume.

1 Feature t-Value p-Value Adj. p-Value 2 Sig. R2

GLNUz 8.263 1.11 × 10-11 1.54 × 10-9 *** 0.517
GLNUr 7.531 7.49 × 10-10 2.80 × 10-8 *** 0.496

Coarseness −7.527 6.86 × 10-10 2.80 × 10-8 *** 0.495
ZLNU 7.273 8.06 × 10-10 2.80 × 10-8 *** 0.458
RLNU 7.327 1.43 × 10-9 3.98 × 10-8 *** 0.477

Volume 7.295 1.79 × 10-9 4.16 × 10-8 *** 0.476
Busyness 6.608 1.57 × 10-8 3.12 × 10-7 *** 0.428
Contrast −6.143 2.81 × 10-7 4.89 × 10-6 *** 0.434
SRLGE −5.973 3.75 × 10-7 5.80 × 10-6 *** 0.411
LGRE −5.673 7.99 × 10-7 1.11 × 10-5 *** 0.376

StdDev −5.137 2.59 × 10-6 3.27 × 10-5 *** 0.295
Mean 5.218 4.24 × 10-6 4.92 × 10-5 *** 0.331

ZP −5.069 4.67 × 10-6 5.00 × 10-5 *** 0.298
HGRE 5.075 6.81 × 10-6 6.76 × 10-5 *** 0.321

Entropy_h −4.850 8.19 × 10-6 7.59 × 10-5 *** 0.285
LRHGE 4.703 3.04 × 10-5 2.65 × 10-4 *** 0.306
Energy 4.494 3.30 × 10-5 2.70 × 10-4 *** 0.262

Correlation −3.676 4.80 × 10-4 3.51 × 10-3 ** 0.191
SRHGE 3.699 4.75 × 10-4 3.51 × 10-3 ** 0.192
LGZE −3.740 5.23 × 10-4 3.64 × 10-3 ** 0.217

Sphericity −3.859 5.84 × 10-4 3.87 × 10-3 ** 0.230
Kurtosis 3.586 6.84 × 10-4 4.32 × 10-3 ** 0.198

LRE 3.522 1.04 × 10-3 6.26 × 10-3 ** 0.194
SRE −3.456 1.26 × 10-3 7.29 × 10-3 ** 0.191
RP −3.428 1.35 × 10-3 7.53 × 10-3 ** 0.187

Uniformity 3.189 2.23 × 10-3 1.19 × 10-2 * 0.146
[random35] 2.975 4.09 × 10-3 2.11 × 10-2 * 0.095

Wald t-statistics, corresponding p-values with and without FDR multiplicity correction for the combined set of
real and random features, and marginal R-squared estimates of feature by feature mixed linear models relating
radiomic features to log(ctDNAmaf ). 1 Radiomic features: GLNUr/z—gray level nonuniformity (run length/zone
length); ZLNU—zone length nonuniformity; RLNU—run-length nonuniformity; SRLGE—short-run low gray level
emphasis; ZP—zone percentage; LGRE—low gray level run emphasis; HGRE—high gray level run emphasis;
LRHGE—long-run high gray level emphasis; SRHGE—short-run high gray level emphasis; LGZE—low gray level
zone emphasis; SRE—short-run emphasis; LRE—long run emphasis; RP—run percentage; ZP—zone percentage;
Entropy_h—histogram entropy; SRHGE—short-run high gray level emphasis. See Table S5 for a key to the feature
names. 2 *** p < 0.001, ** p < 0.01, * p < 0.05.

2.3. Comparison of Radiomic Features and ctDNAmaf Controlling for Lesion Volume

Given the known relationship between ctDNAmaf and lesion volume [10,21,22], a secondary
analysis was performed to determine the influence of volume on the correlations described above
between radiomic features and ctDNAmaf. The ability of the 38 radiomic features (all features except
volume) to predict log(ctDNAmaf ) when lesion volume was included in the model was investigated.
The relationship between each feature and lesion volume is shown in Figure S6. The results showed
this relationship is often strong and linear (for example GLNUr) but sometimes quadratic (see feature
LZE for example), suggesting that many features are highly dependent on lesion volume and therefore
have a similar ability to predict ctDNAmaf.

Table 3 lists the Wald t-statistics, corresponding p-values with and without FDR multiplicity
correction, for a combined set of real and random features, and marginal R-squared estimates for
the 20 best models relating radiomic features to ctDNAmaf when including lesion volume in the
model (see Table S4 for the full results). None of these showed a statistically significant predictor
after a Benjamini–Hochberg multiplicity correction was performed, suggesting that in this dataset
each feature alone does not have additional predictive power to determine ctDNAmaf above lesion
volume. Figure S7 shows the marginal R-squared and adjusted p-value corresponding to each
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feature-by-feature fitted model. The marginal R-squared improved when controlling for lesion volume
in feature-by-feature analyses although estimates of randomly generated features often matched those
of real features, indicating that the results corresponding to the latter could have been obtained by
chance alone.

Table 3. Predictors (top 20) of ctDNAmaf calculated from feature-by-feature linear mixed models with
lesion volume included as a fixed effect.

Feature t-Value p-Value Adjusted
p-Value R2

Correlation −3.227 0.0020 0.1708 0.536

GLNUz 3.151 0.0025 0.1708 0.515

StdDev −2.800 0.0067 0.2992 0.531

LGRE −2.700 0.0105 0.2992 0.536

[random78] −2.506 0.0149 0.2992 0.514

Coarseness −2.512 0.0150 0.2992 0.515

[random45] 2.497 0.0152 0.2992 0.508

Mean 2.419 0.0206 0.3060 0.523

SRHGE 2.359 0.0230 0.3060 0.518

[random83] 2.322 0.0234 0.3060 0.506

LRLGE −2.300 0.0259 0.3060 0.506

HGRE 2.308 0.0266 0.3060 0.520

[random77] 2.135 0.0367 0.3670 0.501

[random80] −2.126 0.0372 0.3670 0.498

SRLGE −2.131 0.0399 0.3672 0.519

GLNUr 2.034 0.0459 0.3736 0.509

[random91] −2.034 0.0460 0.3736 0.496

[random79] −2.005 0.0490 0.3758 0.502

[random35} 1.851 0.0687 0.4853 0.488

Entropy_h −1.839 0.0703 0.4853 0.504

Given that no single feature could predict ctDNAmaf when including lesion volume in the model
with a multiplicity correction applied, principal component analysis (PCA) was performed on the five
standardized features with the highest predictive value, defined as those with the smallest p-values.
The coefficients of the first dimension for this PCA were used to define a radiomics signature as shown
in Equation (1). ∣∣∣log(ctDNAma f )

∣∣∣ � [ +0.323× z((Correlation))
−0.528× z(log(GLNUz))
+0.438× z((StdDev))
+0.383× z(log(log(LGRE) + 9))
+0.527× z(log(Coarseness)) ]

(1)

In Equation (1), z(·) and log(·) denote a z-score standardization and the natural logarithmic
transform, respectively. Correlation represents the linear dependency of gray-levels in the gray-level
correlation matrix (GLCM); StdDev is the standard deviation of gray-levels in the lesion gray-level
histogram; GLNUz is the gray-level nonuniformity for zones and measures the nonuniformity of the
gray-levels of the homogeneous zones within the lesion images; Coarseness is a neighborhood gray level
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difference matrix feature representing the level of spatial rate of change in image intensity; LGRE is the
low gray-level run-emphasis derived from the gray-level run-length matrix (GLRLM). (see Table S5 for
a key to feature names.)

Figure S8 shows an example of feature maps generated within a large lesion for the five variables
included in the radiomics signature. The texture features are themselves heterogeneous within
the lesion and across features indicating the wide range of spatial information included within the
signature itself.

Figure 4 shows the relationship between the marginal R-squared (y-axis) and likelihood ratio test
(LRT) statistics (x-axis) obtained when using the five best features each as separate predictor terms
in the model (left) or through the signature described above (right), in comparison with a model
incorporating lesion volume alone. In each plot, the pink dot corresponds to the R-squared and LRT
statistics obtained when using the best set of five real features; the blue dots correspond to datasets
composed of random features generated with similar codependencies as the real data but no correlation
with log(ctDNAmaf ). In both analyses, the probability of observing a greater marginal R-squared
(proportion of points above the horizontal pink line) or a greater LRT statistics (proportion of points
right of the vertical pink line) than those generated with random features is smaller than 1% and
consequently the null hypothesis of the real data-set not being predictive of log(ctDNAmaf ) can be
rejected at the 1% significance level. Therefore, these results demonstrate that the five radiomic features
in Equation (1) significantly predict ctDNAmaf independently of lesion volume, whether directly or
through the signature defined above.

Figure 4. The relationship between the marginal R-squared and likelihood ratio statistics obtained
when using the five most predictive features directly (left) or using the radiomics signature described
in Equation (1) (right). The statistics derived from the real features are shown as pink lines, those from
simulated features are shown as 2500 blue dots corresponding to 2500 simulated sets of random
predictors (as described in Section 4). The proportion of blue dots in the upper right quadrant of each
plot is less than 1% of the total and therefore the null hypothesis, that the observed dataset of radiomic
features has no predictive power for the response variable log(ctDNAmaf ), can be rejected.

2.4. Analysis of the Associations between ctDNAmaf, the Derived Radiomics Signature, and Serum LDH Levels

In addition, we assessed the interrelationship between ctDNAmaf, radiomic features,
and conventional plasma biomarkers of cell death that may be a surrogate measure of the cellular
release of ctDNA fragments as a consequence of tumor cell death [1]. Plasma levels of the enzyme
lactate dehydrogenase (LDH) have prognostic value in patients with metastatic melanoma and have
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recently been shown to predict and detect early response to immune checkpoint inhibition in metastatic
melanoma [7,26]. Here we correlated the plasma ctDNA with serum LDH acquired contemporaneously.

The LDH local upper limit of normal (ULN) was 246 U/L. The relationship between the
three variables—log(ctDNAmaf ), serum LDH, and the radiomics signature in Equation (1)—was
assessed by means of random intercept mixed models, which are an extension of linear models to
participant-dependent data. Model checks suggested a good fit of the assumed models to the data
(Figure 5). As expected, the radiomics signature was associated with ctDNAmaf levels in these patients
(marginal R2 = 0.620 with a quadratic effect and 0.605 without) confirming the correctness of its
derivation; a quadratic relationship best fitted the data. Measured LDH levels were also associated
with ctDNA (marginal R2 = 0.466) and again a quadratic relationship was found to best fit the data.
Importantly, the radiomics signature and LDH levels were not strongly related (marginal R2 = 0.087)
suggesting they were nearly independent predictors of ctDNAmaf.

Figure 5. The interrelationship between log(ctDNAmaf ), serum LDH, and the radiomics signature
in Equation (1). The three upper plots show the relationships between the radiomics signature
and measured ctDNAmaf (upper left); ctDNAmaf and the measured LDH concentration (in UL−1,
upper middle); LDH concentration and the radiomics signature (upper right), color-coded by patient.
The variables are transformed in a way that yields the best fitting model in each case. The solid lines
show the estimated mean values of the outcomes of interest at the population level as a function of
their predictors, as fitted by means of random intercept mixed models. The three lower plots show
the standardized residuals on the y-axes vs. the fitted values from the random intercept models
used to assess the level of association between ctDNAmaf, LDH concentrations and the PCA-based
signature, color-coded by patient. The upper plots show a strong relationship between the radiomics
signature and ctDNAmaf, and also between LDH and ctDNAmaf, but importantly there is no strong
relationship between the radiomics signature and LDH: although the radiomics signature and LDH are
both associated with ctDNAmaf they are complementary. Note that ‘log’ denotes the natural logarithm.
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3. Discussion

This study explored the interrelationship between two emerging diagnostic technologies in
oncology, both of which offer the potential to make an impact on routine clinical practice: plasma ctDNA
measurements as a very sensitive and specific tool for detection of tumor mutations, and radiomics as
a method to quantitatively measure intratumoral and intertumoral spatial heterogeneity on routine
clinical imaging such as CT. Patients with metastatic melanoma were chosen for the study given the
high mutational burden of the cancer, the spatial and temporal variation in response to standard of
care therapy seen in this patient group, and the heterogeneous imaging features of the disease, both in
terms of the wide range of sites that it metastasizes to, as well as the variation of imaging features seen
within and between tumors [27].

Our results show highly significant correlations between several radiomic features and the overall
ctDNAmaf. Further probing of this finding shows that much of this effect is due to the underlying
correlation between ctDNAmaf and lesion volume, an important consideration for future work in
this field. We therefore investigated the added effect of radiomic features in predicting ctDNAmaf
controlling for lesion volume, and showed using a range of statistical approaches that a combination
of radiomic features, in the form of a signature derived from PCA, had a significant association
with ctDNAmaf levels. The robustness of this finding was supported by several differing statistical
techniques that yielded similar results.

The derived radiomics signature that best predicted ctDNAmaf was a weighted sum of several
individual imaging features. The biological correlates of most radiomic features and their significance on
a tissue level is poorly understood, although there have been previous attempts to ascribe histological
meaning to these values [28,29]. The simplest radiomic feature is the standard deviation of the
histogram derived from the gray levels of voxels within the tumor, which reflects overall heterogeneity
within the tumor voxels. Importantly the standard deviation made a significant contribution to the
derived radiomics signature in this study. The more heterogeneous a tumor, the more likely it is to
contain areas of proliferation and cell death, both of which will contribute to the overall ctDNA levels.
The other radiomic features in the derived signature represent biological heterogeneity within the
tumor and reflect the spatial relationship between tumor voxels using mathematical approaches which
are more conceptually complex. No biopsy samples were available from the lesions chosen for study
and it is therefore difficult to extrapolate the features in these samples to the CT imaging in this study.
Important work is required in the future to correlate radiomic features and habitats with tissue from
image-guided biopsies. By understanding the biological correlate of these textural features, radiomic
analyses may complement invasive biopsies, particularly in the context of longitudinal tracking of
tumor progression where multiple biopsies are not practical.

The biological alterations that lead to the release of ctDNA, such as tumor proliferation and necrosis,
are nonspecific and final common pathways for most treatment regimes. Moreover, the radiomic
features of heterogeneity or texture on CT detect morphological and functional tumor changes which
are also relatively nonspecific. Any drug-specific effect will also be influenced by disease stage and
whether they are used as first line or second line agents. Our hypothesis is therefore that the correlation
between ctDNA and radiomics should be independent of the drug used and this has been borne out by
the results we have presented here. For example, in our study ctDNAmaf shows a significant increasing
trend with time from the start of treatment (see Figure S9) which can be explained by ultimate disease
progression irrespective of treatment. This is confirmed by the significant association of ctDNAmaf
levels with RECIST measures of treatment response (see Figure S10). We conclude from our main
results that the radiomic signature also follows a similar trend since its overall prediction of ctDNAmaf
is statistically significant when taking into account readings at all time-points. Again, although we
did detect a significant difference in the changes in ctDNAmaf between patients undergoing BRAF
inhibition and immunotherapy in the cohort studied here (see Figure S11), our results show that the
radiomic feature signature reflects the treatment type in a similar way.
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This study also explored the interrelationship between ctDNA, radiomic features, and LDH
concentrations. LDH is an established, independent prognostic factor for disease survival [30,31]
and has been shown to be an early biomarker for predicting treatment response in metastatic
melanoma [7,26]. ctDNA levels have been shown to associate with blood LDH measurements in
metastatic melanoma which is likely to be explained by the release of both intracellular nucleic acids
and LDH as a consequence of tumor cell death [7]. Here, we also confirmed that measured LDH
levels were associated with ctDNA levels. However, we found that the radiomics signature and LDH
levels were not strongly related, suggesting they were nearly independent predictors of ctDNAmaf.
Although the radiomics signature and LDH measures are both predictive of ctDNAmaf to some extent,
our findings suggest that there are different factors governing each association and together they may
be complementary. A possible explanation is that overall ctDNAmaf is a measure of both proliferation
and cell death, whereas LDH may largely probe the latter, and different radiomic features may probe
either or both processes to differing degrees.

CT is the standard tool for measuring response to systemic therapy in the majority of metastatic
cancers. However, recently there have been studies showing the potential role for ctDNA in predicting
response to therapy [3,11,12,32]. Alterations in ctDNA have been reported to provide earlier markers of
response to therapy than morphological changes in tumor size [33,34], and if individual mutations are
unique to an individual metastasis, it may be possible to track the progress of individual metastases over
time, analogous to the lesion-specific information provided by noninvasively imaging of a metastasis
during treatment [4,35]. A recent study in metastatic melanoma reported that ctDNA levels at baseline
and early follow-up can predict disease progression in patients treated with checkpoint inhibitors [36].
A further study showed that baseline ctDNA detection was associated with poor prognosis in metastatic
BRAF or NRAS-mutated melanoma patients [37]. Similarly, the baseline mutant allele fraction and
total level of ctDNA has been shown to be correlated with tumor burden in BRAF-mutated melanoma
patients treated with combinational therapy including BRAF inhibitors [38].

However, many tumors including melanoma can demonstrate a mixed response to therapy and
important aspects of intertumoral heterogeneity may be lost within the signal from the total tumor
burden, if the focus is solely on the overall ctDNAmaf measurements. Examples of this intertumoral
variation between lesions can be seen in this study in Figure 3. Therefore, combining the sensitivity
of ctDNA with metrics of tumor heterogeneity on imaging, may capture important and unique
clinical information. Used together, these techniques could offer highly complementary information
that could be used as part of integrative cancer care to better predict and detect response to cancer
treatments [39,40].

This study has some limitations. Given the small study population and the novel and exploratory
nature of this investigation, it was not possible to validate the findings on an independent dataset.
The acquisition of a larger data set for further validation is being planned as future work and is
consequently not part of the present study. In the meantime, we used several independent statistical
methods which together support the robustness of our conclusions. In order to test the results,
we undertook extensive Monte-Carlo simulations. By generating simulated data and comparing
the results from this data with those from actual measurements it was possible to demonstrate the
robustness of the statistics [41]. Another important factor to be considered in the field of radiomics is
the consistency of the image acquisition parameters to enable repeatability and reproducibility of the
textural features generated within and between patients [42–44]. These images were acquired as part
of standard of care imaging undertaken in parallel with this prospective clinical study. To maintain
quality control and minimize bias, the images analyzed were acquired at a single site using CT scanners
from a single vendor and the radiomic analysis was performed on slices reconstructed into 5 mm in all
patients. Not all of the blood samples were precisely contemporaneous with the CT imaging. This led
to a median time difference from plasma sampling to imaging of 10 days and ctDNA measurements
were interpolated from neighbor observations to correct for any difference in timing between the two.
CT imaging was undertaken for the thorax, abdomen, and pelvis: any lesions outside the imaging field
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of view, particularly brain metastases, were therefore not included in the radiomic analysis. However,
current evidence suggests that brain metastases do not significantly contribute to plasma ctDNA
levels [45,46]. In addition, since there is no meaningful way of combining radiomics features from two
or more separate volumes, we restricted the analysis to the largest lesion only as it has been established
that ctDNA measurements are dependent on tumor volume. The patients studied were undergoing
different systemic therapies and as such might be expected to follow differing disease progression
pathways and for this reason, we did not draw conclusions about treatment response or survival.

The purpose of this study was to investigate the associations between ctDNA concentrations
and CT imaging in metastatic melanoma at multiple individual time-points before, during, and after
treatment. The presence of ctDNA in the plasma is secondary to nonspecific cellular processes which
most therapeutics converge towards as part of the downstream consequences of their primary molecular
mode of action; the correlations between ctDNA and CT demonstrated here are independent of therapy
and show the potential future applications of this approach for generic response monitoring across
different tumor subtypes and therapeutic interventions.

4. Materials and Methods

4.1. Patient Sample

This was a prospective study approved by the local institutional review board and research
ethics committee (11/NE/0312) and managed within the Cambridge Clinical Trials Unit. Patients were
recruited to the MelResist study which evaluated response and resistance biomarkers in metastatic
melanoma patients undergoing systemic therapy. Written informed consent was obtained from all
patients before enrolment into the study.

CT imaging, blood plasma ctDNA samples and LDH measurements were concurrently obtained
from 15 patients (10 males, 5 females; median age 62, range 33–72). Each of the patients had CT
examinations at regular intervals (approximately 2-monthly; median interval and inter-quartile
range = 60 (55, 82)) days throughout their treatment regime as part of standard of care management and
the correlation between imaging and ctDNA was performed retrospectively (pretreatment, concurrent
with treatment and post-treatment). Table 1 presents patient information in more detail.

4.2. Image Acquisition and Analysis

CT imaging was performed at a single site using scanners from a single vendor (Siemens, Erlangen,
Germany) but on differing individual machines. All the radiomic analyses were performed on
images with a reconstructed slice thickness of 5 mm. The acquisition parameters were as follows:
reconstruction kernel B31s or B41s; tube voltage (median: 130; and range: 80, 140; kV); exposure
(mean ± s.d.: 95 ± 62 mA s). All the analyzed CT scans were encoded in the Digital Imaging and
Communications in Medicine (DICOM) format with 16 bit-depth.

All lesions were identified from radiology reports and then outlined by an experienced observer
(A.G.) and a radiologist (J.Z., R.W., F.Z.) with more than 5 years of experience. The regions of interest
(ROI) were subsequently reviewed and if necessary edited by a radiologist (F.G.) with 10 years of
experience as an attending radiologist. Outlining was performed using custom software written in
MATLAB version 2018a (The Mathworks, Natick, MA, USA). Lesions with a volume consistently less
than 1 cm3 were not included in the analysis.

The ROIs were then converted using custom software (written in MATLAB) to the Neuroimaging
Informatics Technology Initiative (NIfTI) format [47], suitable for importing into the LIFEx software
package for textural analysis. Scripts to automate LIFEx processing were generated by custom software
written in MATLAB. Each individual lesion was analyzed as a separate volume.

LIFEx was configured to extract textural parameters after re-binning the lesion images into 128 gray
levels and an absolute range of CT numbers from −400 to 400 Hounsfield units (HU). In a second
software run, gray level zone length features were extracted after binning the same range of CT
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numbers into 32 gray levels following the recommendations of the image biomarker standardization
initiative (IBSI) for this type of feature [48]. Spatial resampling to 1 mm isotropic voxels was preapplied
to standardize for pixel size and slice thickness variations. A range of output variables totaling 39 image
features was produced comprising histogram measures, shape features, gray level co-occurrence
(GLCM) matrix features [49,50], neighborhood gray level difference matrix (NGLDM) features [51],
gray level run length matrix (GLRLM) features [52], and gray level zone length matrix (GLZLM)
features [53]. A histogram of gray levels for each lesion was generated at each imaging time-point:
these were inspected to confirm that the histogram range (−400, 400) HU encompassed the range of
gray-values within the lesion.

Where more than one lesion was identified in an individual patient (i.e., in 12 of the 15 patients),
textural measures were taken from the largest lesion. The largest lesion was selected as that with
the greatest volume at any time-point and subsequently this individual lesion was tracked across all
time-points to provide textural metrics.

Image features were generated for each patient visit for routine CT imaging: there was a total of
70 such visits across all patients yielding a results table of 70 observations and 39 variables, representing
the full range of applicable texture features reported by LIFEx.

Feature maps were calculated for one example lesion using the PyRadiomics (version 3.0) [54]
package in Python and custom software also written in Python (version 3.7.6, Python Software
Foundation, Wilmington, DE, USA). The kernel (i.e., sliding window) radius for the mapping was set
to 1 pixel and all other parameters matched those used in LIFEx.

4.3. ctDNA Quantification

Plasma sample processing, library preparation, and shallow whole genome sequencing (sWGS)
of plasma samples were performed as previously described [34]. Peripheral blood samples were
collected at each clinic visit in S-Monovette 9 mL EDTA tubes. To isolate plasma, whole blood samples
were centrifuged at 1600× g for 10 min within an hour of the blood draw, followed by an additional
centrifugation of plasma supernatant 20,000× g for 10 min. Samples were stored at −80 ◦C. Plasma
samples were extracted using a QIAamp protocol using a QIAsymphony (Qiagen, Hilden, Germany).
Library preparation was performed with the Rubicon ThruPLEX Plasma-Seq kit, using between 7 and
15 PCR cycles, as recommended by the manufacturer (Rubicon Genomics, Ann Arbor, MI, USA).

Libraries were sequenced on a HiSeq 4000 (Illumina, San Diego, CA, USA), and copy number
analysis performed using ichorCNA (Broad Institute of MIT and Harvard, Cambridge, MA, USA)
using the default settings without a matched panel of normals [55]. Tumor fractions from ichorCNA
analysis of plasma cell-free DNA were used as a measure for ctDNA level, as described previously [55].

For samples with tumor fractions determined by sWGS and ichorCNA <3% (i.e., below the limit of
detection of sWGS [55]), TAm-Seq was performed as previously described to gain extra sensitivity [5].
Targeted sequencing assays for TAm-Seq were developed, as part of personalized sequencing panels
which included amplicons, targeting the following mutation loci: BRAF V600 (chr7:140453136) (C > T)
or NRAS Q61 (chr1:115256530) (G > T) [56]. For TAm-Seq, mutant allele fraction was determined for
each locus in each sample.

ctDNAmaf levels, as determined by either targeted sequencing or sWGS, were compared against
imaging data at matched time points or interpolated (using linear interpolation) between neighboring
observations when imaging and blood sampling time-points did not match.

4.4. Statistical Analysis Methods

Statistical analysis was conducted with the R statistical program (version 4.0.0) [57] and its
packages lmerTest (3.1-2, https://cran.r-project.org/web/packages/lmerTest/index.html), MuMIn (1.43.17,
https://cran.r-project.org/web/packages/MuMIn/index.html), robustlmm (2.3, https://cran.r-project.org/

web/packages/robustlmm/index.html), and lmmlasso (0.1-2, https://cran.r-project.org/web/packages/
lmmlasso/index.html) in three phases summarized in Figure 2.

https://cran.r-project.org/web/packages/lmerTest/index.html
https://cran.r-project.org/web/packages/MuMIn/index.html
https://cran.r-project.org/web/packages/robustlmm/index.html
https://cran.r-project.org/web/packages/robustlmm/index.html
https://cran.r-project.org/web/packages/lmmlasso/index.html
https://cran.r-project.org/web/packages/lmmlasso/index.html
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4.4.1. Descriptive Analyses and Data Transformation

Scatter plots were generated allowing visualization of the relationship between each feature on a
given scale and log(ctDNAmaf ). They allowed for a visual assessment of the suitability of the bivariate
normal assumption (a conditional normal assumption being required by later analyses), detection of
the presence of outliers and within-participant dependence. Where necessary, feature variables were
transformed (e.g., to log(f ) or log(a + f ) or log(log(x) + a), where ‘f ’ represents the feature in question and
‘a’ a constant) in order to linearize their relationship with log(ctDNAmaf ), decrease heteroscedasticity
and minimize the effect of outliers.

4.4.2. Analysis without Controlling for Lesion Volume

The analysis of the relationship between the radiomic features of interest and log(ctDNAmaf )
without correcting for lesion volume was performed in two ways.

Firstly, feature-by-feature analysis was performed by means of a random intercept mixed linear
model (MLM) with log(ctDNAmaf ) as the response. The feature of interest on the chosen scale was
the predictor and patients were added as a random effect to take the within-patient dependence
into account. Parameter estimates were obtained by means of the restricted maximum likelihood
estimator (REML) [58]. Wald t-test statistics corresponding to each feature were compared to the
statistics of a robust estimator [59], the latter being less sensitive to model deviations. This served as
a sensitivity analysis for outliers. The Benjamini–Hochberg false discovery rate (FDR) multiplicity
correction was used when assessing statistical significance, aiming to keep the global FDR at the
5% level [60]. The ability of the multiplicity correction to distinguish genuine and nongenuine
relationships between features and ctDNAmaf was assessed by considering an additional set of
100 independent random predictors. These were generated from a Gaussian distribution both with and
without patient dependence, assuming a similar intracluster correlation as observed in the real data.
Marginal R-squared, representing the variance of log(ctDNAmaf ) explained by the fixed predictors
when ignoring patient effects [61], was used to assess the model performance.

Secondly, global analysis was performed by means of two model selection procedures suitable
for data showing within-cluster dependence. These considered log(ctDNAmaf ) as the response and
the set of 39 features on the transformed scale as predictors. The first procedure used a least absolute
shrinkage and selection operator (LASSO) model for dependent data [62] and considered standardized
predictors, as required by such techniques [63]. The regularization parameter value (λ) was selected by
iteratively increasing its value until the first random predictor (among a set of random predictors the
same size as the set of real predictors, i.e., 39) was included in the model. The second procedure used a
stepwise forward/backward model selection maximizing the marginal R-square of the MLM [61]. In a
similar fashion as to that employed in the LASSO approach, random predictors were used to govern
when the iteration steps should be halted.

As sensitivity analyses, the results of these two procedures were compared to the ones obtained
when removing observations considered as outliers. The outliers in turn were identified by estimating
the covariance matrix of the full dataset, i.e., log(ctDNAmaf ) and the 39 features of interest, by means
of a robust S-estimator [64].

4.4.3. Analysis Controlling for Lesion Volume

Scatter plots were generated to visualize the relationship between each feature on the transformed
scale and the lesion volume. The level of association was measured by means of the Spearman ρ

statistic. The same feature-by-feature models, estimators, and multiplicity correction were employed
as described above, but with lesion volume as an additional fixed predictor. Likelihood ratio tests
(LRT), comparing models with the radiomic feature as an additional predictor (full model) to the model
with lesion volume as the only predictor (restricted model), and Wald t-tests were used to assess the
additional effect of the radiomic feature to predict ctDNA mutant allele fraction over volume alone.
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Secondly, the radiomic features yielding the five smallest p-values of the LRT in the previous
analysis step were used to jointly predict log(ctDNAmaf ), either directly or through a signature defined
as the first dimension of a PCA fitted on the standardized predictors.

Simulated data were used to assess the performance of these two models on the real data-set.
A total of 2500 new data-sets of 38 random features (volume was excluded from the original list of 39)
were generated with the same correlation structure as that observed with the real features, including
the correlation with lesion volume, but with a correlation of zero with log(ctDNAmaf ). This was
performed both with and without patient dependence (assuming a similar intracluster correlation as
observed in the real data).

A comparison was made between marginal R-squared and LRT statistics (calculated from the
selection of the five best features based on LRT p-values from feature by feature models and the derived
PCA) both from the real data-set and the set of 2500 simulated data-sets.

The distribution of the marginal R-squared and LRT statistics based on random sets of features
correspond to what would be observed if the radiomic features had no predictive power “over
and above” lesion volume, while preserving the observed relationship between lesion volume and
log(ctDNAmaf ).

4.4.4. Analysis of the Associations between ctDNA, LDH Levels, and the Derived Radiomics Signature

ctDNAmaf, LDH levels, and the PCA-based signature, derived as described in the previous section,
were transformed in order to linearize their relationship with each other, decrease heteroscedasticity,
and minimize the effect of outliers. Their relationships after transformation were visualized by means
of scatter plots, with observations color-coded by patient.

Random intercept mixed models with the patient as a random effect were then used to model
their relationships while accounting for the within-patient dependence. The quality of the fit and type
of model (linear vs. quadratic) were derived by means of observation of the relationship between the
standardized residuals and fitted values. The strength of the relationship was assessed by means of
marginal R-squared [61].

5. Conclusions

In conclusion, this study investigated the interrelationship between heterogeneity on imaging
using radiomics and plasma ctDNA levels in metastatic melanoma patients. ctDNA mutant allele
fraction significantly correlated with the overall tumor volume. However, a radiomics signature
derived by principal component analysis as a measure of tumor heterogeneity predicted ctDNA levels
independently of tumor volume and serum LDH, and therefore provided additional complementary
information. The study suggests the feasibility of combining radiomics and liquid biomarkers to
monitor changes in tumor heterogeneity in patients during their treatment course. Radiomic features
and ctDNAmaf could be complementary clinical tools, and by combining both imaging and liquid
biopsy approaches, tumors can be more deeply phenotyped. Together, these techniques may provide
robust measures for monitoring tumors in future clinical practice.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3493/s1,
Figure S1: Scatterplot showing concordance between shallow WGS ichorCNA tumor fraction and TAm-Seq
ctDNAmaf measurements, where samples were acquired on the same day, Figure S2: The relationship between
each radiomic feature, after the scale transformation, [x-axes] and log(ctDNAmaf ) [y-axis], color-coded by patient,
Figure S3: Marginal R-squared (y-axis) plotted with multiplicity adjusted p-values (x-axis), colour-coded by feature
type, when explaining log(ctDNAmaf ) without controlling for lesion volume, Figure S4: Matrix scatter plot of
the radiomic features that showed a significant relationship with ctDNAmaf, with observations colour coded by
patient, Figure S5: Comparison of the test statistics of the 39 features of interest when fitting feature by feature by
means of REML (x-axis) and a robust estimator (y-axis), color coded by multiplicity adjusted p-values, Figure S6:
The relationship between each feature (x-axes) and lesion volume (y-axis), color-coded by patient, Figure S7:
Marginal R-squared (y-axis) plotted against multiplicity adjusted p-values (x-axis), color-coded by feature type,
when explaining log(ctDNAmaf ) in addition to the effect of lesion volume, Figure S8: Sample radiomic feature
maps within a large tumor (from patient 3), Figure S9: ctDNA with time from treatment start. ctDNAmaf (on the
log scale, y-axis) as a function of time from start of treatment as a dichotomous variable with observation color
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coded by patients, Figure S10: ctDNAmaf on a log scale compared to RECIST treatment response, Figure S11:
ctDNAmaf (on the log scale, y-axis) as a function of treatment drug type, where observations are color coded by
patient, Table S1: ctDNA assays listed by patient blood sample time-points, Table S2: Interpolated ctDNAmaf
readings listed by patient CT imaging visit., Table S3: Statistics from feature-by-feature mixed linear models
predicting ctDNAmaf without controlling for lesion volume., Table S4: Statistics from feature-by-feature mixed
linear models predicting ctDNAmaf with lesion volume included as a fixed effect, Table S5: Key to radiomics
feature nomenclature.
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