18 research outputs found

    Giant Magnons and Giant Gravitons

    Get PDF
    In this thesis we shall present work concerning the description of the emergence of solitonic fundamental strings from stable, finite energy, compact D3-branes in a subspace of AdS5×S5AdS_{5}\times S^{5} and their subsequent interaction. We work in the planar limit and focus on states of large angular momentum JJ corresponding to large R-charge in the dual gauge theory. We begin by constructing the full set of boundary giant magnons on R×S2\mathbb{R}\times S^{2} attached to the maximal Z=0Z=0 giant graviton by mapping from the general solution to static sine-Gordon theory on the interval. We then compute the values of the anomalous dimension, ΔJ\Delta-J, of the dual gauge theory operators at finite JJ, examining the behaviour of the leading order corrections when JJ is large. We then consider the Born-Infeld theory of the giant graviton itself coupled to the background 5-form flux. Constructing BIon spike solutions that correspond to the world volume description of the boundary giant magnons we find a limit amenable to analysis which returns the full range of behaviour exhibited at finite JJ. Finally we produce the open strings on R×S2\mathbb{R}\times S^{2} that correspond to the solutions of integrable boundary sine-Gordon theory. Relating the boundary parameters in a way that ensures a given set of string boundary conditions we describe the scattering of giant magnons with non-maximal Y=0Y=0 giant gravitons and calculate the leading contribution to the associated magnon scattering phase. Our method necessarily describes all integrable scatterings of giant magnons with giant gravitons

    Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016

    Get PDF
    May 2016 was the third wettest May on record since 1961 over central eastern China based on station observations, with total monthly rainfall 40% more than the climatological mean for 1961–2013. Accompanying disasters such as waterlogging, landslides and debris flow struck part of the lower reaches of the Yangtze River. Causal influence of anthropogenic forcings on this event is investigated using the newly updated Met Office Hadley Centre system for attribution of extreme weather and climate events. Results indicate that there is a significant increase in May 2016 rainfall in model simulations relative to the climatological period, but this increase is largely attributable to natural variability. El Ni ̃no years have been found to be correlatedwith extreme rainfall in the Yangtze River region in previous studies—the strong El Ni ̃no of 2015–2016 may account for the extreme precipitation event in 2016. However, on smaller spatial scales we find that anthropogenic forcing has likely played a role in increasing the risk of extreme rainfall to the north of the Yangtze and decreasing it to the south

    Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe

    Get PDF
    A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed Sea Surface Temperature of the 54 year period 1960-2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land-atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns indicates that biases mainly originate from local and regional physical processes. This makes local bias adjustment meaningful for climate change attribution

    Early 21st century anthropogenic changes in extremely hot days as simulated by the C20C+ detection and attribution multi-model ensemble

    Get PDF
    We examine the effect of the 20th and recent 21st century anthropogenic climate change on high temperature extremes as simulated by four global atmospheric general circulation models submitted to the Climate of the 20th Century Plus Detection and Attribution project. This coordinated experiment is based upon two large ensembles simulations for each participating model. The “world that was” simulations are externally forced as realistically as possible. The “world that might have been” is identical except that the influence of human forcing is removed but natural forcing agents and variations in ocean and sea ice are retained. We apply a stationary generalized extreme value analysis to the annual maxima of the three day average of the daily maximum surface air temperature, finding that long period return values have been increased by human activities between 1 and 3 °C over most land areas. Corresponding changes in the probability of achieving long period non-industrial return values in the industrialized world are also presented. We find that most regions experience increases in the frequency and intensity of extremely hot three day periods, but anthropogenic sulfate aerosol forcing changes locally can decrease these measures of heat waves in some models

    Comparing regional precipitation and temperature extremes in climate model and reanalysis products.

    Get PDF
    A growing field of research aims to characterise the contribution of anthropogenic emissions to the likelihood of extreme weather and climate events. These analyses can be sensitive to the shapes of the tails of simulated distributions. If tails are found to be unrealistically short or long, the anthropogenic signal emerges more or less clearly, respectively, from the noise of possible weather. Here we compare the chance of daily land-surface precipitation and near-surface temperature extremes generated by three Atmospheric Global Climate Models typically used for event attribution, with distributions from six reanalysis products. The likelihoods of extremes are compared for area-averages over grid cell and regional sized spatial domains. Results suggest a bias favouring overly strong attribution estimates for hot and cold events over many regions of Africa and Australia, and a bias favouring overly weak attribution estimates over regions of North America and Asia. For rainfall, results are more sensitive to geographic location. Although the three models show similar results over many regions, they do disagree over others. Equally, results highlight the discrepancy amongst reanalyses products. This emphasises the importance of using multiple reanalysis and/or observation products, as well as multiple models in event attribution studies

    Has Global Warming Contributed to the Largest Number of Typhoons Affecting South Korea in September 2019?

    No full text
    A multimodel analysis indicates that the 2019 September record high number of typhoons affecting South Korea was contributed to mostly by the very strong convection over northwestern India with no discernible anthropogenic contribution. ?2021 American Meteorological Society11Nsciescopu
    corecore