211 research outputs found
Cloud microphysical effects of turbulent mixing and entrainment
Turbulent mixing and entrainment at the boundary of a cloud is studied by
means of direct numerical simulations that couple the Eulerian description of
the turbulent velocity and water vapor fields with a Lagrangian ensemble of
cloud water droplets that can grow and shrink by condensation and evaporation,
respectively. The focus is on detailed analysis of the relaxation process of
the droplet ensemble during the entrainment of subsaturated air, in particular
the dependence on turbulence time scales, droplet number density, initial
droplet radius and particle inertia. We find that the droplet evolution during
the entrainment process is captured best by a phase relaxation time that is
based on the droplet number density with respect to the entire simulation
domain and the initial droplet radius. Even under conditions favoring
homogeneous mixing, the probability density function of supersaturation at
droplet locations exhibits initially strong negative skewness, consistent with
droplets near the cloud boundary being suddenly mixed into clear air, but
rapidly approaches a narrower, symmetric shape. The droplet size distribution,
which is initialized as perfectly monodisperse, broadens and also becomes
somewhat negatively skewed. Particle inertia and gravitational settling lead to
a more rapid initial evaporation, but ultimately only to slight depletion of
both tails of the droplet size distribution. The Reynolds number dependence of
the mixing process remained weak over the parameter range studied, most
probably due to the fact that the inhomogeneous mixing regime could not be
fully accessed when phase relaxation times based on global number density are
considered.Comment: 17 pages, 10 Postscript figures (figures 3,4,6,7,8 and 10 are in
reduced quality), to appear in Theoretical Computational Fluid Dynamic
Synergistic Team Composition
Effective teams are crucial for organisations, especially in environments
that require teams to be constantly created and dismantled, such as software
development, scientific experiments, crowd-sourcing, or the classroom. Key
factors influencing team performance are competences and personality of team
members. Hence, we present a computational model to compose proficient and
congenial teams based on individuals' personalities and their competences to
perform tasks of different nature. With this purpose, we extend Wilde's
post-Jungian method for team composition, which solely employs individuals'
personalities. The aim of this study is to create a model to partition agents
into teams that are balanced in competences, personality and gender. Finally,
we present some preliminary empirical results that we obtained when analysing
student performance. Results show the benefits of a more informed team
composition that exploits individuals' competences besides information about
their personalities
Oceanic stochastic parametrizations in a seasonal forecast system
We study the impact of three stochastic parametrizations in the ocean
component of a coupled model, on forecast reliability over seasonal timescales.
The relative impacts of these schemes upon the ocean mean state and ensemble
spread are analyzed. The oceanic variability induced by the atmospheric forcing
of the coupled system is, in most regions, the major source of ensemble spread.
The largest impact on spread and bias came from the Stochastically Perturbed
Parametrization Tendency (SPPT) scheme - which has proven particularly
effective in the atmosphere. The key regions affected are eddy-active regions,
namely the western boundary currents and the Southern Ocean. However, unlike
its impact in the atmosphere, SPPT in the ocean did not result in a significant
decrease in forecast error. Whilst there are good grounds for implementing
stochastic schemes in ocean models, our results suggest that they will have to
be more sophisticated. Some suggestions for next-generation stochastic schemes
are made.Comment: 24 pages, 3 figure
Numerical simulations of stratocumulus cloud response to aerosol perturbation
In this paper results from the 2D numerical model with Lagrangian representation of microphysics are used to investigate the response of the radiative properties of stratocumulus as a result of adding aerosol within the boundary layer. Three different cases characterized by low, moderate and high cloud droplet number and for 3 sizes of additional aerosol 0.01. μm, 0.1. μm and 0.5. μm are discussed. The model setup is an idealization of one of the proposed Solar Radiation Management methods to mitigate global warming by increasing albedo of stratocumulus clouds. Analysis of the model results shows that: the albedo may increase directly in response to additional aerosol in the boundary layer; the magnitude of the increase depends on the microphysical properties of the existing cloud and is larger for cloud characterized by low cloud droplet number; for some cases for clouds characterized by high cloud droplet number seeding may lead to the decrease in albedo when too large radius of seeding aerosol is used
Aprendizagem de línguas através da telecolaboração: uma abordagem do século XXI
Recent unprecedented global events, including emergency remote teaching, have led to an exponential growth of interest in telecollaboration among practitioners and researchers, evidenced, among others, by the growing number of publications devoted to this topic. Attention has been drawn to the number of promises associated with telecollaboration projects, in particular the cultural and linguistic ones. However, such complex and dynamic exchanges also have several limitations. Consequently, a significant number of parties might struggle to make sense of the vast body of knowledge available on the topic and might encounter difficulty in implementing such projects. To address this issue, this study adopts a meta-analytical approach and provides a synthesis of the recently published research on telecollaboration. The reviewed sample comprises 28 journal articles devoted to English as a lingua franca telecollaboration projects, published between 2016 and 2021. The results of these articles are presented in a consolidated and easily understandable manner that permits all interested parties to efficiently examine the newest findings of the literature and apply them accordingly in real-life conditions. This, in turn, facilitates the implementation of good practices and the organization of future telecollaboration exchanges.Os recentes acontecimentos globais sem precedentes, incluindo o ensino remoto de emergência, levaram a um crescimento exponencial do interesse pela telecolaboração entre profissionais e investigadores, evidenciado, entre outros, pelo número crescente de publicações dedicadas a este tópico. Tem-se chamado a atenção para o número de promessas associadas aos projetos de telecolaboração, em particular as culturais e linguísticas. No entanto, estes intercâmbios complexos e dinâmicos têm também várias limitações. Consequentemente, um número significativo de partes pode ter dificuldade em compreender o vasto conjunto de conhecimentos disponíveis sobre o tema e encontrar dificuldades na implementação de tais projectos. Para abordar esta questão, este estudo adota uma abordagem meta-analítica e apresenta uma síntese da investigação recentemente publicada sobre telecolaboração. A amostra analisada inclui 28 artigos de periódicos dedicados a projetos de telecolaboração em inglês como língua franca, publicados entre 2016 e 2021. Os resultados desses artigos são apresentados de forma consolidada e facilmente compreensível, permitindo que todas as partes interessadas examinem de forma eficiente as mais recentes descobertas da literatura e as apliquem em condições reais. Isto, por sua vez, facilita a implementação de boas práticas e a organização de futuros intercâmbios de telecolaboração.info:eu-repo/semantics/publishedVersio
Super-Droplet Method for the Numerical Simulation of Clouds and Precipitation: a Particle-Based Microphysics Model Coupled with Non-hydrostatic Model
A novel simulation model of cloud microphysics is developed, which is named
Super-Droplet Method (SDM). SDM enables accurate calculation of cloud
microphysics with reasonable cost in computation. A simple SDM for warm rain,
which incorporates sedimentation, condensation/evaporation, stochastic
coalescence, is developed. The methodology to couple SDM and a non-hydrostatic
model is also developed. It is confirmed that the result of our Monte Carlo
scheme for the coalescence of super-droplets agrees fairly well with the
solution of stochastic coalescence equation. A preliminary simulation of a
shallow maritime cumulus formation initiated by a warm bubble is presented to
demonstrate the practicality of SDM. Further discussions are devoted for the
extension and the computational efficiency of SDM to incorporate various
properties of clouds, such as, several types of ice crystals, several sorts of
soluble/insoluble CCNs, their chemical reactions, electrification, and the
breakup of droplets. It is suggested that the computational cost of SDM becomes
lower than spectral (bin) method when the number of attributes becomes
larger than some critical value, which may be
Mofrometriceskie osobennosti pesery Zoluska (Zapadnaa Ukraina)
There are morphometric of large maze cave Zoloushka (Western Ukraine) analyzed in the article. The main morphological peculiarities of the Cave are shown, the basic morphometric data of the hole Cave as well as their local variations within the limits of the Cave are characterized. The relations of morphometric parameters of different cave areas with structural and hydrodynamic prerequisites of speleomorphogenesis is also marked
Intensywne promieniowanie X. Źródła, optyka i niektóre zastosowania. Rozprawa habilitacyjna
Zdigitalizowano i udostępniono w ramach projektu pn. Rozbudowa otwartych zasobów naukowych Repozytorium Uniwersytetu w Białymstoku, dofinansowanego z programu „Społeczna odpowiedzialność nauki” Ministra Edukacji i Nauki na podstawie umowy SONB/SP/512497/2021.In this monograph the modern methods of the generation of the intense X-rays are explained and some examples how this radiation can be utilized in investigation of mater in its normal and excited state are given. First the properties of synchrotron radiation are discussed and generation of intense beams in bending magnets, wigglers and undulators in the synchrotrons is described. Next, the generation of short and extremely intense pulses in the newest X-ray sources, namely Free Electron Lasers (FELs) is explained and compared with radiation from other X-ray sources. Comprehensive discussion on the refractive X-ray optics is given. Such optics is more and more widely used in experiments with synchrotron radiation and radiation from FELs. Three experiments are described. In the first one the plasma created at the surface of solid targets is characterized. The second experiment, still in its infant phase, concerns the possibility of measuring the structure of a single biological molecule by means of single intense pulse of X-rays from FELs. The third experiment deals with the Compton spectrometry which requires the use of refractive lenses for the X -ray energy 175 ke V. Construction and test of such lens is described in details. It can be used for investigation of magnetic multilayers and small samples in high pressure cells. Finally, the experiments on Warm Dense Matter (WDM), scheduled for near future at FELs, where the Compton spectrometry method will be used for investigation of the momentum distribution of electron system in WDM is presented.Wydanie publikacji sfinansowano ze środków Wydziału Fizyki Uniwersytetu w BiałymstokuAhuja B. L., Sharma B. K., Mathur S., Heda N. L., Itou M., Andrejczuk A., Sakurai Y., Chakrabarti A., Banik S., Awasthi A. M. i Barman S. R. , (2007), Magnetic Compton scattering study of Ni₂₊ₓMn ₁₋ₓGa ferromagnetic shape-memory alloys, Phys. Rev. B: Condens. Matter 75, 134403(9).Aksenov V. L., Kovalchuk M. V., Kuzmin A. Y., Purans Y. i Tyutyunnikov S. I., (2006), Development of methods of EXAFS spectroscopy on synchrotron radiation: Review, Crystallography Reports 51, 908-935.AI-Marzoug S. M. i Hodgson R. J. W. , (2006), Optimization of platinum-carbon multilayer mirrors for hard X-ray optics, Opt. Commun. 268, 84-89.Alcock A. G., Ludbrook G. D. i Sawhney K. S., (2010), Characterizing Synchrotron Optics at Diamond Light Source, Synchrotron Radiation News 23, 25-30.Andreasson J., (2008), prywatne infonnacje.Andreasson J., Iwan B., Andrejczuk A., Abreu E., Bergh M., Caleman C. , Nelson A. J., Bajt S., Chalupsky J., Chapman H. N., Fäustlin R. R., Hajkova V., Heimann P. A, Hjörvarsson B., Juha L., Klinger D., Krzywinski J., Nagler B., Pálsson G. K., Singer W., Seibert M. M., Sobierajski R., Toleikis S., Tschentscher T., Vinko S. M., Lee R. W., Hajdu J. i Timneanu N., (2011), Saturated ablation in metal hydrides and acceleration of protons and deuterons to keV energies with a soft x-ray laser, praca przyjęta do druku w Phys. Rev. E: Stat. Phys., Plasmas, Fluids.Andrejczuk A., (1997), Badanie profili komptonowskich metali przejściowych i ich stopów, rozprawa doktorskaAndrejczuk A., Hahn U., Jurek M., Krzywiński J., Pelka J., Reniewicz H., Schneidmiller E. A., Sobala W., Sobierajski R. i Yurkov M. V., (2001), lnvestigations of damage thresholds of optical components at the VUV TESLA FEL Phase l, HASYLAB Annual Report 2001, Pt. I, p. 117; http://hasyweb.desy.de/science/annuaI_reports/2001_report/index.html .Andrejczuk A., Sakurai Y. i Itou M., (2006), A Compound Refractive Lens for 175-keV for Magnetic Compton Profile Measurements at SPring-8, IP AP Conf. Series 7, 162-164.Andrejczuk A., Sakurai Y. i Itou M., (2007), A Compound Refractive Lens for 175 keV X-rays, AlP Conf. Proc. 879, 994-997.Andrejczuk A., Krzywiński J., Sakurai Y. i Itou M., (2010), The role of single element errors in Planar Parabolic Compound Refractive Lenses, J. Synchrotron Rad. 17, 616-623 .APS, (2010), http://www.aps.anl.govAristov V. V., Grigoriev M. V., Kuznetsov S. M., Shabelnikov L. G., Yunkin V. A., Hoffmann M. i Voges E., (2000), X-ray focusing by planar parabolic refractive lenses made of silicon, Opt. Commun. 177, 33-38.Aristov V. V., Grigoriev M. V., Kuznetsov S. M., Shabelnikov L. G., Yunkin V. A., Weitkamp T., Rau C. , Snigireva I., Snigirev A. A, Hoffmann M. i Voges E., (2000a), X-ray refractive planar lens with minimized absorption, Appl. Phys. Lett. 77, 4058-4060.Aristov V. V. i Shabelnikov L. G., (2008), Recent advances in X-ray refractive optics, Physics-Uspekhi 51, 57-77.Arms D. A., Dufresne E. M., Clarke R., Dierker S. B., Pereira N. R. i Foster D., (2002), Refractive optics using lithium metal, Rev. Sci. Instrum. 73, 1492.Artemiev A. N., Snigirev A. A., Kohn V., Snigireva I., Artemiev N., Grigoriev M. V., Peredkov S., Glikin L., Levtonov M., Kvardakov V., Zabelin A. i Maevskiy A., (2005), Planar parabolic X-ray refractive lens made of glassy carbon, NucI. Instrum. Methods. Phys. Res. Sect. A 543, 322-325.Atanasov P. A., Nedialkov N. N., Imamova S. E., Ruf A., Hügel H., Dausinger F. i Berger P., (2002), Laser ablation of Ni by ultrashort pulses; molecular dynamic simulation , Appl. Surf. Sci. 186, 369-373.Attwood D., (2007), Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press.Authier A., (2003), Dynamical theory of X-ray diffraction, IUCr monograophs on crystallography, no. 11 , Oxford University Press, 2nd edition.Bansil A., Kaprzyk S., Andrejczuk A., Dobrzyński L., Kwiatkowska J., Maniawski F. i Żukowski E., ( 1998), Compton study of Ni₇₅Cu₂₅ and Ni₇₅C0₂₅ disordered alloys: theory and experiment, Phys. Rev. B 57, 314-323.Baraldi A., Comelli G., Lizzit S., Kiskinova M. i Paolucci G., (2003), Real-time X-ray photoelectron spectroscopy of surface reactions, Surface Science Reports 49, 169-224.Barbiellini B., Koizumi A., Mijnarends P. E., AI-Sawai W., Lin H., Nagao T., Hirota K., Itou M., Sakurai Y. i Bansil A., (2009), Role of Oxygen Electrons in the Metal-Insulator Transition in the Magnetoresistive Oxide La₂₋₂ₓSr₁₊₂ₓMn₂O₇ Probed by Compton Scattering, Phys. Rev. Lett. 102, 206402(4).Barletta W. A., Bisognano J., Corlett J. N., Emma P., Huang Z., Kim K., Lindberg R., Murphy J. B., Neil G. R., Nguyen D. C., Pellegrini C. , Rimmer R. A., Sannibale F., Stupakov G., Walker R. i Zholents A. A., (2010), Free electron lasers: Present status and future challenges, NucI. Instrum. Methods. Phys. Res. Sect. A 618, 69-96.Baron A. Q. R., Kohmura Y., Ohishi Y. i Ishikawa T., ( 1999), A refractive collimator for synchrotron radiation, Appl. Phys. Lett. 74, 1492-1494.Baron A. Q. R., Kohmura Y., Krishnamurthy V. V., Shvyd'ko Yu.V. i Ishikawa T., (1999a), Beryllium and aluminium refractive collimators for synchrotron radiation, J. Synchrotron Rad. 6, 953-956.Barrett R., Härtwig J., Morawe C., Rommeveaux A. i Snigirev A., (2010), X-ray Optics at the ESRF, Synchrotron Radiation News 23, 36-42.Baudach S., Bonse J., Krüger J. i Kautek W., (2000), Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate, Appl. Surf. Sci. 154-155, 555-560.Bauer D., (2004), Small rare gas clusters in XUV laser pulses, Applied Physics B: Lasers and Optics 78, 801 -806.Bednarek W., (2002), Astronomia promieniowania gamma źródłem informacji o procesach wysokoenergetycznych we Wszechświecie, Postępy Fizyki 53D, 85-91.Bell F. i Schneider J. R., (2001), Three-dimensional electron momentum densities of solids, J. Phys.: Condens. Matter 13, 7905-7922.Bellan P. M., (2006), Fundamentals of Plasma Physics, Cambridge University Press.Beno M. A, Kurtz C., Munkholm A., Rutt U., Engbretson M., Jennings G., Linton J., Knappa G. S. i Montano P. A., (2001), Elliptical multipole wiggler beamlines at the Advanced Photon Source, NucI. Instrum. Methods. Phys. Res. Sect. A 467-468, 694-698.Berger R. L., Constantin C., Divol L., Meezan N., Froula D. H., Glenzer S. H., Suter L. J. i Niemann C., (2006), Laser light backscatter from intermediate and high Z plasmas, Physics of Plasmas 13, 092702(15).Bergmann U. i Glatzel P., (2009), X-ray emission spectroscopy, Photosynth Res 102, 255-266.Biggs J., Mendelsohn L. B. i Mann J. B., (1975), Hartree-Fock Compton Profiles for the Elements, Atomic Data and Nuclear Data Tables 16, 201 -309.Bilderback D. H., Freund A. K., Knapp G. S. i Mills D. M., (2000), The historical development of cryogenically cooled monochromators for third-generation synchrotron radiationsources, J. Synchrotron Rad. 7, 53 -60.Bilderback D. H., (2005), Review of third and next generation synchrotron light sources, J. Phys. B: At. Mol. Opt. Phys. 38, S773 .Bilderback D. H., Kazimirov A., Gillilan R., Cornaby S., Woll A., Zha C. i Huang R. , (2007), Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications, AlP Conf. Proc. CP879, 758-763 .Bilderback D. H., Brock J. D., Dale D. S., Finkelstein K. D., Pfeifer M. A. i Gruner S. M., (2010), Energy recovery linac (ERL) coherent hard x-ray sources, New Journal of Physics 12, 035011(27).Bittencourt J. A., (2004), Fundamentals of Plasma Physics, Springer-Verlag New York, Inc.Bland J. A. C. i Heinrich B., (2005), Ultrathin Magnetic Structures, Springer-Verlag Berlin Heidelberg.Blewett J. P., ( 1946), Radiation Losses in the lnduction Electron Accelerator, Phys. Rev. 69, 87.Boehly T. R., Brown D. L., Craxton R. S., Keck R. L., Knauer J. P., Kelly J. H., Kessler T. J., Kumpan S. A., Loucks S. J., Letzring S. A., Marshall F. J., McCrory R. L., Morse S. F. B., Seka W., Soures J. M. i Verdon C. P., ( 1997), lnitial performance results of the OMEGA laser system, Opt. Commun. 133 , 495-506.Bordovitsyn V. A, (1999), Synchrotron Radiation Theory and Development, World Scientific Publishing Co. Pte. Ltd.Bostedt C., Chapman H. N., Costello J. T., López-Urrutia J. R. C., Düsterer S., Eppe S. W., Feldhaus J., Föhlisch A., Meyer M., Möller T., Moshammer R., Richter M., Sokolowski-Tinten K., Sorokin A., Tiedtke K., Ullriche J. i Wurthc W., (2009), Experiments at FLASH, NucI. Instrum. Methods. Phys. Res. Sect. A 601 , 108 -122.Boutet S. i Williams G. J., (2010), The Coherent X-ray Imaging (CXl) instrument at the Linac Coherent Light Source (LCLS), New Journal of Physics 12, 035024(25).Boyd T. J. i Sanderson J. J., (2003), The Physics of Plasmas, Cambridge University Press.Böhringer H. i Werner N., (2010), X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories, Astronomy and Astrophysics Review 18, 127- 196.Brancewicz M., Reniewicz H., Andrejczuk A., Dobrzyński L., Żukowski E. i Kaprzyk S., (2006), Electron momentum density of hexagonal magnesium studied by Compton scattering, Solid State Phenomena 112, 123-132.Brancewicz M., Andrejczuk A., Dobrzyński L., Reniewicz H. i Żukowski E., (2007), A need for high-resolution Compton scattering study of hcp metals with the use of synchrotron radiation, NucI. Instrum. Methods. Phys. Res. Sect. B 255, 395-398.Brancewicz M., Andrejczuk A, Sakurai Y., Itou M., Dobrzyński L., Żukowski E. i Kaprzyk S., (2009), Electron momentum density of hexagonal magnesium studied by Compton scattering, Radiat. Phys. Chem. 78, S137-S139.Brenzinger K. H., Herberg C., Limburg B., Backe H., Dambach S., Euteneuer H., Hagenbuck F., Hartmann H., Johann K., Kaiser K. H., Kettig O., Knies G., Kube G., Lauth W., Schöpe H. i Walcher T., (1997), Investigation of the production mechanism of parametric X-ray radiation, Z. Phys. A: Hadron NucI. 358, 107- 114.Bronsztejn l. N., Siemiendiajew K. A., Musiol G. i Mühling H., (2004), Nowoczesne Kompendium Matematyki, Wydawnictwo Naukowe PWN .BurkeI E., (2001), Introduction to x-ray scattering, J. Phys.: Condens. Matter 13, 7477-7498.Carlsten B. E., Colby E. R., Esarey E. H., Hogan M., Kärtner F. X., Graves W. S., Leemans W. P., Rao T., Rosenzweig J. B., Schroeder C. B., Sutter D. i White W. E., (2010), New source technologies and their impact on future light sources, NucI. Instrum. Methods. Phys. Res. Sect. A 622, 657 -668.Cavalieri A. L., Muller N., Uphues T., Yakovlev V. S., Baltuska A, Horvath B., Schmidt B., Blumel L., Holzwarth R., HendeI S., Drescher M., Kleineberg U., Echenique P. M., Kienberger R., Krausz F. i Heinzmann D., (2007), Attosecond spectroscopy in condensed matter, Nature 449, 1029-1032.Cederström B., Cahn R. N., Danielsson M., Lundqvist M. i Nygren D. R., (2000), Focusing hard X-rays with old LPs, Nature 404, 951 -951.Cederström B., Lundqvist M. i Ribbing C., (2002), Multi-prism x-ray lens, Appl. Phys. Lett. 81, 1399-1401.Cederström B., Ribbing C. i Lundqvist M., (2005), Generalized prism-array lenses for hard X-rays, J. Synchrotron Rad. 12, 340-344.Chalupsky J., Juha L., Hajkova V., Cihelka J., Vysin L., Gautier J., Hajdu J., Hau-Riege S. P., Jurek M., Krzywinski J., London R. A., Papalazarou E., Pelka J. B., Rey G., Sebban S., Sobierajski R., Stojanovic N., Tiedtke K., Toleikis S., Tschentscher T., Valentin C., Wabnitz H. i Zeitoun P., (2009), Non-thermal desorption/ablation of molecular solids induced by ultra-short soft x-ray pulses, Opt. Express 17, 208-217.Chang S. S., Kim J. H., Kim G. B., Lee J. P. i Lee S. J., (2007), X-ray energy filter using compound refractive lenses, AlP Conf. Proc. 879, 1507-1511Chapman H. N., Barty A., Bogan M. J., Boutet S., Frank M., Hau-Riege S. P., Marchesini S., Woods B. W., Bajt S., Benner H., London R. A., Plonjes E., Kuhlmann M., Treusch R., Dusterer S., Tschentscher T., Schneider J. R., Spiller E., Moller T., Bostedt C., Hoener M., Shapiro D. A., Hodgson K. O., Van d. S. D., Burmeister F., Bergh M., Caleman C., Huldt G., Seibert M. M., Maia F., Lee R. W., Szoke A., Timneanu N. i Hajdu J. , (2006), Femtosecond diffractive imaging with a soft-X-ray free-electron laser, Nature Physics 2, 839-843 .Chapman H. N., Barty A., Marchesini S., Noy A., Hau-Riege S. P., Cui C., Howells M. R., Rosen R., He H., Spence J. C. H., Weierstall D., Beetz T., Jacobsen C. i Shapiro D., (2006a), High-resolution ab initio three-dimensional x-ray diffraction microscopy, J. Opt. Soc. Am. A 23, 1179-1200.Cheng Hai-Ping i Gillaspy J. D., (1997), Nanoscale modification of silicon suifaces via Coulomb explosion, Phys. Rev. B: Condens. Matter 55, 2628-2636.Chichkov B. N., Momma C . , Nolte S., vonAlvensleben F. i Tunnermann A., (1996), Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63, 109- 115.Chumakov A. i Rütfer R., (1998), Nuclear inelastic scattering, Hyperfine Interactions 113, 59-79.Cooper M. J., (1985), Compton scattering and electron momentum determination, Rep. Prog. Phys. 48, 415-481.Cooper M. J., Laundy D., Cardwell D. A., Timms D. N., Holt R. S. i Clark G. , (1986), Spindependent momentum distribution in iron studied with circularly polarized synchrotron radiation, Phys. Rev. B: Condens. Matter B34, 5984-5987.Cooper M. J., Żukowski E., Collins S. P., Timms D. N., Itoh F. i Sakurai H., (1992), Does magnetic Compton scattering onIy measure spin magnetization?, J. Phys. :Condens. Matter 4, L399- L404.Cooper M. J., Mijnarends P. E., Shiotani N., Sakai N. i Bansil A, (2004), X-Ray Compton Scattering, Oxford University Press.Cooper M. J., Shenton-Taylor C., Duffy J. A, Steer C. A. i Blaauw L. V., (2007), A short history of magnetic Compton scattering, NucI. Instrum. Methods. Phys. Res. Sect. A 580, 1 -7.Coplan M. A, Moore J. H. i Doering J. P., (1994), (e, 2e) spectroscopy, Reviews of Modern Physics 66, 985-1014.Cornmell University, (2010), Energy Recovery Liniac, http://erl.chess.cornell.edu/ .Daido H., (2002), Review of soft x-ray laser researches and developments, Rep. Prog. Phys. 65, 1513-1576.Di Fabrizio E., Romanato F., Gentili M., Cabrini S, Kaulich B., Susini J. i Barrett R. , (1999), High-efficiency multilevel zone plates for ke V X-rays, Nature 401, 895.Dobrzyński L., ( 1993), Recent advanced in Compton scattering, Z. Naturfors. 48a, 266-266.Dobrzyński L. i Holas A., (1996), Reconstruction of the electron momentum density distribution by Maximum Entropy Method, NucI. Instrum. Methods. Phys. Res. Sect. . A 383, 589-600.Drenth J., (1999), Principles of Protein X-Ray Creystallography, Springer-Verlag New York, Inc.Dryzek J., (1997), Wstęp do spektroskopii anihilacji pozytonów w ciele stałym, Wydawnictwo Uniwersytetu Jagielońskiego.Dudchik Y. I. i Kolchevsky N. N., (1999), A microcapillary lens for X-ray. NucI. Instrum. Methods. Phys. Res. Sect. A 421, 361 -364.Dudchik Y. I., Kolchevsky N. N., Komarov F. F., Kohmura Y., Awaji M., Suzuki Y. i Ishikava T., (2000), Glass capillary X-ray lens: Fabrication technique and ray tracing calculations, NucI. Instrum. Methods. Phys. Rcs. Sect. A 454, 512-519.Dudchik Y. I., Kolchevsky N. N., Komarov F. F., Piestrup M. A, Cremer J. T., Gary C. K. i Pantell R. H., (2003), Short focal-length compound refractive lenses for x-rays, Proc. SPIE 5194, 56-61.Dudchik Y. L, Kolchevsky N. N., Komarov F. F., Piestrup M. A., Cremer J. T., Gary C. K., Khounsary A. M. i Park H., (2004), Microspot x-ray focusing using a short focal-Iength compound refractive lenses, Rev. Sci. Instrum. 75, 4651.Dufresne E. M., Arms D. A., Clarke R., Pereira N. R., Dierker S. B. i Foster D., (2001), Lithium metal for x-ray refractive optics, Appl. Phys. Lett. 79, 4085.Duke P. J., (2000), Synchrotron Radiation. Production and Properties, Oxford Univeristy Press.Elleaume P., (1998), Two-Plane Focusing of 30 keV Undulator Radiation, J. Synchrotron Rad. 5, 1 -5.Elleaume P., ( 1998a), Optimization of compound refractive lenses for X-rays, NucI. Instrum. Methods. Phys. Res. Sect. A 412, 483-506.Emma P., Bane K., Cornacchia M., Huang Z., Schlarb H., Stupakov G. i Walz D., (2004), Femtosecond and Subfemtosecond X-Ray Pulses from a Self-Amplified Spontaneous-Emission Based Free-Electron Laser, Phys. Rev. Lett. 92, 074801 (4)Emma P., Akre R., Arthur J., Bionta R., Bostedt C. , Bozek J., Brachmann A., Bucksbaum P., Coffee R., Decker F., Ding Y., Dowell D., Edstrom S., Fisher1 A, Frisch J., Gilevich S., Hastings J., Hays G., Hering P., Huang Z., Iverson R. , Loos H., Messerschmidt M., Miahnahri A., Moeller S., Nuhn H., Pile G., Ratner D., Rzepiela J., Schultz D., Smith T., Stefan P., Tompkins H., Turner J., Welch J., White W., Wu J., Yocky G. i Galayda J. , (2010), First lasing and operation of an Angstrom-wavelength free-electron laser, Nature Photonics DOI: 10.1038/NPHOTON.2010.176.Engel M., Stuhn B., Schneider J. J., Cornelius T. i Naumann M., (2009), Small-angle X-ray scattering (SAXS) off paralIel, cylindrical, well-defined nanopores: from random pore distribution to highly ordered samples, AppI. Phys. A 97, 99-108.Esarey E., Ride S. K. i Sprangle P., (1993), Nonlinear Thomson Scattering of Intense Laser-Pulses From Beams and Plasmas, Phys. Rev. E: Stat. Phys., Plasmas, Fluids 48, 3003 -3021.ESRF, (2001), http://www.esrf.eu/UsersAndScience/Publications/Highlights/2001.ESRF, (2010), http://www.esrf.euEvans-Lutterodt K., Ablett J. M., Stein A, Kao Chi-Chang, Tennant D. M., Klemens F., Taylor A., Jacobsen C., Gammel P. L., Huggins H., Ustin S., Bogart G. i Ocola L. , (2003), Single-element elliptical hard x-ray micro-optics, Opt. Express 11 , 919-926.Evans-Lutterodt K., Ablett J. M., Stein A., Tennant D. M., Klemens F. i Taylor A. , (2004), Energy dependent focusing properties of a kinoform Fresnel lens, Proc. SPIE 5539, 73-79.Faigel G., Jurek Z., Oszlanyi G. i Tegze M., (2005), Clusters in the XFEL beam, J. Alloys Compd. 401 , 86-91.Fajardo M., Zeitoun P. i Gauthier J. C., (2004), Hydrodynamic simulation of XUV laser-produced plasmas, Eur. Phys. J. D 29, 69-76.Feldhaus J., Arthur J. i Hastings J. B., (2005), X-ray free-electron lasers, J. Phys. B: At. Mol. Opt. Phys. 38, S799-S819.Fennel T., Meiwes-Broer K. H., Tiggesbaumker J, Reinhard P. G., Dinh P. M. i Suraud E., (2010), Laser-driven nonlinear cluster dynamics, Rev. Mod. Phys. 82, 1793-1842.Fiedorowicz H., (2005), Generation of soft X-rays and extreme ultraviolet (EUV) using a laser irradiated gas puff target, Laser and ParticIe Beams 23, 365-373 .Fiedorowicz H., Bartnik A., Jarocki R., Kostecki J., Krzywinski J., Mikolajczyk J., Rakowski R., Szczurek A. i Szczurek M., (2005a), Compact laser plasma EUV source based on a gas puff target for metrology applications, J. Alloys Compd. 401, 99-103.Friedrich P., (2008), Wolter Optics, chaper in the book "The Universe in X-Rays", ed. by Joachim E. Trümper and Günter Hasinger, Springer Berlin Heidelberg.FLASH, (2010), Oficjalna strona WWW, http://hasylab.desy.de/facilities/flash/index_eng.htmlFuchs J., Cowan T. E., Audebert P., Ruhl H., Gremillet L., Kemp A., Allen M., Blazevic A., Gauthier J. C., Geissel M., Hegelich M., Karsch S., Parks P., Roth M., Sentoku Y., Stephens R. i Campbell E. M., (2003), Spatial uniformity of laser-accelerated ultra high-current MeV electron, Phys. Rev. Lett. 91, 255002(4).Fuchs J., Antici P., D'Humieres E., Lefebvre E., Borghesi M., Brambrink E., Cecchetti C. A., Kaluza M., Malka V., Manclossi M., Meyroneinc S., Mora P., Schreiber J., Toncian T., Pepin H. i Audebert R., (2006), Laser-driven proton scaling laws and new paths towards energy increase, Nature Physics 2, 48-54.Fuchs M., Weingartner R., Popp A., Major Z., Becker S., Osterhoff J., Cortrie I., Zeitler B., Horlein R., Tsakiris G. D., Schramm U., Rowlands-Rees T. P., Hooker S. M., Habs D., Krausz F., Karsch S. i Gruner F., (2009), Laser-driven soft-X-ray undulator source, Nature Physics 5, 826-829.Fudalej K. i Werpachowski R. , (2002), Kalibracja TOF przy użyciu programu SIMION, Wewnętrzny raport grupy FELIS, DESY.Fukui H., Katsura T.
Krajobraz krasowy jako system
Karst landscapes are very specific in terms of its natural characteristics: geology, relief, water circulation, vegetation and soils. The specificity is due to the presence in the landscape of “lower underground floor” in form of a network of canals, cavities and caves, closely associated with the terrestrial part of the landscape. The article analyzes the karst landscape as a binary geosystem, consisting of two subsystems: surface and underground. Interactions between two subsystems (exchange of material and energy) are the essence of functioning of karst landscape and are ʺresponsibleʺ for formation of its dynamic-evolutionary peculiarities and physiognomy
- …
