118 research outputs found

    Оптимизация работы персонала в организации общественного питания на примере юридического лица ООО "Рокки Ролл"

    Get PDF
    Объектом выпускной квалификационной работы является оптимизация работы персонала. Предмет – оптимизация работы персонала в организации общественного питания. Цель настоящей выпускной квалификационной работы – анализ проблемы оптимизации работы персонала в организации общественного питания ООО "Рокки Ролл".The object of the final qualifying work is the optimization of the work of the personnel. The subject - optimization of the work of personnel in the organization of public catering. The purpose of this final qualifying work is the analysis of the problem of optimizing the work of personnel in the organization of public catering LLC "Rocky Roll"

    Дизайн-проект реабилитационного тренажера для разработки суставов кисти руки

    Get PDF
    Объект проектирования: реабилитационный тренажер для разработки суставов кисти руки. Основания для разработки: необходимо разработать конструкцию, которая будет соответствовать эргономическим и эстетическим параметрам. Цель работы: разработать дизайн-проект реабилитационного тренажера для разработки суставов кисти руки для использования в медицинских учреждениях, реабилитационных центрах, а также в домашних условиях. В процессе исследования проводились теоретические исследования и разработка вариантов дизайнерских решений тренажера, формирование основного концепта. В результате исследования был разработан дизайн-проект тренажера, создана трехмерная модель. Результаты проекта по разработке медицинской тренажера могут быть внедрены в процесс оснащения российских реабилитационных центров.Design Object: Rehabilitation simulator for developing the joints of the hand. Reasons for development: It is necessary to develop a design that will correspond to ergonomic and aesthetic parameters. Requirements for ergonomics and technical aesthetics: The facility must have a high level of ergonomics, both for the patient and for medical personnel. Objective: To develop a design project of a rehabilitation simulator for the development of hand joints for use in medical institutions, rehabilitation centers, as well as at home. In the process of research, theoretical studies and development of variants of design solutions for the simulator were carried out, the main concept was formed

    Advanced electron cyclotron heating and current drive experiments on the stellarator Wendelstein 7-X

    Get PDF
    During the first operational phase (OP 1.1) of Wendelstein 7-X (W7-X) electron cyclotron resonance heating (ECRH) was the exclusive heating method and provided plasma start-up, wall conditioning, heating and current drive. Six gyrotrons were commissioned for OP1.1 and used in parallel for plasma operation with a power of up to 4.3 MW. During standard X2-heating the spatially localized power deposition with high power density allowed controlling the radial profiles of the electron temperature and the rotational transform. Even though W7-X was not fully equipped with first wall tiles and operated with a graphite limiter instead of a divertor, electron densities of n e > 3·1019 m-3 could be achieved at electron temperatures of several keV and ion temperatures above 2 keV. These plasma parameters allowed the first demonstration of a multipath O2-heating scenario, which is envisaged for safe operation near the X-cutoff-density of 1.2·1020 m-3 after full commissioning of the ECRH system in the next operation phase OP1.2

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci

    Get PDF
    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: Rs13422522 (NYAP2; P = 8.87 × 10-11), rs12454712 (BCL2; P = 2.7 × 10-8), and rs10506418 (FAM19A2; P = 1.9 × 10-8). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci

    Genomic correlates of glatiramer acetate adverse cardiovascular effects lead to a novel locus mediating coronary risk

    Get PDF
    Glatiramer acetate is used therapeutically in multiple sclerosis but also known for adverse effects including elevated coronary artery disease (CAD) risk. The mechanisms underlying the cardiovascular side effects of the medication are unclear. Here, we made use of the chromosomal variation in the genes that are known to be affected by glatiramer treatment. Focusing on genes and gene products reported by drug-gene interaction database to interact with glatiramer acetate we explored a large meta-analysis on CAD genome-wide association studies aiming firstly, to investigate whether variants in these genes also affect cardiovascular risk and secondly, to identify new CAD risk genes. We traced association signals in a 200-kb region around genomic positions of genes interacting with glatiramer in up to 60 801 CAD cases and 123 504 controls. We validated the identified association in additional 21 934 CAD cases and 76 087 controls. We identified three new CAD risk alleles within the TGFB1 region on chromosome 19 that independently affect CAD risk. The lead SNP rs12459996 was genome-wide significantly associated with CAD in the extended meta-analysis (odds ratio 1.09, p = 1.58×10-12). The other two SNPs at the locus were not in linkage disequilibrium with the lead SNP and by a conditional analysis showed p-values of 4.05 × 10-10 and 2.21 × 10-6. Thus, studying genes reported to interact with glatiramer acetate we identified genetic variants that concordantly with the drug increase the risk of CAD. Of these, TGFB1 displayed signal for association. Indeed, the gene has been associated with CAD previously in both in vivo and in vitro studies. Here we establish genome-wide significant association with CAD in large human samples.This work was supported by grants from the Fondation Leducq (CADgenomics: Understanding CAD Genes, 12CVD02), the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (e:AtheroSysMed, grant 01ZX1313A-2014 and SysInflame, grant 01ZX1306A), and the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no HEALTH-F2-2013-601456 (CVgenes-at-target). Further grants were received from the DFG as part of the Sonderforschungsbereich CRC 1123 (B2). T.K. was supported by a DZHK Rotation Grant. I.B. was supported by the Deutsche Forschungsgemeinschaft (DFG) cluster of excellence ‘Inflammation at Interfaces’. F.W.A. is supported by a Dekker scholarship-Junior Staff Member 2014T001 - Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre

    Genome-Wide Association Study and Functional Characterization Identifies Candidate Genes for Insulin-Stimulated Glucose Uptake

    Get PDF
    Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in \u3e55,000 participants from three ancestry groups. We identified ten new loci (P \u3c 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits

    Ion temperature clamping in Wendelstein 7-X electron cyclotron heated plasmas

    Get PDF
    The neoclassical transport optimization of the Wendelstein 7-X stellarator has not resulted in the predicted high energy confinement of gas fueled electron-cyclotron-resonance-heated (ECRH) plasmas as modelled in (Turkin et al 2011 Phys. Plasmas 18 022505) due to high levels of turbulent heat transport observed in the experiments. The electron-turbulent-heat transport appears non-stiff and is of the electron temperature gradient (ETG)/ion temperature gradient (ITG) type (Weir et al 2021 Nucl. Fusion 61 056001). As a result, the electron temperature Te can be varied freely from 1 keV–10 keV within the range of PECRH = 1–7 MW, with electron density ne values from 0.1–1.5 × 1020 m−3. By contrast, in combination with the broad electron-to-ion energy-exchange heating profile in ECRH plasmas, ion-turbulent-heat transport leads to clamping of the central ion temperature at Ti ∼ 1.5 keV ± 0.2 keV. In a dedicated ECRH power scan at a constant density of 〈ne〉 = 7 × 1019 m−3, an apparent \u27negative ion temperature profile stiffness\u27 was found in the central plasma for (r/a < 0.5), in which the normalized gradient ∇Ti/Ti decreases with increasing ion heat flux. The experiment was conducted in helium, which has a higher radiative density limit compared to hydrogen, allowing a broader power scan. This \u27negative stiffness\u27 is due to a strong exacerbation of turbulent transport with an increasing ratio of Te/Ti in this electron-heated plasma. This finding is consistent with electrostatic microinstabilities, such as ITG-driven turbulence. Theoretical calculations made by both linear and nonlinear gyro-kinetic simulations performed by the GENE code in the W7-X three-dimensional geometry show a strong enhancement of turbulence with an increasing ratio of Te/Ti. The exacerbation of turbulence with increasing Te/Ti is also found in tokamaks and inherently enhances ion heat transport in electron-heated plasmas. This finding strongly affects the prospects of future high-performance gas-fueled ECRH scenarios in W7-X and imposes a requirement for turbulence-suppression techniques
    corecore