17 research outputs found

    Grading of proximal internal carotid artery (ICA) stenosis by Doppler/duplex ultrasound (DUS) and computed tomographic angiography (CTA): correlation and interrater reliability in real-life practice

    No full text
    Doppler/duplex ultrasound (DUS) and computed tomographic angiography (CTA) are frequently applied methods to assess the degree of proximal internal carotid artery (ICA) stenoses in patients with acute ischemic stroke. This study evaluated the agreement and interrater reliability (IR) of both methods using a revised DUS grading system as well as different criteria (ECST/NASCET) under real-life conditions. CTA and DUS data of 281 proximal ICA stenoses [143 patients; 65.7 % male; age (mean (years) +/- SD, range) 72.2 +/- 11.1, 40-99] were retrospectively analyzed. For both methods, two independent raters estimated the degree of stenosis according to NASCET and ECST criteria. DUS raters applied revised German DUS criteria. For agreement and IR assessment, the linear weighted Kappa statistic was used. Correlation between DUS and CTA was substantial irrespective of the applied classification [weighted Kappa: 0.77 (NASCET)/0.79 (ECST)]. IR for DUS was almost perfect (weighted Kappa: 0.94) and better than for CTA [weighted Kappa: 0.78 (NASCET)/0.78 (ECST)]. In a real-life setting, CTA and DUS assessments of the degree of proximal ICA stenoses agreed substantially irrespective of the criteria applied (ECST/NASCET). For DUS, IR was better than for CTA

    Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble

    Get PDF
    International audienceEURO-CORDEX is an international climate downscaling initiative that aims to provide high-resolution climate scenarios for Europe. Here an evaluation of the ERA-Interim-driven EURO-CORDEX regional climate model (RCM) ensemble is presented. The study documents the performance of the individual models in representing the basic spatiotemporal patterns of the European climate for the period 1989–2008. Model evaluation focuses on near-surface air temperature and precipitation, and uses the E-OBS data set as observational reference. The ensemble consists of 17 simulations carried out by seven different models at grid resolutions of 12 km (nine experiments) and 50 km (eight experiments). Several performance metrics computed from monthly and seasonal mean values are used to assess model performance over eight subdomains of the European continent. Results are compared to those for the ERA40-driven ENSEMBLES simulations. The analysis confirms the ability of RCMs to capture the basic features of the European climate, including its variability in space and time. But it also identifies nonnegligible deficiencies of the simulations for selected metrics, regions and seasons. Seasonally and regionally averaged temperature biases are mostly smaller than 1.5 °C, while precipitation biases are typically located in the ±40% range. Some bias characteristics, such as a predominant cold and wet bias in most seasons and over most parts of Europe and a warm and dry summer bias over southern and southeastern Europe reflect common model biases. For seasonal mean quantities averaged over large European subdomains, no clear benefit of an increased spatial resolution (12 vs. 50 km) can be identified. The bias ranges of the EURO-CORDEX ensemble mostly correspond to those of the ENSEMBLES simulations, but some improvements in model performance can be identified (e.g., a less pronounced southern European warm summer bias). The temperature bias spread across different configurations of one individual model can be of a similar magnitude as the spread across different models, demonstrating a strong influence of the specific choices in physical parameterizations and experimental setup on model performance. Based on a number of simply reproducible metrics, the present study quantifies the currently achievable accuracy of RCMs used for regional climate simulations over Europe and provides a quality standard for future model developments

    Northwestern Mediterranean Heavy Precipitation Events in a Warmer Climate: Robust Versus Uncertain Changes With a Large Convection‐Permitting Model Ensemble

    Get PDF
    International audienceTaking advantage of a large ensemble of Convection Permitting‐Regional Climate Models on a pan‐Alpine domain and of an object‐oriented dedicated analysis, this study aims to investigate future changes in high‐impact fall Mediterranean Heavy Precipitation Events at high warming levels. We identify a robust multi‐model agreement for an increased frequency from central Italy to the northern Balkans combined with a substantial extension of the affected areas, for a dominant influence of the driving Global Climate Models for projecting changes in the frequency, and for an increase in intensity, area, volume and severity over the French Mediterranean. However, large quantitative uncertainties persist despite the use of convection‐permitting models, with no clear agreement in frequency changes over southeastern France and a large range of plausible changes in events' properties, including for the most intense events. Model diversity and international coordination are still needed to provide policy‐relevant climate information regarding precipitation extremes

    Evaluation of the near-surface wind field over the Adriatic region: local wind characteristics in the convection-permitting model ensemble

    No full text
    We present the first evaluation of the wind field from the ensemble of kilometer-scale simulations from the CORDEX-Flagship Pilot Study on convection, with focus on the Adriatic region. Kilometer-scale climate models, also known as convection-permitting models (CPMs), produce a good representation of small-scale topographic features and consequently a more detailed depiction of dynamical and thermal circulations. These enable a reliable view of climate characteristics of the wind field, especially in coastal regions and over complex terrain, such as the Adriatic region. We investigate the (potential) added value introduced by CPMs compared to classical “cumulus-parametrized” regional climate models (RCMs), reanalysis and station observations. For this purpose, wind components at 10 m level are used at 3-hourly frequency. All simulations cover a 10-year period, extending from 2000 to 2009. In terms of the standard statistical parameters such as correlation coefficient and temporal standard deviation, CPMs are very dependent on their parent RCM performance. However, the orographic forcing emphasizes the potential added value and CPMs contain some fine spatial scale variability (i.e., stronger extremes by 25% and more accurate wind direction) that is absent in coarser RCMs and reanalysis. The potential added value is higher in the cold season compared to the warm season due to the proportion of severe wind events. CPMs reproduce well the typical wind regimes along the Adriatic coast, namely Bora and Sirocco. The benefit of using CPMs is especially pronounced in simulating Bora maximum wind speeds in northern Adriatic and Sirocco frequencies in southern Adriatic. Based on our overall analysis, we conclude that CPMs provide added value compared to coarser models, especially in the complex coastal terrain

    The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project

    No full text
    International audienceThe ability of a large ensemble of regional climate models to accurately simulate heat waves at the regional scale of Europe was evaluated. Within the EURO-CORDEX project, several state-of-the art models, including non-hydrostatic meso-scale models, were run for an extended time period (20 years) at high resolution (12 km), over a large domain allowing for the first time the simultaneous representation of atmospheric phenomena over a large range of spatial scales. Eight models were run in this configuration, and thirteen models were run at a classical resolution of 50 km. The models were driven with the same boundary conditions, the ERA-Interim re-analysis, and except for one simulation, no observations were assimilated in the inner domain. Results, which are compared with daily temperature and precipitation observations (ECA&D and E-OBS data sets) show that, even forced by the same re-analysis, the ensemble exhibits a large spread. A preliminary analysis of the sources of spread, using in particular simulations of the same model with different parameterizations, shows that the simulation of hot temperature is primarily sensitive to the convection and the microphysics schemes, which affect incoming energy and the Bowen ratio. Further, most models exhibit an overestimation of summertime temperature extremes in Mediterranean regions and an underestimation over Scandinavia. Even after bias removal, the simulated heat wave events were found to be too persistent, but a higher resolution reduced this deficiency. The amplitude of events as well as the variability beyond the 90th percentile threshold were found to be too strong in almost all simulations and increasing resolution did not generally improve this deficiency. Resolution increase was also shown to induce large-scale 90th percentile warming or cooling for some models, with beneficial or detrimental effects on the overall biases. Even though full causality cannot be established on the basis of this evaluation work, the drivers of such regional differences were shown to be linked to changes in precipitation due to resolution changes, affecting the energy partitioning. Finally, the inter-annual sequence of hot summers over central/southern Europe was found to be fairly well simulated in most experiments despite an overestimation of the number of hot days and of the variability. The accurate simulation of inter-annual variability for a few models is independent of the model bias. This indicates that internal variability of high summer temperatures should not play a major role in controlling inter-annual variability. Despite some improvements, especially along coastlines, the analyses conducted here did not allow us to generally conclude that a higher resolution is clearly beneficial for a correct representation of heat waves by regional climate models. Even though local-scale feedbacks should be better represented at high resolution, combinations of parameterizations have to be improved or adapted accordingly

    The added value of km-scale simulations to describe temperature over complex orography: the CORDEX FPS-Convection multi-model ensemble runs over the Alps

    Get PDF
    International audienceThe increase in computational resources has enabled the emergence of multi-model ensembles of convection-permitting regional climate model (CPRCM) simulations at very high horizontal resolutions. An example is the CORDEX Flagship Pilot Study on "Convective phenomena at high resolution over Europe and the Mediterranean", a set of kilometre-scale simulations over an extended Alpine domain. This first-of-its-kind multi-model ensemble, forced by the ERA-Interim reanalysis, can be considered a benchmark dataset. This study uses a recently proposed metric to determine the added value of all the available Flagship Pilot Study hindcast kilometre-scale simulations for maximum and minimum temperature. The analysis is performed using state-of-the-art gridded and station observations as ground truth. This approach directly assesses the added value between the high-resolution CPRCMs against their driving global simulations and coarser resolution RCM counterparts. Overall, models display some modest gains, but also considerable shortcomings are exhibited. In part, these deficiencies can be attributed to the assimilation of temperature observations into ERA-Interim. Although the gains for the use of kilometrescale resolution for temperature are limited, the improvement of the spatial representation of local atmospheric circulations and land-atmosphere interactions can ultimately lead to gains, particularly in coastal areas

    Precipitation projections of the first multi-model ensemble of regional climate simulations at convection permitting scale

    No full text
    We present a multi-model ensemble of regional climate model scenario simulations run at scales allowing for explicit treatment of convective processes (2-3km) over historical and end of century time slices, providing an overview of future precipitation changes over the Alpine domain within the convection-permitting CORDEX-FPS initiative. The 12 simulations of the ensemble have been performed by different research groups around Europe. The simulations are compared with high resolution observations to assess the performance over the historical period and the ensemble of 12 to 25 km resolution driving models is used as a benchmark.An improvement of the representation of fine scale details of the analyzed fields on a seasonal scale is found, as well as of the onset and peak of the summer diurnal convection. An enhancement of the projected patterns of change and modifications of its sign for the daily precipitation intensity and heavy precipitation over some regions are found with respect to coarse resolution ensemble. A change of the amplitude of the diurnal cycle for precipitation intensity and frequency is also shown, as well also a larger positive change for high to extreme events for daily and hourly precipitation distributions. The results&#160; are challenging and promising for further assessment of the local impacts of climate change.</p
    corecore