1,850 research outputs found

    A note on the Cops & Robber game on graphs embedded in non-orientable surfaces

    Get PDF
    The Cops and Robber game is played on undirected finite graphs. A number of cops and one robber are positioned on vertices and take turns in sliding along edges. The cops win if they can catch the robber. The minimum number of cops needed to win on a graph is called its cop number. It is known that the cop number of a graph embedded on a surface XX of genus gg is at most 3g/2+33g/2 + 3, if XX is orientable (Schroeder 2004), and at most 2g+12g+1, otherwise (Nowakowski & Schroeder 1997). We improve the bounds for non-orientable surfaces by reduction to the orientable case using covering spaces. As corollaries, using Schroeder's results, we obtain the following: the maximum cop number of graphs embeddable in the projective plane is 3; the cop number of graphs embeddable in the Klein Bottle is at most 4, and an upper bound is 3g/2+3/23g/2 + 3/2 for all other gg.Comment: 5 pages, 1 figur

    Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Get PDF
    Although the definition and measurement techniques for atmospheric 'black carbon' ('BC') or 'elemental carbon'' ('EC') have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, C<sub>brown</sub>') makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC) in the atmosphere. Evidence for the atmospheric presence of C<sub>brown</sub> comes from (1) spectral aerosol light absorption measurements near specific combustion sources, (2) observations of spectral properties of water extracts of continental aerosol, (3) laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4) indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of C<sub>brown</sub> is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of C<sub>brown</sub> as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1) many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2) there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3) the difference in spectral properties between the different types of LAC, as well as the chemical complexity of C<sub>brown</sub>, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of C<sub>brown</sub> towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our understanding of tropospheric processes, including their influence on UV-irradiance, atmospheric photochemistry and radiative transfer in clouds

    Hydrogen Sulfide and Radon in and Over the Western North Atlantic Ocean

    Get PDF
    Atmospheric measurements of radon and hydrogen sulfide, and seawater measurements of total sulfide, free sulfide, and carbonyl sulfide, were made on a cruise in the western North Atlantic Ocean (October 24 to November 9, 1989). Measured values for 222Rn ranged from 3 to 70 pCi m−3, those for atmospheric hydrogen sulfide from 1 to 85 parts per trillion, and those for dissolved total and free sulfide in seawater from 33 to 930 pmol L−1 and 0 to 73 pmol L−1, respectively. A positive correlation between 222Rn and atmospheric H2S was observed. Both 222Rn and H2S were high in air masses traced back to North America. Measurements in seawater showed that uncomplexed sulfides were approximately 13% of total sulfide at 2 m depth. Atmospheric H2S and dissolved H2S in seawater were usually not far from saturation equilibrium. Our results indicate that the ocean acted at some times as a source of atmospheric H2S but more frequently as a sink. Hydrolysis of COS and atmospheric deposition of H2S both may contribute to the budget of dissolved sulfide in seawater of the western North Atlantic Ocean. On a global scale the ocean/atmosphere exchange of H2S appears to play a minor role in the atmospheric sulfur cycle

    Understanding the Role of Anaerobic Respiration in Burkholderia Thailandensis and B. pseudomallei Survival and Virulence

    Get PDF
    Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic in Northern Australia and Southeast Asia. Melioidosis can present with acute, chronic and latent infections and can relapse several months or years after initial presentation. Currently not much is known about the ways in which B. pseudomallei can persist within the host, although it has been speculated that the ability to survive within an anaerobic environment will play some role. B. pseudomallei is able to survive anaerobically for extended periods of time but little is known about the molecular basis of anaerobic respiration in this pathogenic species. Bioinformatic analysis was used to determine the respiratory flexibility of both B. pseudomallei and B. thailandensis, identifying multiple genes required for aerobic and anaerobic respiration, and molybdopterin biosynthesis. Using B. thailandensis as a model organism a transposon mutant library was created in order to identify genes required for anaerobic respiration. From this library one transposon mutant was identified to have disrupted moeA, a gene required for the molybdopterin biosynthetic pathway. This B. thailandensis transposon mutant (CA01) was unable to respire anaerobically on nitrate, exhibiting a significant reduction in nitrate reductase activity, altered motility and biofilm formation, but did not affect virulence in Galleria mellonella. It was hypothesised that the reduction in nitrate reductase activity was contributing to the phenotypes exhibited by the B. thailandensis moeA transposon mutant. To determine whether this was true an in-frame narG deletion mutant was created in B. pseudomallei. Deletion of B. pseudomallei narG (ΔnarG) resulted in a significant reduction in nitrate reductase activity, anaerobic growth, motility and altered persister cell formation, and but did not affect virulence in G. mellonella or intracellular survival within J774A.1 murine macrophages. This study has highlighted the importance of anaerobic respiration in the survival of B. thailandensis and B. pseudomallei.BBSR

    Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds

    No full text
    International audienceIn-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1?2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by ~350 m for each additional 100 cloud condensation nuclei per cm3 at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of ~2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm3. The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (re) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their re as if they had been measured inside one well developed cloud. The dependence of re on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at re?~10 µm. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at re~10 µm, continues to be significant during the cloud's mixing with the entrained air, canceling out the decrease in re due to evaporation

    Nitrous oxide emissions from the Arabian Sea: A synthesis

    Get PDF
    We computed high-resolution (1º latitude x 1º longitude) seasonal and annual nitrous oxide (N2O) concentration fields for the Arabian Sea surface layer using a database containing more than 2400 values measured between December 1977 and July 1997. N2O concentrations are highest during the southwest (SW) monsoon along the southern Indian continental shelf. Annual emissions range from 0.33 to 0.70 Tg N2O and are dominated by fluxes from coastal regions during the SW and northeast monsoons. Our revised estimate for the annual N2O flux from the Arabian Sea is much more tightly constrained than the previous consensus derived using averaged in-situ data from a smaller number of studies. However, the tendency to focus on measurements in locally restricted features in combination with insufficient seasonal data coverage leads to considerable uncertainties of the concentration fields and thus in the flux estimates, especially in the coastal zones of the northern and eastern Arabian Sea. The overall mean relative error of the annual N2O emissions from the Arabian Sea was estimated to be at least 65%

    Dark Production: A Significant Source of Oceanic COS

    Get PDF
    Carbonyl sulfide (COS) in air and dissolved in seawater was determined during a cruise in August 1999 in the Sargasso Sea in the northwest Atlantic Ocean. Dissolved concentrations at the sea surface displayed only a weak diel cycle with a mean of 8.6 ± 2.8 pmol dm−3 owing to low abundance of photochemical precursors and high temperatures causing rapid hydrolysis. Depth profiles measured over the oceanic mixed layer revealed significant vertical gradients of COS concentration with higher values at the surface, suggesting that the rate of photochemical production at the surface exceeds the rate of vertical mixing. The mean atmospheric mixing ratio was 486 ± 40 ppt, and calculated sea-air fluxes ranged from 0.03 to 0.8 g COS km−2 d−1. COS dark production, estimated from the predawn COS concentration at the surface and the hydrolysis constant, contributed significantly to the total amount of COS produced. A strong temperature dependence of the COS dark production rate q was found by comparing previously published values. The data further indicate an approximately first-order relationship between q and chromophoric dissolved organic matter (CDOM) absorbance at 350 nm, a350, which is used as a proxy for the CDOM content of the water but is likely to covary with other parameters, such as biological activity, that could also affect COS dark production. Together with known functions for COS hydrolysis and solubility, the parameterization of dark production as a function of temperature and a350 allows for the prediction of COS concentrations and saturation ratios as a function of physical and optical seawater properties in the absence of photoproduction. This is used to estimate a lower limit of 0.056 Tg COS yr−1 to the annual COS flux from the ocean to the atmosphere

    Chemical transformations in organic aerosol from biomass burning

    No full text
    International audienceFine aerosol particles were collected separately during daytime and nighttime at a tropical pasture site in Rondônia, Brazil, during the burning and dry-to-wet transition period in 2002. Total carbon (TC) and water-soluble organic carbon (WSOC) were measured by evolved gas analysis (EGA). Based on the thermochemical properties of the fine aerosol, the relative amounts of the low and higher molecular weight compounds were estimated. It was found that the thermally refractory (possibly higher molecular weight) compounds dominated the TC composition. Their contribution to TC was higher in the daytime samples than in the nighttime ones. The relative share of WSOC also showed a statistically significant diel variation and so did its refractory fraction. Anhydrosugars and phenolic acids were determined by GC-MS and their diel variation was studied. Based on the decrease of their relative concentrations between the biomass burning and transition periods and their distinctly different diel variations, we suggest that the phenolic acids may undergo chemical transformations in the aerosol phase, possibly towards more refractory compounds (humic-like substances, HULIS), as has been suggested previously. These conclusions are supported by the results of the thermally assisted hydrolysis and methylation gas chromatography-mass spectrometry of the same filter samples

    Biogeochemistry of Arsenic and Antimony in the North Pacific Ocean

    Get PDF
    The biogeochemical cycles of the metalloid elements arsenic and antimony were examined along a 15,000 km surface water transect and at 9 vertical profile stations in the western North Pacific Ocean as part of the 2002 IOC Contaminant Baseline Survey. Results show that the speciation of dissolved arsenic (As III, As V, and methylated As) was subtly controlled by the arsenate (AsV)/phosphate ratio. An additional fraction of presumed organic arsenic previously reported in coastal waters was also present (~15% of the total As) in oceanic surface waters. Dissolved inorganic antimony displayed mildly scavenged behavior that was confirmed by correlations with aluminum, but atmospheric inputs that may be anthropogenic in origin also affected its concentrations. Monomethyl antimony, the predominant organic form of the element, behaved almost conservatively throughout the water column, radically changing the known biogeochemical cycle of antimony

    The Partial Visibility Representation Extension Problem

    Full text link
    For a graph GG, a function ψ\psi is called a \emph{bar visibility representation} of GG when for each vertex v∈V(G)v \in V(G), ψ(v)\psi(v) is a horizontal line segment (\emph{bar}) and uv∈E(G)uv \in E(G) iff there is an unobstructed, vertical, ε\varepsilon-wide line of sight between ψ(u)\psi(u) and ψ(v)\psi(v). Graphs admitting such representations are well understood (via simple characterizations) and recognizable in linear time. For a directed graph GG, a bar visibility representation ψ\psi of GG, additionally, puts the bar ψ(u)\psi(u) strictly below the bar ψ(v)\psi(v) for each directed edge (u,v)(u,v) of GG. We study a generalization of the recognition problem where a function ψ′\psi' defined on a subset V′V' of V(G)V(G) is given and the question is whether there is a bar visibility representation ψ\psi of GG with ψ(v)=ψ′(v)\psi(v) = \psi'(v) for every v∈V′v \in V'. We show that for undirected graphs this problem together with closely related problems are \NP-complete, but for certain cases involving directed graphs it is solvable in polynomial time.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    • …
    corecore