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Abstract 

 Burkholderia pseudomallei is the causative agent of melioidosis, a disease 

endemic in Northern Australia and Southeast Asia. Melioidosis can present with 

acute, chronic and latent infections and can relapse several months or years after 

initial presentation. Currently not much is known about the ways in which B. 

pseudomallei can persist within the host, although it has been speculated that the 

ability to survive within an anaerobic environment will play some role. B. 

pseudomallei is able to survive anaerobically for extended periods of time but 

little is known about the molecular basis of anaerobic respiration in this 

pathogenic species.  

 Bioinformatic analysis was used to determine the respiratory flexibility of 

both B. pseudomallei and B. thailandensis, identifying multiple genes required for 

aerobic and anaerobic respiration, and molybdopterin biosynthesis. Using B. 

thailandensis as a model organism a transposon mutant library was created in 

order to identify genes required for anaerobic respiration. From this library one 

transposon mutant was identified to have disrupted moeA, a gene required for 

the molybdopterin biosynthetic pathway. This B. thailandensis transposon mutant 

(CA01) was unable to respire anaerobically on nitrate, exhibiting a significant 

reduction in nitrate reductase activity, altered motility and biofilm formation, but 

did not affect virulence in Galleria mellonella.  

 It was hypothesised that the reduction in nitrate reductase activity was 

contributing to the phenotypes exhibited by the B. thailandensis moeA 

transposon mutant. To determine whether this was true an in-frame narG deletion 

mutant was created in B. pseudomallei. Deletion of B. pseudomallei narG 

(ΔnarG) resulted in a significant reduction in nitrate reductase activity, anaerobic 

growth, motility and altered persister cell formation, and but did not affect 

virulence in G. mellonella or intracellular survival within J774A.1 murine 

macrophages. This study has highlighted the importance of anaerobic respiration 

in the survival of B. thailandensis and B. pseudomallei. 
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MNGCs – Multinucleate giant cells 

MPT – Molybdopterin 

MoO4
- – Molybdate 

Mo – Molybdenum 

Moco – Molybdenum cofactor 

min – Minute 

mRNA – messenger ribonucleic acid 

MV – Methyl-viologen 

NCBI – National Center for Biotechnology Information 

NADH – Nicotinamide adenine dinucleotide 

NAR – Nitrate reductase 

NIR – Nitrite reductase 

NOR – Nitric oxide reductase 

NOS – Nitrous oxide reductase 

iNOS – Inducible nitric oxide synthase 

NRP – Non-replicating persistence 

NaOH – Sodium hydroxide 

NaNO3
- –Sodium nitrate 

NaNO2
- – Sodium nitrite 

NaWO4
- – Sodium tungstate 

NaCl – Sodium chloride 

NH4Cl – Ammonium chloride 

N2H4 – Hydrazine 

NO3
- – Nitrate 

NO2
- – Nitrite 

NO – Nitric oxide 

N2O – Nitrous oxide 

N2 – Dinitrogen (gas) 

OD – Optical density 

PAMPs – Pathogen associated molecular patterns 

PBS – Phosphate buffer saline 

PBP – Penicillin binding protein 
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PCR – Polymerase chain reaction  

PDB – Protein Data Bank 

PMF – Proton motive force 

PMNs – Polymorphonuclear leukocytes 

(p)ppGpp – Guanosine (penta) or tetraphosphate 

Q – Quinone 

QH2 – Quinol 

RNA – Ribonucleic acid 

RT-PCR – Reverse transcriptase polymerase chain reaction 

RNI – Reactive nitrogen intermediates 

RF – Right flank 

RR – Response regulator 

ROS – Reaction oxygen species 

SD – Standard deviation 

secs – Seconds 

TAE – Tris-acetate-EDTA buffer 

TBE – Tris-borate-EDTA buffer 

Tat – Twin-arginine translocation 

Tet – Tetracycline 

TLRs – Toll-like receptors 

TMAO – Tri-methylamine N-oxide  

TNF – Tumour necrosis factor 

Tn - Transposon 

Tp - Trimethoprim 

UV – Ultraviolet 

UQ - Ubiquinone 

UQH2 - Ubiquinol 

VBNC – Viable but non-culturable 

W – Tungsten 

w/v – Weight per volume 

WT – Wild-type 

X-GAL - 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 
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Chapter 1 – Introduction 
 

1.1 Melioidosis 

 

 In 1911 Major Alfred Whitmore first identified a ‘glanders-like’ disease, 

known as Whitmore’s disease, in morphia addicts in Rangoon, Burma (Whitmore 

A, 1912). This is now referred to as melioidosis, a tropical infection caused by 

pathogenic bacterium Burkholderia pseudomallei.  The first and perhaps only 

fictional literary reference of this disease was provided in 1913 by Sir Arthur 

Conan Doyle, who incorporated a previously uncharacterised tropical infection 

(now thought to be melioidosis) as a murder weapon in Sherlock Holmes 

‘Adventures of a Dying Detective’ (Sodeman, 1994).  Not much was known about 

melioidosis until recently and research into pathogenesis of melioidosis is still on 

going and in much demand. B. pseudomallei has recently been characterised as 

a Tier 1 and category B bioterrorism agent by the Centre for Disease Control 

(CDC) and Health and Human Services (HHS), along with Anthrax and the Ebola 

virus (Butler, 2012).  

 B. pseudomallei survives environmentally and within the human body for 

extended periods of time, and is likely to experience oxygen limiting environments 

during the course of its life cycle. This ability to survive in a range of environments 

is likely to be partly due to the wide variety of respiratory and metabolic proteins 

encoded within the B. pseudomallei genome (Holden et al., 2004). Determination 

of the respiratory flexibility exhibited by B. pseudomallei and identification of the 

role of anaerobic respiration in survival and virulence, will likely aid in 

understanding of the mechanisms of persistence exhibited by this pathogenic 

bacterium.  

 

1.1.1 Global distribution and prevalence 

 B. pseudomallei is a Gram-negative soil dwelling saprophyte found 

environmentally within the soil, and often within rice paddy fields. B. pseudomallei 

is the causative agent of melioidosis, an emerging tropical infection endemic in 

Southeast Asia and Northern Australia. Melioidosis is becoming more a global 

problem with environmental isolates and cases seen in Asia, Central America, 
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Africa, the Middle East, and South America and Sri Lanka (Cheng & Currie, 2005; 

Currie et al., 2008; Inglis & Sagripanti, 2006; Inglis et al., 2008; 

Taweechaisupapong et al., 2005) (Fig. 1.1). Sporadic cases of melioidosis have 

been reported in Europe (e.g. in France and Iceland), although many of these are 

imported cases from patients who have recently travelled abroad, for example to 

Southeast Asia (Cheng & Currie, 2005; Gudmundsdottir et al., 2014). Increase in 

reported cases of melioidosis world-wide is likely to be due to better surveillance 

and identification of the disease.  

 

1.1.2 Transmission and routes of infection 

 B. pseudomallei is known to survive environmentally, possessing 

mechanisms to ensure its survival and persistence under a range of different 

conditions (see 1.2.2 Environmental survival). Melioidosis is thought be acquired 

via three different routes; inhalation, ingestion and inoculation (Cheng & Currie, 

2005). Cases have been reported of acquisition of melioidosis directly from 

contaminated water sources, and near drowning experiences (Lee et al., 1985; 

Limmathurotsakul et al., 2014b; Pruekprasert & Jitsurong, 1991). The main route 

of infection is thought to be inoculation. Rice-paddy farmers or those from 

agricultural backgrounds are more at risk of acquiring a B. pseudomallei infection 

through cuts and abrasions in the skin, especially since many do not wear the 

appropriate protective foot-ware (Cheng & Currie, 2005; Hassan et al., 2010). In 

Australia, 25 % of melioidosis cases in the Northern Territory have been 

associated with inoculation prior to presentation (Cheng & Currie, 2005; Currie et 

al., 2000b).  

 Various environmental conditions have been described as risk factors for 

disease acquisition, with 407 patients out of 540 (75 %) in the Darwin study 

thought to have exposure to environmental B. pseudomallei (Currie et al., 2010b). 

Environmental risk factors include heavy rainfall, agricultural activity, and 

consumption of contaminated food or untreated water, and soil or dust inhalation 

(Cheng & Currie, 2005; Currie et al., 2004; Limmathurotsakul et al., 2013b). 

Heavy rainfall is a significant environmental risk factor for melioidosis, with 81 % 

of patients in the 20 year Darwin study having presented with an infection during 

the monsoon season (Currie et al., 2010b). On occasion, melioidosis has been 

acquired through unconventional manners, such as person to person spread in   
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Figure 1.1 – Global distribution of melioidosis. The map shows the global 

distribution of B. pseudomallei, in reference to environmental sampling. Figure 

has been adapted from http://www.melioidosis.info/map.aspx using information 

from previously published literature (Limmathurotsakul et al., 2013a). Regions 

shown in red indicate those endemic areas, where melioidosis cases have been 

reported, and environmental samples from soil or water have been isolated and 

confirmed using B. pseudomallei specific PCR. Regions shown in orange indicate 

those areas were melioidosis has been reported in the country but no 

environmental samples have been acquired. Regions in yellow are areas where 

B. pseudomallei has been isolated environmentally from soil or water, but the 

identification process was not sufficient to differentiate between different 

Burkholderia spp. (e.g. between B. thailandensis). The map does not include 

those cases reported in Europe.   

http://www.melioidosis.info/map.aspx
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patients with cystic fibrosis (Holland et al., 2002), mother-to-child transmission 

through breast milk (Ralph et al., 2004) and neonatal cases (Cheng & Currie, 

2005). 

 

1.1.3 Clinical presentations and associated risk factors 

 In Thailand melioidosis is one of the top three killers due to infectious 

disease, along with AIDS (acquired immunodeficiency syndrome) and 

tuberculosis (Limmathurotsakul et al., 2010). The disease is endemic in 

Northeast Thailand and is often associated with a high mortality rate, reaching up 

to 40 % in some cases (White, 2003). Melioidosis is also endemic in Northern 

Australia, but the clinical outcome is much better for patients in Australia 

compared to those in Thailand, with the mortality rate being around 20 % (Currie 

et al., 2000b; Currie et al., 2010b). B. pseudomallei is a common cause of 

community-acquired bacteraemia, in both Ubon Ratchathani in Northeast 

Thailand (Chaowagul et al., 1989) and Darwin in Northern Australia (Douglas et 

al., 2004). 

 The annual incidence of melioidosis in Northern Australia is 19.6 cases per 

100,000 of the population, with higher incidence seen per year in the diabetic 

population (260 cases per 100,000 per year) (Currie et al., 2004). The incidence 

of melioidosis in Northeast Thailand has increased over the last few years from 

8 culture confirmed cases per 100,000 in 2000, to 21.3 cases per 100,000 people 

per year in 2006, with an average incidence of 12.7 cases per 100,000 people 

(Limmathurotsakul et al., 2010). 

 There are several risk factors and underlying conditions such as diabetes 

mellitus, excess alcoholism, heart conditions, steroid use, immunosuppression, 

cystic fibrosis, age (over 45 years), or renal failure which predispose a patient to 

an infection with B. pseudomallei (Cheng & Currie, 2005; Currie et al., 2000b; 

Currie et al., 2004; Currie et al., 2010b). Patients with diabetes mellitus are at a 

greater risk of contracting melioidosis with 57 % of all primary diagnosed 

melioidosis cases, resulting in mortality, testing positive for diabetes (Hassan et 

al., 2010; Suputtamongkol et al., 1999). 

 Melioidosis can present with an array of clinical symptoms (Fig. 1.2), with B. 

pseudomallei causing either an acute, chronic or latent infection. B. pseudomallei 

unlike other pathogenic bacteria has the ability to infect almost every organ in the 
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CNS involvement - brainstem 

encephalitis

Acute suppurative parotitis

Pneumonia

Bone, joint and skin infection

Liver, lung and spleen abscesses

Genito-urinary infections

Musculo-skeletal infections

Sites of infection/symptomsRoutes of infection

Inhalation of aerosols

Cutaneous 

inoculation

Alternate route of 

infection – contact with 

infected animals

Figure 1.2 – Clinical presentations and sites of infection of melioidosis. 

Figure has been adapted from (Wiersinga et al., 2006) using images from figure 2 

in (Currie, 2003) and (White, 2003). Those highlighted in bold indicate the most 

common route of infection of disease presentation. Image of the rice paddy field 

(bottom left) is my own.  
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body. As a result clinical symptoms can range from pneumonia, sepsis, 

genitourinary tract infections, skin infection, acute suppurative parotitis, joint 

infections, brainstem encephalitis, central nervous system involvement (normally 

encephalomyelitis) and osteomyelitis (Currie et al., 2000a; Currie et al., 2004; 

Currie et al., 2010b; White, 2003) (Fig. 1.2). Melioidosis most commonly presents 

with pneumonia, seen in 51 % of patients (Currie et al., 2010b), with 55 % cases 

being bacteremic. Eighty five percent of cases during the 20 year Darwin study 

presented with acute disease from a recent infection, with 11 % presenting with 

chronic with symptoms lasting over 2 months (Currie et al., 2010b). Septic shock, 

normally occurring within 24 hours of admission into hospital, was a major 

contributor to mortality with over 50 % of patients dying due to acute fulminant 

melioidosis (Currie et al., 2010b). B. pseudomallei infections can cause the 

formation of abscess, for example in the lung, liver, spleen, kidney and prostate 

(Currie et al., 2010b), which may have a microaerobic/anaerobic environment. 

The significance of this will be discussed later. 

 

1.1.4 Recurrent melioidosis 

 One of the problems facing the treatment of melioidosis is the fact that the 

disease can relapse, often several months or years after treatment of the initial 

infection. Relapse is defined as a new presentation of acute culture confirmed 

melioidosis, with a repeat infection occurring after resolution of an initial infection 

by at least two weeks treatment with intravenous antibiotics (Currie et al., 2000a). 

Relapse cases have been documented to have occurred between 10 and 62 

years after initial exposure (Chen et al., 2005; Frangoulidis et al., 2008; Ngauy et 

al., 2005).  

 Recurrent melioidosis is due to either re-infection or re-activation (relapse) 

of a latent infection. The majority of recurrent melioidosis cases are due to relapse 

of infection with the same strain, which is often genetically identical. This indicates 

that B. pseudomallei is likely to remain stable, residing within the body for months 

to years on end (Currie et al., 2000a; Maharjan et al., 2005; Vadivelu et al., 1998).  

The rate of relapse can vary but tends to occur in around 4 to 13 % of melioidosis 

patients, and often occurs in those patients who have poorly adhered to their 

antibiotic regime (Chaowagul et al., 1993; Currie et al., 2000a; Limmathurotsakul 

et al., 2006). Although not one risk factor has been identified for reinfection 
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(Limmathurotsakul et al., 2006), individuals who are immunocompromised, have 

dietary deficiencies, or those who have poorly adhered to the appropriate 

antibiotic regime are more prone to relapse (Leelarasamee, 1998; 

Limmathurotsakul et al., 2006; Limmathurotsakul et al., 2008; Vadivelu et al., 

1998). Patients treated with a longer oral antibiotic regime, for 12 to 14 weeks, 

and those treated with initial parenteral ceftazidime treatment had a significant, 

reduced risk of relapse, a 1.6 and 2 fold reduction (or 90 % decreased risk), 

compared to those treated for 8 weeks (Chaowagul et al., 1993; 

Limmathurotsakul et al., 2006). Relapse cases occurs 4.7 times more frequently 

in patients with septicemic forms of meliodiosis to those who had localised 

disease (Chaowagul et al., 1993). Re-infection, due to a repeat exposure to B. 

pseudomallei rather than relapse, has been associated with renal insufficiency or 

exposure to heavy rainfall (Limmathurotsakul et al., 2008). 

 There are various explanations as to why B. pseudomallei can cause a 

relapse of infection. These include the ability of B. pseudomallei to produce 

glycocalyx, form micro-colonies in damaged tissues, presence of 

exopolysaccharides and finally its ability to survival within phagocytes 

(Leelarasamee, 1998; Vadivelu et al., 1998). 

 

1.1.5 Treatment and antibiotic resistance 

  Treatment of melioidosis is intensive and usually requires a 10 to 14 day 

intravenous administration of ceftazidime, followed by a prolonged antibiotic 

regime using a combination of antibiotics (Currie et al., 2000a; Wiersinga et al., 

2012). Ceftazidime is frontline treatment for melioidosis, and has been shown to 

cut mortality rate of septicaemic melioidosis by around 35 to 45 % 

(Leelarasamee, 1998). Following intravenous treatment with ceftazidime 

melioidosis patients are often treated with a 12 to 20 week course of oral 

antibiotics either co-amoxiclav or a combination of chloramphenicol, doxycycline, 

and co-trimoxazole (Rajchanuvong et al., 1995). Treatment of melioidosis with a 

single antibiotic, such as co-amoxiclav or doxycycline, in comparison to 

combination therapy, is known to result in a higher rate of relapse (Chaowagul et 

al., 1999; Rajchanuvong et al., 1995). Recently, prophylactic treatment of 

melioidosis with co-trimoxazole (trimethoprim/sulfamethoxazole) was shown to 

be an effective treatment in a murine model of inhalation melioidosis (Barnes et 

al., 2013). 
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 Antibiotic resistance is rapidly increasing in the clinical setting with B. 

pseudomallei being intrinsically resistant to many antibiotics such as gentamicin, 

rifampin, beta-lactams, penicillins, macrolides and cephalosporins (Wiersinga et 

al., 2012). Recently B. pseudomallei has been shown to have developed 

resistance to ceftazidime due to mutations within penA (Rholl et al., 2011; 

Tribuddharat et al., 2003), a β-lactamase enzyme. This poses problems for the 

treatment of acute melioidosis infections, especially if the patient becomes 

infected with a resistant strain (Sarovich et al., 2012). Loss of the penicillin binding 

protein (PBP-3 – BPSS1219) has also been seen in B. pseudomallei resistant 

variants isolated from a patient receiving prolonged ceftazidime treatment 

(Chantratita et al., 2011).  

 

1.1.6 Vaccine development 

 Currently there is no vaccine available for the prevention of melioidosis, and 

those currently under examination do not provide sterilising immunity. Current 

vaccine candidates include the capsular polysaccharide or LPS, heat-killed B. 

pseudomallei cells, and B. thailandensis E264 lipopolysaccharide (LPS) for use 

as a sub-unit vaccine (Ngugi et al., 2010; Sarkar-Tyson et al., 2007; Sarkar-Tyson 

et al., 2009). Recently the B. pseudomallei outer membrane vesicle has been 

shown to provide effective protection against a septicaemic infection (Nieves et 

al., 2014). All of these vaccine candidates have been shown to provide some 

form of protection, and induce an immune response against a wild-type B. 

pseudomallei infection when using a murine infection model. 

 

1.2 B. pseudomallei and B. thailandensis 

1.2.1 Genome and strain differences 

 B. pseudomallei is closely related to the generally avirulent B. thailandensis 

and the causative agent of glanders disease, B. mallei. All three of these 

Burkholderia species display a high degree of genetic similarity and close 

evolutionary lineage based on multi-locus sequence typing (MLST) analysis 

(Godoy et al., 2003). B. thailandensis is often used as a surrogate for B. 

pseudomallei work, as it displays very similar biochemical, genetic properties, 

encoding many virulence factors found in B. pseudomallei, and does not require 

use of a containment level III laboratory. Unlike B. pseudomallei, B. thailandensis 
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possesses the ability to assimilate arabinose and displays different colony 

morphologies to those exhibited in B. pseudomallei (Brett et al., 1998; Smith et 

al., 1997). There are many different strains of B. pseudomallei and B. 

thailandensis, all of which exhibit slightly different virulence characteristics which 

vary depending on the route of infection and number of colony forming units 

(CFU) used in the study (Table 1.1 and Table 1.2). Differences in virulence seen 

for some B. thailandensis strains is thought to be due to the presence or absence 

of a capsular polysaccharide (CPS).  

 B. thailandensis is generally characterised as an avirulent species, not 

causing disease in humans. However there have been two documented cases of 

melioidosis caused by B. thailandensis strains (CDC2721121 and CDC3015869) 

in the United States, one of which was later shown to be due to the acquisition of 

a B. pseudomallei-like CPS (Glass et al., 2006; Sim et al., 2010). The acquisition 

of CPS-like genes has resulted in the strains becoming resistant to complement 

C3b deposition allowing the bacteria to avoid detection by the immune system. A 

CPS knockout strain of E555 exhibited the same phenotype seen with E264 

which is not capable of blocking complement deposition (Sim et al., 2010).    

B. pseudomallei (K96243) has two chromosomes both encoding different 

genes involved in general cellular processes and those for virulence and 

pathogenicity. Chromosome 1 (4.07 Mb), the larger of the two chromosomes, 

encodes a higher proportion of genes (3,460) required for core functions, 

whereas chromosome 2 (3.17 Mb) encodes those genes involved in central 

metabolism, transcription and replication and amino acid biosynthesis (Holden et 

al., 2004). Along with these genes the genome of B. pseudomallei also contains 

those that promote survival within the environment and the host, and those genes 

required to modulate pathogenicity (Holden et al., 2004).  

 B. mallei is the causative agent of glanders disease in equines, and is related 

to B. pseudomallei but possess a smaller genome size (5.8 Mb) and is host 

restricted (Duan et al., 2012b; Holden et al., 2004). Unlike B. pseudomallei and 

B. thailandensis B. mallei has a host specific lifestyle, and struggles to persist in 

the environment. There is evidence to suggest that B. mallei has evolved from a 

B. pseudomallei strain, and was shown by MLST analysis to be a clone of B. 

pseudomallei (Godoy et al., 2003) that has undergone a degree of genome down-



31 
 

Table 1.1 - B. pseudomallei strains and characteristics 

Strain Description Infection model - route of infection Virulence - 
LD50  (CFU) 

Reference 

K96243a 

 Thailand isolate (1996) 

Isolated from a diabetic patient 

with a lethal infection 

BALB/c – Intranasal (IN) 226 (Nelson et al., 2011; Tan et al., 

2008; Titball et al., 2008; Van 

Zandt et al., 2012; Wand et al., 

2010) 

BALB/c – Intraperitoneal (IP) 262d 

 BALB/c – Inhalation (IH) 10d 

 C57BL/6 – IN 1.5 x 104 

 Marmoset 10 

 Mouse – IN, IP, aerosol and 

intratracheal 

5 to 3 x 107 

 G. mellonella 100  
1710a 

 Thailand isolate (1996) 

Isolated from male rice paddy 

farmer 

ND ND (Van Zandt et al., 2012) 

MSH305 

 Australian isolate 

Isolate from the brain of a fatal 

melioidosis encephalitis 

Mouse Highly 

virulent 

(Van Zandt et al., 2012) 
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1026b 

 Thailand isolate – (1993) 

Taken from patient with  

diabetes mellitus and 

disseminated disease 

BALB/c – aerosol 10 ± 8 (Goodyear et al., 2009; 

Jeddeloh et al., 2003; Van Zandt 

et al., 2012) 
 C57BL/6 – aerosol 27 ± 20 

 BALB/c – IN (nose only) 2,772 

 BALB/c – IN (whole body) 1 x 103 

 C57BL/6 1 x 103 

a BALB/c infected mice are significantly more susceptible to infection with K96243 

b 1026b LD50 varies depending on murine model and route of infection 

c After 24 hours infection (100 % mortality) 

d Median lethal dose - MLD50  

ND – not determined 

BALB/c and C57BL/6 are murine models of infection 

Infection route describe as either intraperitoneal (IP), intranasal (IN) or inhalation (IH) 
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Table 1.2 – B. thailandensis strains and characteristics 

Strain Description Infection model - route of 
infection 

Virulence - LD50  (CFU) Reference 

E264 

 Environmental isolate 

Avirulent clinically 

Syrian hamster – IP 1 x105 (Brett et al., 

1998; 

Deshazer, 

2007; Wand et 

al., 2010) 

C57BL/6 – IN 1 x 106 

  BALB/c – IN 1 x 107 – only 16.7 % mortality after 13 

days post infection 

  Galleria mellonella 100 CFU – 50 % mortalityb 

  Caenorhabditis elegans 100 % mortality after 3 days infection 

E555 

 Cambodian isolate 

Contains B. pseudomallei-

like CPS gene cluster 

BALB/c - IN 1 x 107 – 66.7% mortality after 13 days 
infection 

(Sim et al., 
2010) 

C. elegans 100 % mortality after 3 days infectionc 

Phuket 4W-1 

 Water isolate from water in 

Phuket Thailand (1965) 

Syrian hamster - IP 1 x 105 (Deshazer, 
2007; Wand et 
al., 2010)  G. mellonella 100 CFU – 80 % mortalityb 

 

CDC3015869 

 US isolate Syrian hamster – IP 
 

1x 105  
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 Expresses CPS-like cluster 

Clinical blood isolate from 2 

year-old-male with 

pneumonia and septicaemia 

G. mellonella 100 % mortalityb (Deshazer, 

2007; Glass et 

al., 2006; Sim 

et al., 2010; 

Wand et al., 

2010) 

CDC2721121 
 US isolate 

Clinical isolate from  pleural 

wound from a 76-year-old 

man 

Syrian hamster – IP Avirulent after 14 day challenge with 1 x 

105 to 1 x 107a 

(Deshazer, 

2007; Wand et 

al., 2010) 

 G. mellonella 100  

a Compared to E264, CDC3015869 or Phuket 4W-1 (Deshazer, 2007) 

b After 24 hours infection with 100 CFU. Challenge with 10,000 resulted in 100% mortality after 24 hours (Wand et al., 2010) 

C E555 exhibited a 2 day slower killing rate when compared to E264 (Sim et al., 2010) 

Infection route describe as either intraperitoneal (IP), intranasal (IN) or inhalation (IH) 
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sizing (Nierman et al., 2004), resulting in the lack of genes allowing it to survive outside 

of the host. 

 

1.2.2 Environmental survival 

B. pseudomallei is a hardy bacterium, surviving and persisting under a wealth 

of different stresses encountered environmentally or within the host. B. pseudomallei 

has been previously shown to be able to cope with changes in pH, exposure to salt 

(NaCl), chlorine, changes in osmolarity, and can survive for up to three years within 

triple distilled water, and intracellularly within amoeba and professional and non-

professional phagocytes (Dance, 2000; Inglis & Sagripanti, 2006; Moore et al., 2008; 

Puthucheary & Nathan, 2006; White, 2003).  

B. pseudomallei survival within nutrient deprived conditions and in water, 

requires an intact stable LPS core (Moore et al., 2008), thought to aid in the natural 

dispersal and persistence within the environment (Robertson et al., 2010). The number 

of culturable bacteria falls quite rapidly when exposed to stresses such as NaCl at 

concentrations above 2.5 % and pH 4.5 (Inglis & Sagripanti, 2006), with the bacteria 

entering a viable but non-culturable state (VBNC). B. pseudomallei is highly adaptable 

to growth in acidic environments both within the host and the unusually acidic soils of 

endemic regions of Northeast Thailand (Dejsirilert et al., 1991; Inglis & Sagripanti, 

2006). Survival of B. pseudomallei under various stresses such as high salt and acidic 

pH is known to cause a change in its morphology from a bacilli form to coccoid and 

spiral cells (Robertson et al., 2010).  

 Use of fertilisers, containing nitrate may aid in the proliferation of B. pseudomallei 

in agricultural land, since it has been shown to be able to reduce nitrate (Dance, 2000). 

The ability for B. pseudomallei to reduce nitrate and survive under anaerobic 

conditions is likely to be a factor aiding in its persistence within the host and the 

environment. 
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1.2.3 Virulence factors 

 B. pseudomallei encodes a wide array of different virulence factors aiding in 

colonisation and pathogenesis. Many mutagenesis studies have been under taken to 

determine the role of various virulence factors in the pathogenesis of melioidosis. 

These include the type III secretion system, capsular polysaccharide, 

lipopolysaccharide, flagella, and many excreted extracellular proteins such as 

haemolysins (proteases, lecitinases and lipases) (Ashdown & Koehler, 1990), toxins, 

such as rhamnolipids (Haussler et al., 2003), and possibly secondary metabolites such 

as syringolin A and glidobactin A (Groll et al., 2008)  (see Table 1.3 for details). 

 

1.2.4 Intracellular survival 

 Macrophages are an important part of the immune response to invading bacteria. 

During phagocytosis, bacteria become enclosed within the phagosome which matures 

to form a phagolysosome, following phagosome-lysosome fusion. The 

phagolysosome possesses a highly acidic environment containing various proteins 

and enzymes to aid in the destruction of intracellular bacteria (Flannagan et al., 2009). 

B. pseudomallei is an intracellular pathogen and can survive within a range of both 

professional and non-professional phagocytes, such as macrophages, epithelial cells, 

polymorphonuclear and mononuclear leukocytes, and alveolar macrophages (Ahmed 

et al., 1999; Jones et al., 1996; Pruksachartvuthi et al., 1990). Entry into phagocytic 

cells requires the presence of a functional bsa-T3SS, which is required for the 

formation of membrane protrusions, actin tails and escape from endocytic vesicles 

(Wiersinga et al., 2008). Following internalisation and subsequent release from 

endocytic vesicles, B. pseudomallei replicates intracellularly, avoiding various immune 

responses such as the induction of inducible nitric oxide synthase (iNOS), and forms 

actin based membrane protrusions required for cell-to-cell fusion/spreading and 

formation of multinucleate giant cells (MNGCs) (Kespichayawattana et al., 2000; 

Wiersinga et al., 2006) (Fig. 1.3). The formation of MNGCs is unique to B. 

pseudomallei, B. mallei and B. thailandensis infections. B. pseudomallei can cause 

apoptotic cell death of infected phagocytic and non-phagocytic cells lines, likely due 

to the induction of the caspase-1-dependent pathway (Kespichayawattana et al., 

2000). 
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Table 1.3 – B. pseudomallei virulence factors and mutant characteristics 

Virulence factors Role  Mutant characteristics Reference 

Capsular 

polysaccharide 

Virulence 

Required for protection against host serum 

cidal activity and opsonophagocytosis 

Antigen recognised by Th1 immune 

system 

wcb mutant attenuated for virulence in 

respiratory murine model and BALB/c mice 

Increased susceptibility to antimicrobials 

Susceptible to killing by polymorphonuclear 

neutrophils (PMNs) 

  

(Reckseidler et 

al., 2001; 

Warawa et al., 

2009; 

Wikraiphat et 

al., 2009)  

Lipopolysaccharide  

(O-antigenic 

polysaccharide moiety) 

Serum resistance 

Virulence 

Modulation of host cell response and 

control of intracellular fate inside 

macrophages 

Significant reduction in virulence in BALB/c mice 

Increased susceptibility to antimicrobials 

Susceptible to killing by PMNs and 

macrophages 

 

(Arjcharoen et 

al., 2007; 

DeShazer et al., 

1998; 

Wikraiphat et 

al., 2009) 

Flagella Motility 

Adhesion 

Aflagellate and non-motile 

Avirulent/reduced virulence during intranasal 

and intraperitoneal infection of BALB/c mice  

Retains virulence when using C. elegans or 

Syrian hamster models of infection 

Reduced bacterial load in lungs and spleens 

Still able to invade and replicate intracellularly 

(Chua et al., 

2003; Inglis et 

al., 2003; 

Tuanyok et al., 

2006; 

Wikraiphat et 

al., 2009) 
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fliC strongly down-regulated and fliD (flagella 

hook-associated protein) in acute model of 

infection (Syrian hamster model) 

fliD insertional mutant retains virulence in 

hamster infection model.  

Type III secretion 

system (T3SS-3) 

Secretion of effector proteins e.g. BopA 

and BopE 

Required for full virulence and interaction 

with host cells 

 

Significant attenuation of virulence in Syrian 

hamster model 

Reduced replication in J774A.2 macrophages 

Unable to escape from endocytic vacuoles due 

to disruption to the formation of membrane 

protrusions and actin tails 

Impaired intercellular spread and pathogenesis 

bsaZ mutant remains contained in vesicles 

during phagocytosis 

(Stevens et al., 

2002; Warawa 

& Woods, 2005) 

Type II secretion 

system 

Secretion of exoproducts such as 

phospholipase C, protease, and lipase 

Minor reduction in virulence in Syrian hamster (DeShazer et 

al., 1999) 

Type VI secretion 

system 

Virulence 

Injection of effector proteins into host cell 

cytosol 

Intracellular survival 

Δhcp1 LD50 > 103 in Syrian hamster model of 

infection 

Δhcp1 mutant exhibits a growth defect, is weakly 

cytotoxic to RAW 264.7 macrophages and is 

unable to form multinucleated giant cells 

tss-5 mutant exhibits a reduced ability to form 

plaques 

(Burtnick et al., 

2011; Galyov et 

al., 2010) 
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Attenuated for virulence 

Quorum sensing Cell density dependent signalling 

Synthesis of acylhomoserine lactones 

(AHLs) 

B. pseudomallei encodes three LuxI 

homologs and five LuxR 

 

Quorum sensing mutants display increased time 

to death and reduced organ colonisation (seen 

in spleen but not liver) in an aerosolized BALB/c 

infection 

Increase in LD50 in intraperitoneal challenge of 

Syrian Hamster 

Reduced biofilm formation 

Reduced virulence in murine model for 

intraperitoneal, intranasal and subcutaneous 

challenge 

Regulation of MprA metalloprotease on entry to 

stationary phase 

(Gamage et al., 

2011; Ulrich et 

al., 2004; 

Valade et al., 

2004; Wiersinga 

et al., 2006) 

Type IV pili Adherence pilA deletion mutant displays reduced adherence 

to human epithelial cells and reduced virulence 

in C. elegans and murine models 

(Essex-Lopresti 

et al., 2005) 

Isocitrate lyase Persistence factor Hypervirulent in murine model of infection (van Schaik et 

al., 2009) 

Siderophore Iron acquisition  

Known siderophores include malleobactin, 

pyochellin, cepaciachelin and cepabactin 

Acquire bound iron from lactoferrin and 

transferrin 

Siderophore mutants remain fully lethal in 

BALB/c mice following acute intranasal 

challenge 

(Kvitko et al., 

2012; Yang et 

al., 1993) 
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Lower organ burdens seen for lungs and 

spleens, but not liver, when mice were infected 

with quadruple iron acquisition mutant 

Secreted proteins 

(extracellular enzymes) 

e.g. haemolysin, protease, lipase 

Putative virulence factors 

 (Ashdown & 

Koehler, 1990) 

Phospholipase C B. pseudomallei encodes three distinct 

phospholipase C enzymes (plc-1, plc-2, 

and plc-3) 

Role in cleavage of phospholipid 

phosphatidylinositol (PC) to produce 

phophorylcholine and diacylglycerol 

plc1 and plc2 exhibit reduced plaque formation 

Reduction in plaque formation mainly due to loss 

of Plc-2 

plc2 mutant is significantly less cytotoxic 

plc-3 is significantly upregulated in infected liver 

plc-3 mutant exhibits a higher LD50 (4.5 x 103) 

when compared to the parental strain (< 10) 

(Korbsrisate et 

al., 2007; 

Tuanyok et al., 

2006) 

Lactonase protein A 

(LfpA) 

LfpA is similar to the eukaryotic protein 

regucalcin 

Regulates host cell response in vitro and 

virulence in vivo 

LfpA is upregulated when in contact with 

RAW26.47 macrophage-like cells 

lfpA is required for the expression of host 

osteoclast markers  

Required for optimal virulence 

ΔlfpA displayed no difference in intracellular 

replication in RAW-264.7 cells 

ΔlfpA displays increased LD50 in Syrian hamster 

model and BALB/c mice inhalation model of 

acute melioidosis  

ΔlfpA infection resulted in reduced expression of 

most chemokines and all osteoclast markers 

(Boddey et al., 

2007) 
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MviN Member of the mouse virulence factor 

family 

Gene expression influence by free-iron 

availability 

Increased LD50 in hamster model of infection and 

loss of ability to invade epithelial cells 

Slower growth rate  

(Ling et al., 

2006) 

RelA and SpoT Involved in synthesis of (p)ppGpp required 

for signalling  

Role in global stress response and 

regulation of virulence genes 

relA and spoT double mutant attenuated in G. 

mellonella and C57BL/6 black mice following 

intranasal challenge with either 2,500 CFU 

(acute infection) or 100 (chronic infection) CFU 

Double mutant displays a defect in stationary 

phase survival and intracellular replication within 

murine macrophages J774A.1 

(Muller et al., 

2012) 
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Phagosome-lysosome fusion within B. pseudomallei-infected melioidosis 

macrophages is slow and inefficient, and leads to an increased number of surviving 

bacteria within monocytes (Puthucheary & Nathan, 2006). Slow formation of 

phagolysosomes ensures intracellular survival of B. pseudomallei and allows it to 

persist and become latent. This may enable a relapse of melioidosis to occur once the 

patient becomes immunocompromised.  

Twenty two percent of B. pseudomallei genome undergoes a high amount of 

transcriptional adaptation to ensure its survival within macrophages. This includes the 

down-regulation of genes required for motility, aerobic respiration, amino acid and ion 

transport, replication and gene regulation. By contrast genes required for anaerobic 

metabolism show a degree of upregulation, highlighting the importance of anaerobic 

metabolism during intracellular survival (Chieng et al., 2012). The significance of this 

will be discussed later. 

 

1.2.5 Immune response  

 Internalisation of pathogenic bacteria by macrophage cells normally results in the 

induction of an immune response helping to clear the infection. Recognition of B. 

pseudomallei by the innate immune system is associated with recognition of ‘pathogen 

associated molecular patterns’ (PAMPs), by various toll-like receptors (TLRs) 

(Wiersinga et al., 2012). TLR2 is known to recognise B. pseudomallei LPS allowing 

the host immune system to respond and clear the infection, reducing bacterial load on 

the infected organs (Wiersinga et al., 2007). Both the innate and adaptive immune 

response are important for response to B. pseudomallei, with an infection often 

resulting in the induction of interferon gamma (IFN-γ), cytokines, interleukins (IL-6, IL-

15 and IL-10) and the activation of the complement system (Wiersinga et al., 2012). 

MyD88 has been shown to provide a protective response to B. pseudomallei infection, 

ensuring neutrophil recruitment to the site of infection (Wiersinga et al., 2008). 

 Complement opsonisation has been shown to be required for efficient uptake and 

killing of B. pseudomallei by neutrophils. In vitro deposition of complement C3 deposits 

on B. pseudomallei was critical for efficient clearing of infection by neutrophils, with 

the killing of internalised B. pseudomallei largely due to the generation of reactive 

oxygen species (ROS) (Woodman et al., 2012).  
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Figure 1.3 - Intracellular lifestyle of B. pseudomallei. a.) Invasion of host cells 

via a bsa type 3 secretion system (in blue); b.) Engulfment and subsequent lysis of 

endosomal membrane, along with the evasion of host defence mechanisms, such 

as iNOS, allows B. pseudomallei to survive and replicate intracellularly; c.) 

Formation of actin based protrusions, using BimA, allows cell to cell movement 

aiding in intracellular survival, spread and pathogenesis; d.) Formation of Giant 

Multinucleate cells (MNGC) (shown in orange), is regulated by RpoS and occurs via 

cell fusion which is unique to B. pseudomallei. Acute disseminated infection 

presents when the bacterium spreads to secondary sites such as organs and the 

blood. During chronic and latent infection B. pseudomallei persists within host cells. 

Figure is adapted from (Wiersinga et al., 2006). 
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 For pathogens to survive within macrophages they need to be able to cope with 

the production of ROS and reactive nitrogen species (RNS) produced directly or 

indirectly by NADPH oxidase or iNOS (Flannagan et al., 2009). B. pseudomallei can 

evade the immune response by interfering with iNOS production, (Utaisincharoen et 

al., 2001; Utaisincharoen et al., 2003). B. pseudomallei fails to activate interferon 

regulatory factor-1, iNOS production, or stimulate IFN-β production in mouse 

macrophages. Macrophages activated, and to a lesser extent dendritic cells, with both 

IFN-β and IFN-γ enhances the production of iNOS and TNF-α release aiding in the 

destruction of intracellular B. pseudomallei (Charoensap et al., 2009; Utaisincharoen 

et al., 2003; Utaisincharoen et al., 2006; Wiersinga et al., 2012). The inability to 

stimulate IFN-β production is thought to be due to B. pseudomallei unique LPS, which 

in other species stimulates its production via TLR4 signalling.  
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1.3 Respiratory pathways in prokaryotes 

 

Prokaryotes, unlike eukaryotic organisms, exhibit an extraordinary ability to utilise 

a diverse range of electron acceptors allowing for the colonisation of a range of 

different environments.  This respiratory flexibility exhibited by bacteria allows for the 

use of a range of electron acceptors such as oxygen, nitrogen oxides (Gonzalez et al., 

2006), selenium oxyanions (Butler et al., 2012), dimethyl-sulfoxide (DMSO) (Bilous & 

Weiner, 1985b), tetrathionate (Hensel et al., 1999), iron (Richardson, 2000) and other 

sulfur oxyanions (Roychoudhury, 2004).  

 

1.3.1 Aerobic respiration 

 The conservation of energy in the form of adenosine triphosphate (ATP) is 

fundamental to all life. Oxidative phosphorylation involves the transfer of electrons 

from energy donors such as NADH and FADH2 to oxygen, generating a proton motive 

force (PMF), to allow for the release of ATP from ATP synthase. The mitochondrial 

and prokaryotic electron transport systems display some similarities. Under aerobic 

conditions NADH transfers its electrons to oxygen resulting in the generation of a PMF 

across the membrane. This is achieved using various different dehydrogenases, 

oxidoreductase enzymes and freely diffusible quinones, required for electron transfer. 

The respiratory chain, in the mitochondrion of eukaryotes and Paracoccus 

denitrificans, is composed of NADH dehydrogenase a proton pump which transfers 

electrons via the quinone pool to cytochrome bc1 complex (ubiquinone: cytochrome c 

oxidoreductase), prior to electron transfer to cytochrome c oxidase using various c-

type cytochromes (Fig. 1.4) (Richardson, 2000; Simon et al., 2008). Succinate 

dehydrogenase (complex II) transfers electrons from succinate to the quinone pool, 

linking to the bc1 complex. E. coli, unlike P. denitrificans, has a truncated electron 

transport chain and does not possess a cytochrome bc1 complex, only transferring 

electrons through the Q-pool, to various terminal oxidoreductases. 

 

1.3.2 The nitrogen cycle  

Nitrogen is essential for all life and is a vital component of biomolecules 

including nucleic acids and proteins. The nitrogen cycle involves both reductive and 

oxidative reactions, requiring multiple different enzymes to allow for the use of nitrogen 

oxyanions in conservation of energy and the incorporation into biomolecules (Fig. 1.5). 
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Figure 1.4 – Organisation of the aerobic respiratory pathway required for the generation of a proton motive force. Diagram 

is a representation of the aerobic respiratory pathway seen in the mitochondria and in some prokaryotic species such as P. 

denitrificans. Succinate dehydrogenase (complex II) is not included. The electron transport pathway shown above involves the 

electron transfer from NADH dehydrogenase (proton pump) via the cytochrome bc1 complex to cytochrome c oxidase. Information 

from (Simon et al., 2008).  
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Denitrification, or anaerobic nitrate respiration, utilises a series of reductase 

enzymes (nitrate reductase - NAR; nitrite reductase – NIR; nitric oxide reductase – 

NOR; and nitrous oxide reductase – NOS) to sequentially reduce nitrate (NO3
-) to 

dinitrogen gas (N2) (Berks et al., 1995a; Richardson, 2000) (Fig. 1.6). The role of each 

reductase enzymes required for denitrification is detailed below (see sections 1.3.3 to 

1.3.4). This reaction predominately takes place under anaerobic conditions in the 

presence of nitrate and is found in many facultative or strict anaerobes. Nitrate 

reduction is coupled to proton translocation through a redox loop, involving electron 

transfer from formate dehydrogenase, via quinol oxidation and quinone reduction, to 

NAR, resulting in the generation of a PMF (Richardson & Sawers, 2002). The electrons 

during this reaction flow through a series of redox cofactors, for example various iron-

sulfur clusters [Fe-S] and a molybdenum cofactor, generating energy to drive electron 

transfer across the membrane.  

Respiratory nitrite ammonification (nitrate assimilation) allows organisms such 

as Wollinella succinogenes, Salmonella, Campylobacter jejuni and Escherichia coli to 

grow under anaerobic conditions via the reduction of nitrite to ammonia using the 

cytochrome c nitrite reductase (NrfA) (Simon, 2002). Anaerobic ammonium oxidation 

(ANAMMOX) is the second process in the nitrogen cycle that generates N2, utilising 

nitrite as an electron acceptor and ammonia as an electron donor, producing NO and 

hydrazine (N2H4) as intermediates (Hu et al., 2011; Kartal et al., 2011). The ANAMMOX 

pathway, required for the conversion of nitrite and ammonia to dinitrogen gas, is a key 

part of the nitrogen cycle, found in Planctomycete bacteria isolated from marine 

environments (Hu et al., 2011), and archae. Finally the conversion of ammonia to 

nitrate, via nitrification, is known to be primarily performed by soil dwelling bacteria 

such as Nitrosomonas europaea (Richardson, 2000). 
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Figure 1.5 – The nitrogen cycle.  Enzymes required for denitrification and nitrate 

assimilation are indicated on diagram; ANAMMOX (anaerobic ammonium oxidation) 

reactions shown in red, nitrate assimilation in green and nitrification in purple. Diagram 

altered from (Richardson, 2000; Moir, 2011a). 
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NAR NORNIR NOS

NO3
- + 2H+ NO2

- + 2H+

NO2
- + 2H2O NO + 2H2O

N2O + 2H+

N2 + H2O

2NO + 2H+

N2O + H2O

Nar/Nap NirS/NirK Nor Nos

Figure 1.6 – Prokaryotic denitrification pathway. Schematic outlines the reactions 

that occur during denitrification, allowing for the reduction of nitrate (NO3
-) to 

dinitrogen gas (N2); using NAR, NIR, NOR and NOS. There are two different types of 

dissimilatory NAR, Nar and Nap, and two types of NIR, NirS and NirK, shown in blue. 

See text for details.  
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1.3.3 Nitrate reductase 

There are three different types of nitrate reductases found in prokaryotes 

performing either assimilatory or dissimilatory functions, required for either the 

incorporation of nitrate into biomolecules or the generation of a PMF. A number of 

publications have demonstrated the importance of nitrate reductase in anaerobic 

respiration and virulence, and it is predicted that NAR will play some role in the 

pathogenesis of melioidosis. Therefore the structure and function of the different 

nitrate reductases will be discussed in more detail in sections 1.5 and 1.6. 

 

1.3.4 Nitrite reductase 

 There are three distinct types of nitrite reductases (NIR), catalysing either the 

reduction of nitrite to nitric oxide or the reduction of nitrite to ammonia. The respiratory 

nitrite reductases are periplasmic enzymes that are structurally distinct and contain 

both c-type cytochromes and d1 heme cofactors (cd1-Nir - NirS) or multiple copper 

clusters (Cu-Nir - NirK). Prokaryotes also have an assimilatory Nir (NADH dependent) 

which reduces nitrite to ammonia, using NADH as its electron source. 

 E. coli, unlike some other facultative anaerobes, does not possess a full 

denitrification pathway, but is able to respire anaerobically by reducing nitrate to 

ammonia, using formate as an electron donor. E. coli requires a periplasmic penta-

heme cytochrome c nitrite reductase (NrfA) to reduce nitrite to ammonia, utilising a 

soluble penta-heme cytochrome (NrfB) as its redox partner (Bamford et al., 2002; 

Clarke et al., 2008). NrfA can utilise both nitrite and nitric oxide as substrates and is 

required for respiratory reduction of nitrite to ammonia, nitric oxide detoxification, 

electron transport and energy conservation (Cole, 1996; Kemp et al., 2010; Mills et al., 

2008; Poock et al., 2002). 

 The second step in the denitrification pathway is catalysed by either a cytochrome 

cd1-type nitrite reductase (NirS) or copper containing nitrite reductase (NirK/Cu-Nir). 

Both NirS and Cu-Nir take electrons from the cytochrome bc1 complex via various c-

type cytochromes or cupredoxins, and catalyse the reduction of nitrite to nitric oxide. 

No prokaryotic species is known to encode both the cd1-Nir and the Cu-Nir within their 

genome. Both respiratory nitrite reductases are evolutionarily unrelated and the fact 

that no known prokaryote encodes both cd1-type and copper containing NIR indicates 
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that the presence of one type excludes the acquisition of the other (Jones et al., 2008; 

Moir, 2011a).  

 The structure and function of the cytochrome cd1-type nitrite reductase (NirS) is 

known for P. denitrificans, Pseudomonas aeruginosa and Thiosphaera pantotropha. 

This enzyme is a functional dimer composed of two subunits containing either a c-type 

heme domain required for electron uptake and electron transfer, or a d1-heme required 

for the reduction of nitrite to nitric oxide (Baker et al., 1997; Silvestrini et al., 1994; 

Timkovich et al., 1982). The P. aeruginosa cd1-type NIR is known to exhibit both 

reductase and oxidase activity, being capable of the reduction of NO2
- to NO and the 

reduction of O2 to H2O (Rinaldo et al., 2008).  The cytochrome c domain in one of the 

dimers is required for the formation of a complex with c-type cytochromes or 

cupredoxin. Nitrite binds to P. aeruginosa cd1-type heme when in the reduced state 

(cd2+d1
2+), and is dehydrated to give oxidised d1 heme and nitric oxide (Rinaldo et al., 

2008). Variations in electron transfer rate between cd1-type NIR from P. stutzeri and 

P. aeruginosa have been noted due to differences in nitrosyl d1-heme complex and 

altered solvent accessibility, with faster electron transfer rates seen with P. stutzeri 

cd1-type NIR (Radoul et al., 2012). The formation of a functional NirS in P. aeruginosa 

requires the successful incorporation of both c type and d1-type hemes, the 

incorporation of which is thought to occur using a transient membrane associated 

complex composed of NirF, NirN and NirS (Nicke et al., 2013)    

 The copper nitrite reductase is sub-divided into different groups based on their 

colour (blue or green) and the structure is known for a number of species; such as 

Alcaligenes xylosoxidans (blue Cu-Nir), A. faecalis (green Cu-Nir), Achromobacter 

cycloclastes (green Cu-Nir) and Neisseria gonorrhoeae (Abraham et al., 1993; Adman 

et al., 1995; Boulanger & Murphy, 2002; Murphy et al., 1995; Prudencio et al., 1999). 

The copper nitrite reductase is a periplasmic enzyme composed of three identical 

monomers, which form a trimer containing type I and type II copper ligands. Type I 

copper is required for electron transfer from pseudoazurin, cupredoxins, or azurin, 

whereas the type II copper is required for the one electron reduction of nitrite to nitric 

oxide (Boulanger & Murphy, 2002; Kukimoto et al., 1994; Murphy et al., 2002). In 

comparison to other Cu-Nir the Neisseria AniA accepts electrons from a string of c-

type cytochromes (c4, c2 and c5) via the cbb3 cytochrome oxidase, which mediates 

electron transfer from the bc1 complex (Boulanger & Murphy, 2002; Hopper et al., 

2009; Hopper et al., 2013).The orientation of the methionine (Met150) side chain in 
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the type I copper structure is known to contribute to the different coloured nitrite 

reductases, either blue or green (Inoue et al., 1998).  

 Recently a different type of Cu-Nir has been characterised in both Ralstonia 

picketti and Pseudoalteromonas haloplanktis. These Cu-Nir possess a tethered 

cytochrome c domain allowing for self-electron transfer from cytochrome c to the type 

I copper ligand (Antonyuk et al., 2013; Tsuda et al., 2013). In comparison to most other 

species Hyphomicrobium denitrificans encodes a hexameric, rather than trimeric, Cu-

Nir containing twelve type I and six type II copper atoms (Nojiri et al., 2007). 

  N. meningitidis and N. gonorrhoeae are obligate human pathogens that have a 

truncated denitrification pathway containing only AniA (a Cu-Nir) and NorB, lacking 

both NAR and NOS, both of which are found in other Neisseria species. (Barth et al., 

2009). The Neisseria AniA is classified as a class II Cu-Nir along with the 

archaebacteria Haloarcula marismortui, and is phylogenetically related to the 

predicited class II B. pseudomallei Cu-Nir (Boulanger & Murphy, 2002; Fig. 2). Unlike 

other Cu-Nir, AniA is an outer-membrane lipoprotein required for anaerobic growth on 

nitrite, removal of oxidative radicals, and is known to play a role in evasion of the 

immune response and human serum resistance by interacting with the complement 

system (Cardinale & Clark, 2000; Hoehn & Clark, 1992; Mellies et al., 1997). The 

crystal structure is known for the soluble domain of AniA (sAniA) from N. gonorrhoeae, 

lacking the N-terminal palmityl group required for binding to the outer-membrane. AniA 

like other Cu-Nir is trimeric in structure and contains all key residues for binding of the 

type I and type II copper atoms (Boulanger & Murphy, 2002).  

 The expression of Neisseria AniA is tightly regulated by FNR, FUR, NarP and 

NsrR on the switch between aerobic and anaerobic respiration (Edwards et al., 2012). 

The aniA from N. gonorrhoeae and N. meningitidis, although very similar, exhibits 

different levels of expression in the presence of FNR, due a single nucleotide 

polymorphism (SNP) in the promoter region. This SNP in the aniA promoter region of 

N. gonorrhoeae results in a weaker FNR binding, compensated for by an increased 

aniA promoter affinity of NarP (Edwards et al., 2012). This differential tuning of aniA 

expression by both Neisseria species is thought to be due to the different lifestyles 

that they lead. Interestingly, although N. meningitidis encodes an aniA, many 

mutations have been noted to occur in a number of isolates resulting in the premature 

stop codon, large deletion or amino acid replacement (Moir, 2011b; Stefanelli et al., 

2008). The loss of a functional AniA from N. meningitidis indicates AniA is not required 
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for meningococcal survival and N. meningitidis may be switching to a solely aerobic 

lifestyle (Moir, 2011b). In comparison to N. meningitidis strains, N. gonorrhoeae is a 

facultative anaerobe and the majority of strains are thought to maintain the capacity to 

respire anaerobically on nitrite via AniA. Recently evidence has pointed towards N. 

gonorrhoeae AniA to be expressed on the cell surface, with a modified form of AniA 

being able of eliciting an immune response, pointing towards its potential use as a 

vaccine candidate (Shewell et al., 2013).  

 

1.3.5 Nitric oxide reductase 

 Bacterial nitric oxide reductases (NOR) are required for the two electron reduction 

of nitric oxide (NO) to nitrous oxide (N2O). There are two subclasses of NOR defined 

by their electron transfer centres and electron donors, either c-type cytochrome (for 

cNOR) or quinol (for qNOR) (Tavares et al., 2006).  

 NOR from P. denitrificans and P. aeruginosa is an integral membrane iron 

containing heterodimeric enzyme composed of a large catalytic cytochrome c subunit 

(NorB) and small membrane anchor subunit (NorC) (Hendriks et al., 1998; Hino et al., 

2010). The NorB subunit displays similarities to heme-copper oxidases family proteins. 

However unlike members of the heme-copper oxidase family NorB does not contain a 

copper (CuB) dinuclear center but instead possesses two heme irons (heme b and 

heme b3) and a non-heme iron (FeB) (Hendriks et al., 1998; Hino et al., 2010; 

Watmough et al., 2009). NorC is a membrane-anchor cytochrome c containing a heme 

c, which serves as an intermediate electron acceptor for the periplasmic electron 

donors pseudoazurin, cytochrome c555 or cytochrome c552 (Duarte et al., 2014; 

Hendriks et al., 1998; Hino et al., 2010; Watmough et al., 2009). When in the fully 

reduced active form Pseudomonas nautica NOR reduces NO to N2O, following the 

formation of a non-iron heme FeB-mononitrosyl catalytic intermediate, resulting in the 

formation of the N-N bond (Duarte et al., 2014). 

 NorBC, unlike heme-copper oxidase family members (e.g. cytochrome c 

oxidase), is not a proton pump, but transfers electrons from the periplasm to the active 

site of NorB found within the inner membrane (ter Beek et al., 2013). Recent structural 

analysis on the cytochrome c dependent NOR from P. aeruginosa has shown that, in 

comparison to cytochrome c oxidase, cNOR exhibits no structural changes on ligand 

binding, other than a small change to the Fe-Fe distance in the active site that allows 
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for efficient formation of the N-N bond (Sato et al., 2013). This lack of a conformational 

change in cNOR on ligand binding is thought to explain the lack of a role of NOR in 

proton translocation (Sato et al., 2013).  

 Unlike P. denitrificans and P. aeruginosa, Alcaligenes eutrophus genome 

encodes two iso-functional norB and norZ genes, both of which are required for 

anaerobic growth and denitrification (Cramm et al., 1997). Neither A. eutrophus norB 

or norZ genes have an adjacent norC homolog, however both contain an extra amino-

terminal extension not seen in other prokaryotic NOR (Cramm et al., 1997). 

 

1.3.6 Nitrous oxide reductase 

 Nitrous oxide reductase (NOS) catalyses the final step in the denitrification 

pathway, reducing nitrous oxide (N2O) to dinitrogen gas (N2). The NOS from P. 

denitrificans and P. nautica are homodimers of monomers containing two redox active 

copper centres, CuA and CuZ (Brown et al., 2000; Haltia et al., 2003). The NOS CuA is 

the electron transfer and entry site, which is known to share structural homology with 

the CuA site found in cytochrome oxidase. The CuZ site is the active site of NOS 

required for N2O binding and contains four copper ions coordinated by several 

histidine residues in a tetrahedral orientation (Brown et al., 2000; Haltia et al., 2003). 

Recently the NOS tetranuclear copper active site (CuZ) has been shown to have two 

structural forms; the fully reduced 4CuS CuZ
* form, required for catalysis, and a 4Cu2S 

CuZ form (Johnston et al., 2014). 

 Biogenesis of NosZ CuZ occurs within the periplasm and requires NosFYD (ABC 

transporter) and the Tat translocated NosL (copper periplasmic chaperone protein), 

both of which are encoded on an operon with nosZ (Zumft, 2005). The function of 

NosZ is dependent on NosR (a membrane-bound iron sulfur flavoprotein) and NosX 

(FAD-containing protein) which are thought to function during electron transport 

recruiting electrons from quinol to NOS to help maintain CuZ in its active state (Zumft, 

2005). The expression of P. denitrificans nosRZDFYLX (encoding NosZ), mediated by 

NosR and NosC, is dependent on the presence of copper, with a reduction in 

expression and increased abundance of N2O in copper limited medium (Sullivan et al., 

2013). 

 The NOS from Pseudomonas stutzeri is transcribed in three transcriptional units; 

nosZ (main enzyme), nosR and nosDFY. These are under the control of six different 

promoter regions which required for transcriptional response to denitrifying conditions, 
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aerobosis and the maintenance of a low level of transcription to ensure the constitutive 

expression of nosZ (Cuypers et al., 1995). Electron transfer to NOS in P. denitrificans 

occurs via the cytochrome bc1 complex through pseudoazurin and c-type 

cytochromes. In comparison Wolinella succinogenes electron transport to NosZ 

occurs directly through the quinol pool from Nap, as like E. coli, W. succinogenes lacks 

a cytochrome bc1 complex (Kern & Simon, 2009). 

 

1.4 Molybdopterin biosynthesis and molybdoenzymes 

 

Molybdenum (Mo), an essential trace element, is found in a wide range of different 

proteins. The majority of molybdoproteins are oxo-transferases catalysing reactions 

involving the transfer of oxygen to a donor/acceptor molecule (Hille, 1996). 

Molybdenum dependent enzymes fall into two distinct categories; bacterial 

nitrogenase containing an iron based molybdenum cofactor (Fe-Moco) in their active 

site and pterin based molybdoenzymes. This second group of molybdoenzymes 

contains three different subfamilies each with distinct active site structures. These 

include xanthine oxidase, sulfite oxidase family proteins and the dimethyl sulfoxide 

(DMSO) reductase family proteins (Gonzalez et al., 2006; Hille, 2002; Schwarz et al., 

2009) (see Fig. 1.7 and 1.8).  

Tungsten has been shown to be able to perform a similar biochemical function to 

molybdenum and has been found in replacement of Mo in various molybdoenzymes. 

For example under microaerobic conditions C. jejuni formate dehydrogenase activity 

was shown to be enhanced in the presence of 1 mM sodium tungstate, suggesting it 

to use tungsten rather than molybdenum for its catalytic activity (Smart et al., 2009). 

The same study also indicated that C. jejuni tri-methylamine N-oxide (TMAO) 

reductase was able to utilise both molybdenum and tungsten as catalytic cofactors, 

suggesting C. jejuni to have a branched pterin biosynthesis pathway allowing for the 

synthesis of both molybdopterin and tungstopterin cofactors (Smart et al., 2009). 

Similarly, tungsten has been shown to be able to substitute molybdenum in E. coli 

TMAO reductase (Buc et al., 1999). Tungstate is also known to inhibit molybdoprotein 

function by replacing molybdenum in the active site. This inhibition of catalytic activity 

on addition of tungstate is known to occur in vitro, as seen with Paracoccus 

pantotrophus periplasmic nitrate reductase and the formate dehydrogenase from 

Methanobacterium formicicum (Gates et al., 2003; May et al., 1988). 
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1.4.1 Molybdopterin cofactor biosynthetic pathway 

 The molybdopterin cofactor (Moco) is synthesised via a conserved pathway found 

in both eukaryotic and prokaryotic organisms. The E. coli molybdopterin biosynthetic 

pathway is a four step enzymatic pathway involving various molybdate dependent 

biosynthetic proteins and transport systems (Fig. 1.7) (Leimkuhler et al., 2011; 

Schwarz et al., 2009). The first step in the pathway is catalysed by MoaA and MoaC 

and involves the conversion of guanosine triphosphate (GTP) to the pterin 

intermediate cyclic pyranopterin monophosphate (cPMP). Following this reaction MPT 

synthase converts cPMP to molybdopterin (MPT), adding on the dithiolene ligands 

essential for the function of the cofactor (Leimkuhler et al., 2011). MPT synthase is a 

heterotetramer composed of two MoaE and one MoaD subunit (MoaE2MoaD).  MPT 

synthase is activated by MoeB (a sulfurase) in an ATP dependent manner, following 

the formation of a MoaD-MoeB complex (Leimkuhler et al., 2011). During this 

activation reaction MoeB is used to help regenerate the active MPT synthase, 

catalysing the adenylation of the C-terminal glycine residue of MoaD (Schwarz et al., 

2009). Mycobacterium tuberculosis is known to encode multiple gene homologs 

required for the first two steps of molybdopterin biosynthesis (e.g. moaA, moaC, 

moaE, moaD and moeB). Along with these M. tuberculosis encodes a fused MPT 

synthase (MoaX), thought to display both moaD and moaE activities (Williams et al., 

2011). Expression of M. tuberculosis MoaX was able to fully restore Moco biosynthesis 

in a M. smegmatis moaD2-moaE2 mutant.  

 The third step requires transport of molybdate (MoO4
-) into the cell, using a high 

affinity transport system (ModABC) (Grunden & Shanmugam, 1997), and MogA and 

MoeA, required for the conversion of MPT to the molybdenum cofactor (Mo-MPT – 

Moco). MogA is required to activate MPT, using an adenylation reaction, to allow for 

MoeA to efficiently ligate Mo to MPT (Leimkuhler et al., 2011). The sulfite oxidase 

family of molybdoproteins is the only known member to bind Mo-MPT (Brokx et al., 

2005), requiring no final modifications of Moco as seen for other molybdoenzymes. 

The final step in the pathway is catalysed by MobA or MocA and involves the addition 

of various nucleotides (such as GMP and CMP) to Moco, to form the cofactor required 

for either the DMSO reductase family (Mo-bisMGD) or the xanthine oxidase family  
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Figure 1.7 – Molybdopterin biosynthesis pathway in E. coli.  The E. coli 

molybdopterin biosynthetic pathway is a four step enzymatic pathway involving 

multiple biosynthetic and transport proteins, required for the generation of the 

molybdenum cofactor (Moco). Different types of molybdoenzymes require different 

forms of the molybdenum cofactor (Moco) (Fig. 1.8), modified by the addition of a 

nucleotide in the final steps of the pathway using either MobA or MocA. For the 

DMSO reductase family Moco is modified via the addition of GMP, generating the 

Mo-bisMGD cofactor. In comparison the xanthine oxidase family Moco is modified 

by the covalent attachment of cytosine nucleotide (CMP), generating Mo-MCD. The 

sulfite oxidase family is the only molybdoenzyme that does not have a modified 

form of Moco. See text for more details on the pathway and function of different 

molybdoenzymes. Diagram generated using information from Leimkuhler et al.  

(2011).  
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(Mo-MCD) (Leimkuhler et al., 2011; Xi et al., 2000). The final stage of Moco 

biosynthesis is known to occur on a complex made up of MogA, MoeA, MobA and 

MobB. This complex is required for the efficient delivery of Mo-bisMGD cofactor to 

apo-nitrate reductase and occurs in a NarJ assisted manner (Vergnes et al., 2004). 

 

1.4.2 Nitrogenases 

 Bacterial nitrogenase is the only molybdoenzyme that contains a non-pterin 

based molybdenum cofactor. Nitrogenases require both an iron based molybdenum 

cofactor (Fe-Moco; Mo-3Fe-3S) and an iron-sulfur cluster [4Fe-3S] for electron 

transfer (Schwarz et al., 2009). Nitrogenases are found in various nitrogen-fixing 

bacteria and are required for the reduction of dinitrogen to ammonia, a reaction which 

occurs in an ATP dependent manner (Burgess & Lowe, 1996; Seefeldt et al., 2009). 

 

1.4.3 DMSO reductase family 

 All DMSO reductase family members require a Mo-bisMGD as their catalytic 

cofactor (Kisker et al., 1997). The molybdenum atom in this cofactor is coordinated by 

two pterin moieties each with a guanine monophosphate (GMP), which together form 

the molybdenum guanine dinucleotide (MGD) (Fig. 1.8 b) (Schwarz et al., 2009). 

DMSO reductase family members are diverse in their structure and function but share 

similarities in their organisation and cofactors they contain; often being bound to the 

inner membrane or cytoplasmically orientated. DMSO reductase family members 

include the dissimilatory nitrate reductase, formate dehydrogenase, DMSO reductase, 

biotin-sulfoxide reductase and TMAO reductase (Kisker et al., 1997; Leimkuhler et al., 

2011). The majority of these enzymes function in oxygen limiting environments and 

are required for the generation of a PMF.  

 Rhodobacter capsulatus and E. coli DMSO reductases have been studied in 

detail (Cheng et al., 2005; McAlpine et al., 1998; Sambasivarao & Weiner, 1991). E. 

coli DMSO reductase is composed of catalytic subunit (DmsA) containing a Mo-

bisMGD cofactor linked to a high spin Fe-S cluster (FS0) (Tang et al., 2011), DmsB 

subunit containing four [4Fe-4S] clusters required for electron transfer, and an integral 

membrane subunit (DmsC) allowing transfer of electrons from the menaquinol pool in 

the inner membrane (Weiner et al., 1992) . E. coli DMSO reductase is encoded by the  
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Figure 1.8 – Chemical structure of different molybdenum cofactors. a.) 

molybdopterin; b.) Mo-bisMGD; c.) Sulfite oxidase family cofactor; d.) Xanthine 

oxidase family cofactor. Molybdenum ion is shown in red. Figure altered from 

(Schwarz et al., 2009).  

 

a.) 

b.) 

c.) 

d.) 
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dmsABC operon and is required for anaerobic growth on DMSO (Bilous & Weiner, 

1985b; Sambasivarao & Weiner, 1991). DMSO reductase catalyses the reduction of 

DMSO to DMS, in a reaction linked to oxygen atom transfer and electron transfer via 

the oxidation of Mo (IV) to Mo (V) (McAlpine et al., 1998). The DMSO reductase from 

R. capsulatus is known to bind either tungsten (W) or molybdenum (Mo) within its 

catalytic site (Stewart et al., 2000). R. capsulatus W-DMSO reductase, a 

tungstoenzyme, displays higher levels of activity compared to Mo-DMSO, but does not 

catalyse the oxidation of DMS (Stewart et al., 2000). 

 DmsAB are Tat-translocated into the periplasm by the Tat secretion system, prior 

to binding to DmsC (Stanley et al., 2002). Functional assembly and maturation of the 

DMSO reductase enzyme requires the DmsD chaperone protein (Ray et al., 2003). 

The DmsD chaperon has recently been shown to specifically recognise the 

hydrophobic leader peptide of DmsA, containing a twin arginine (RR) leader sequence 

(Winstone et al., 2013). Recent analysis of an E. coli DmsABC variant (DmsA-

Cys59Ser) has revealed a link between FS0 and the Mo-bisMGD cofactor (Tang et 

al., 2013). This same study also revealed Mo-bisMGD to act as a chemical chaperone, 

ensuring correct assembly for DmsABC (Tang et al., 2013). 

 E. coli encodes two structurally related but distinct formate dehydrogenase 

isoenzymes; formate dehydrogenase-N (Fdh-N) and formate dehydrogenase–O (Fdh-

O/FdoGHI) that are known to act as electron transfer sinks (Abaibou et al., 1995; 

Jormakka et al., 2003). Formate dehydrogenase is required for the oxidation of 

formate to carbon dioxide (CO2) and H+ and plays a role in the electron transfer to 

nitrate reductase (Richardson & Sawers, 2002). FdoGHI contains a 

selenomolybdenum polypeptide in the catalytic site for formate oxidation (Benoit et al., 

1998). FdoGHI is required for the transition from aerobic to anaerobic growth, along 

with NarZYV, both being expressed under aerobic conditions (Abaibou et al., 1995).  

In comparison Fdh-N is the major electron donor for anaerobic nitrate respiration, 

mediating electron transfer via menaquinone to NarGHI (Jormakka et al., 2002a; 

Jormakka et al., 2002b; Jormakka et al., 2003).  

 R. capsulatus encodes an fdsGBACD operon, required for the formation of the 

oxygen tolerant NAD+-dependent formate dehydrogenase, that contains a Mo-

bisMGD cofactor, FMN-cofactor and various iron-sulfur clusters ([4Fe-4S] and [2Fe-

2S]) (Hartmann & Leimkuhler, 2013). The fdsGBACD operon is located downstream 

of moaD2 and moaE, and encodes FdsC and FdsD which do not form part of the 
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mature formate dehydrogenase complex (Hartmann & Leimkuhler, 2013). FdsC is a 

chaperone protein that has recently been shown to bind specifically with Mo-bisMGD 

cofactor and interact with molybdopterin biosynthesis proteins, prior to cofactor 

insertion (Bohmer et al., 2014).  

 Nitrate reductase is a member of the DMSO reductase family, requiring a Mo-

bisMGD cofactor for the reduction of nitrate to nitrite. The structure and function of 

nitrate reductase required for the assimilation or dissimilation of nitrate will be 

discussed in more detail in section 1.5.  

 

1.4.4  Sulfite oxidase family 

 Unlike other molybdoenzymes, the sulfite oxidase is structurally distinct and is the 

only molybdoprotein containing an unmodified Mo-MPT cofactor (Fig. 1.7 c). E. coli 

sulfite oxidase (YedYZ) is a heterodimer, composed of YedY and YedZ subunits.  

YedY is the catalytic subunit containing a Tat leader signal sequence and Mo-MPT 

cofactor. YedZ a membrane-intrinsic cytochrome b subunit acting to anchor the protein 

to the membrane and provide YedY with a redox partner (Brokx et al., 2005; Loschi et 

al., 2004). Kinetic analysis has shown YedY to possess no detectable sulfite oxidase 

activity, exhibiting instead reductase function in response to TMAO, dimethyl sulfide 

(DMS), and methionine sulfoxide (Loschi et al., 2004). YedY from E. coli is thought to 

function as an oxidoreductase, exhibiting catalytic activity towards S- and N-oxides 

(Iobbi-Nivol & Leimkuhler, 2013). 

  

1.4.5 Xanthine oxidase family  

 Xanthine oxidase family members include xanthine oxidase (XdhABC), xanthine 

dehydrogenase and aldehyde oxidoreductase (PaoABC), which are characterised by 

the presence of a Mo-MPT cofactor (Iobbi-Nivol & Leimkuhler, 2013; Kisker et al., 

1997) (Fig. 1.8 d). Xanthine oxidase and xanthine dehydrogenase are required for 

purine metabolism. XdhABC is required for the conversion of xanthine to hypoxanthine 

and uric acid. E. coli aldehyde oxidoreductase is required for the detoxification of 

aromatic aldehydes under certain growth conditions (Iobbi-Nivol & Leimkuhler, 2013). 

The structure of Desulfovibrio gigas aldehyde oxidoreductase was solved and shown 

to contain a molybdenum cytosine dinucleotide and a [2Fe-2S] center (Romao et al., 

1995). In comparison the aldehyde oxidoreductase from archaeon Pyrococcus 
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furiosus contains a tungsto-bispterin cofactor, containing tungsten rather than 

molybdenum as its catalytic cofactor (Sevcenco et al., 2010). 

 

1.5 Nitrate reductase 

 There are three types of nitrate reductase enzymes required for assimilation 

(Nas) or the dissimilation of nitrate (NapA and NarGHI) (Table 1.4). All nitrate 

reductase enzymes require a Mo-bisMGD cofactor, associated with nitrate binding, 

and a [4Fe-4S] cluster to facilitate electron transfer to molybdenum. Nitrate reductase 

enzymes, such as the NarGH from P. pantotrophus and assimilatory nitrate reductase 

(NarB) from Synechococcus elongates (Jepson et al., 2004), are known require 

reductive activation for catalysis (Field et al., 2005). During catalysis the molybdenum 

ion cycles between oxidation states, Mo (VI), Mo (V) and Mo (IV). Nar catalyses an 

oxo-transferase reaction were the oxidised Mo (VI) is reduced to Mo (IV) on the 

reduction of nitrate to nitrite; with the intermediate Mo (V) state thought to be 

associated with NO3
- binding (Jepson et al., 2004; Jormakka et al., 2004). 

  

1.5.1 Membrane-bound nitrate reductase 

 The crystal structure of E. coli membrane-bound quinol-nitrate oxidoreductase, 

also referred to as NarGHI, has been solved to a 1.9 Å resolution (Bertero et al., 2003) 

(Fig.1.9). NarGHI is a heterotrimeric enzyme composed of two NarGHI homodimers. 

NarG (140 kDa) is the catalytic subunit of the enzyme, containing a high spin [4Fe-4S] 

cluster (FS0), coordinated by one histidine and three cysteine residues (amino acid 

sequence – HxxxCxxxC(x)nC) (Jormakka et al., 2004; Rothery et al., 2004) and a Mo-

bisMGD cofactor required for the two electron reduction of nitrate to nitrite (Bertero et 

al., 2003). The N-terminus of NarG, forms a ‘tail’ (an extended β hairpin structure) 

which forms tight hydrogen bonds with the electron transfer subunit NarH. NarH (58 

kDa) contains three [4Fe-4S] clusters (FS1-3) and one [3Fe-4S] cluster (FS4), 

providing an efficient electron transport link between NarI and NarG (Fig. 1.7 c) 

(Bertero et al., 2003; Jormakka et al., 2004). NarGH are anchored to the cytoplasmic 

side of the inner membrane by the transmembrane subunit NarI (Bertero et al., 2003). 

NarI (20 kDa) contains two heme prosthetic groups, heme bP/bD, and provides a quinol 

binding and oxidation site to link the electron transfer from menaquinol or ubiquinol to 

the iron-sulfur clusters in NarH and Mo-bisMGD in NarG (Bertero et al., 2003). The 
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heme bD of NarI is part of the quinol binding and oxidation site that exhibits 

heterogeneity depending on the occupancy of the Q-site, either bound to quinone or 

quinone-free (Fedor et al., 2014). 

 The Mo-bisMGD cofactor in NarG is coordinated by the four cis-thiolate groups 

from Mo-bisMGD and either a monodentate or bidentate interaction with the oxygen 

atom(s) from the carboxylate ligand from asparagine, Asp222 (Bertero et al., 2003; 

Jormakka et al., 2004). This difference was thought to reflect potential structural 

flexibilities in the Mo active site (Jormakka et al., 2004). 

 Unlike other members of the DMSO reductase family, the Mo in NarGHI is 

coordinated by an Asp (D) residue. This alternative coordination of Mo lead to the 

structural classification of NarGHI as a type II (D-group) molybdoenzyme, distinct from 

type I molybdoenzymes, such as formate dehydrogenase (Jormakka et al., 2004). 

These different classes of molybdoenzymes often differ in the coordination of FS0. In 

NarGHI the iron sulfur cluster is coordinated by one histidine and three cysteine 

residues (HxxxCxxxC(x)nC), whereas the Fe-S cluster in formate dehydrogenase, 

periplasmic nitrate reductase and assimilatory nitrate reductase is coordinated by 

three cysteine residues, CxxxCxxxC(x)nC (Jormakka et al., 2004; Magalon et al., 

1998). 

 The unique coordination of the molybdenum cofactor by an Asp residue is seen 

in bacterial NarGHI and a number of archael nitrate reductases and selenate 

reductases (Martinez-Espinosa et al., 2007). Unlike most NarGHI, a number of archael 

nitrate reductase enzymes are periplasmically orientated, due to the presence of a 

twin arginine motif (RR) which allows for translocation through the Tat apparatus 

(Martinez-Espinosa et al., 2007). This periplasmic orientation of the catalytic subunit 

is also seen for Thauera selenatis SerA (Martinez-Espinosa et al., 2007). SerA is the 

catalytic subunit of the selenate reductase (SerABC), a molybdoenzyme required for 

the reduction of selenate to selenite under anaerobic conditions (Butler et al., 2012). 

 NarGHI is encoded on an operon containing a chaperone protein (NarJ), 

nitrate/nitrite antiporter (NarK) and a two component system (NarXL), involved in its 

regulation. NarJ is critical for the proper folding, assembly and incorporation of the 

molybdenum cofactor, and the formation of a functional NarGHI protein (Blasco et al., 

1998). The N-terminal region of NarJ specifically recognises the N-terminus of NarG 

(1-15 peptide), and upon binding causes a conformational change allowing for efficient  
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 Nas Nar Nap 

Function NO3
- assimilation NO3

- respiration NO3
- reduction 

Location Cytoplasm  Membrane-bound Periplasm 

Structural gene operon nasFEDCBAb narGHJIa 

narZYWV 

napFDAGHBCa 

Function Biosynthesis of N compounds  PMF generation Denitrification and redox balancing 

Prosthetic groups Mo-bisMGD, Fe-S clusters, 

FAD 

Mo-bisMGD, Fe-S clusters, b-

type cytochrome 

Mo-bisMGD, Fe-S clusters, c-type 

cytochrome 

Regulationd   narXLc narQPc 

Response to: nitrate/nitrite  Yes Yes Yes 

    

  Fnre Fnr 

                    Absence of O2 Yes Yes No/Yes 

    

a in Escherichia coli K12 (Gonzalez et al., 2006) 

b  in Bacillus subtilis (Gonzalez et al., 2006) 

c Two component system regulation (Gonzalez et al., 2006; Stewart, 1993)  

d Differences have been reported in different bacterial species 

e Senses cellular oxidation status.  

Table has been altered from (Moreno-Vivian et al., 1999) 

Table 1.4 – Prokaryotic nitrate reductases  
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NarI

NarH

NarG

heme bP/bD

[Fe-S] clusters

Mo-bisMGD

heme bD

heme bP

FS1

FS2

FS3

FS4

FS0

Mo-bisMGD

Figure 1.9 – Structure of E. coli NarGHI (PDB: 1Q16).  a.)  Structure of E. coli 

NarGHI (PDB number: 1Q16) (Bertero et al., 2003). Each subunit is individually 

coloured; NarI (blue), NarH (red) and NarG (yellow). b.) NarGHI ligands (heme bP/bD, 

[Fe-S] clusters and Mo-bisMGD) required for both electron transfer and nitrate 

reduction, shown in the same orientation as the full protein structure in (a.). c.) Redox 

cofactors and electron transfer through NarGHI. Image created using DS Visualizer 

3.5 software. See text for details.  

a.) Structure of E. coli NarGHI b.) Ligands c.) Redox cofactors  
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folding and assembly of NarGHI (Lorenzi et al., 2012; Zakian et al., 2010). NarJ binds 

to two distinct sites on NarG, one for membrane anchoring of the apo-enzyme and 

one involved in the incorporation of the molybdenum cofactor (Vergnes et al., 2006). 

Once Moco is formed a MobA, MobB, MogA and MoeA complex interact with NarGH 

in a NarJ assisted manner transferring Moco forming the mature nitrate reductase 

(Vergnes et al., 2004).  

 The crystal structure for NarK (nitrate/nitrite exchanger) has recently been solved, 

showing it to contain a nitrate signature motif (Zheng et al., 2013). The substrate 

translocation pathway of NarK contains positively charged amino acid residues 

allowing for efficient translocation of NO3
- and NO2

- across the membrane via a 

proposed ‘Rocker Switch’ mechanism for ion exchange (Zheng et al., 2013).  

 E. coli and Salmonella typhimurium are known to encode a second membrane-

bound NAR known as the cryptic nitrate reductase (NarZYWV). E. coli NarZYWV 

unlike NarGHI is constitutively expressed under aerobic conditions, and is regulated 

on the onset of stationary phase by RpoS and repressed under anaerobic conditions 

by FNR (Chang et al., 1999; Moreno-Vivian et al., 1999). S. typhimurium NarZYV is 

positively regulated by carbon starvation, and is required for carbon-starvation-

inducible thermo-tolerance, hydrogen peroxide resistance and acid tolerance (Spector 

et al., 1999). 

 The control of the nitrate reductase operon (narKGHJI) has been studied in detail 

in a number of bacterial species. These regulatory systems range from the cAMP-

dependent regulator GlxR in Corynebacterium glutamicium (Nishimura et al., 2010), 

ArcAB, Fur in Salmonella (Teixido et al., 2010), the Res system in Bacillus subtilis, 

NarXL and FNR (fumarate and nitrate reductase regulator) in a number of 

proteobacteria including P. aeruginosa, B. subtilis, E. coli, Salmonella spp., and 

Paracoccus (Bonnefoy & Demoss, 1994; Egan & Stewart, 1990; Fink et al., 2007; 

Hartig et al., 1999; Nakano & Zuber, 1998; Stewart, 1993).  

 

1.5.2 Periplasmic nitrate reductase 

 Many proteobacteria species contain both a membrane-bound and periplasmic 

nitrate reductase (Nap) required for dissimilation of nitrate. The crystal structure for 

the heterodimeric periplasmic nitrate reductase (NapAB) from Rhodobacter 

sphaeroides and Desulfovibrio desulfuricans, and monomeric NapA from E. coli have 
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been solved (Arnoux et al., 2003; Dias et al., 1999; Jepson et al., 2007). The catalytic 

subunit, NapA, contains Mo-bisMGD cofactor and [4Fe-4S] (Arnoux et al., 2003; 

Jepson et al., 2007) and is linked to the di-heme cytochrome electron transfer subunit 

NapB (Arnoux et al., 2003), which together form a dimeric complex in R. sphaeroides. 

In comparison to R. sphaeroides and P. pantotrophus Nap, the E. coli NapA does not 

form a tight association with NapB, and is generally found to be a monomeric enzyme 

located within the periplasm (Jepson et al., 2007). It was been recently been shown 

that the pyranopterin of the molybdenum cofactor, and not the Mo metal ion, is required 

for the reductive activation of NapAB from R. sphaeroides (Jacques et al., 2014). This 

pyranopterin is proximally located to the [4Fe-4S] cluster allowing for efficient electron 

transfer (Jacques et al., 2014).The Mo ion in Nap is coordinated by six sulfur ligands, 

which aid in the reduction of nitrate via a ‘sulfur-switch’ mechanism (Cerqueira et al., 

2013; Grimaldi et al., 2013) 

 NapAB is often found to be linked to the membrane, on the periplasmic side by 

the membrane-anchor protein NapC, required for menaquinol oxidation (Potter et al., 

2001). NapA is exported to the periplasm by the Tat translocation pathway, allowing 

for the reduction of nitrate to occur outside on the inner-membrane aiding in its role in 

denitrification, redox balancing and nitrate scavenging (Potter et al., 2001). 

   Like all of the nitrate reductase enzymes NapABC is encoded on an operon 

(e.g. napFDAGHBC in E. coli and napEDABC in Thiosphaera pantotropha and P. 

aeruginosa) containing genes that play a direct role in NO3
- reduction (NapA and 

NapB) and those which play accessory functions, encoding chaperone-like proteins 

(NapD) and cytoplasmic iron-sulphur proteins (NapG and NapH) (Berks et al., 1995b; 

Gonzalez et al., 2006; Stewart et al., 2002; Van Alst et al., 2009). The NapD chaperone 

protein is crucial for the folding and insertion of the molybdenum cofactor into NapA, 

forming a NapDA complex on binding to the NapA Tat signal peptide (Dow et al., 

2014). 

 The Nap from P. denitrificans, in contrast to NarGHI, is predominately expressed 

under aerobic conditions, whereas NarGHI is expressed anaerobically. This difference 

in expression is thought to be partly due to the cellular location of both Nap and Nar 

(Richardson et al., 2001). In Nap, quinol is oxidised at the periplasmic face of the 

cytoplasmic membrane by NapC, where the electrons are shuttled to the periplasm to 

be used in the reduction of nitrate to nitrite, resulting in a dissipation of energy. In 

contrast Nar reduces nitrate to nitrite in the cytoplasm, conserving the free energy 
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produced in the QH2/nitrate loop as a PMF (Richardson et al., 2001). This conservation 

of energy is bioenergetically favourable and would allow for efficient respiration under 

anaerobic conditions in the presence of nitrate (Richardson et al. 2001). P. 

pantotrophus Nap plays a role in cellular redox balancing and displays differential 

transcription in response to various carbon sources, with butyrate resulting in a high 

level of nap expression and Nap enzyme activity seen under aerobic conditions 

(Ellington et al., 2003). 

  E. coli and P. aeruginosa uses both Nap and NarGHI to support anaerobic 

growth, using Nap to support growth, when the levels of nitrate are low, prior to the 

induction of NarGHI (Gonzalez et al., 2006; Moreno-Vivian et al., 1999; Stewart et al., 

2002; Van Alst et al., 2009). 

 

1.5.3 Assimilatory nitrate reductase 

 The assimilatory nitrate reductase (Nas) is involved in the incorporation of 

nitrogen into organic molecules, catalysing the two electron reduction of nitrate to 

nitrite (Gonzalez et al., 2006). Like both Nar and Nap, Nas requires both a Mo-bisMGD 

cofactor and [4Fe-4S] for its activity (Moreno-Vivian et al., 1999). Klebsiella oxytoca 

can use both nitrate and nitrite as sole sources of nitrogen, using Nas encoded by 

nasFEDCBA (Lin et al., 1994). The catalytic subunit (NasA – 92 kDa) contains [4Fe-

4S] cluster and Mo-bisMGD, and is likely to take electrons from the electron transfer 

subunit NasC, a predicted flavoprotein exhibiting homology to NADH-dependent 

reductases. Both Bacillus subtilis and K. oxytoca nasFEDCBA have additional genes 

for electron transport (nasB), a siroheme-FeS nitrite reductase (nasD), and nasFED 

genes required for nitrate transport and uptake (Lin et al., 1994; Lin & Stewart, 1998; 

Richardson et al., 2001).  

 P. denitrificans encodes a NADH-dependent assimilatory NAR, containing a 

ferredoxin subunit (NasG) required for electron transfer to the NADH-oxidising site in 

the nitrite reductase (NasB) to the nitrate/nitrite reduction site in NasC (Gates et al., 

2011).  P. denitrificans Nas is regulated by the nitrogen oxyanion binding sensor 

(NasS) and RNA-binding protein (NasT) in response to nitrate/nitrite, allowing for the 

assimilation of nitrate (Luque-Almagro et al., 2013). 
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1.6 Role of anaerobic respiratory proteins in pathogenesis 

 

 B. pseudomallei has the capacity to survive and persist for extended periods of 

time within the host and environment, likely to be partly due to its ability to respire 

anaerobically (Hamad et al., 2011). It is thought that B. pseudomallei is likely to 

encounter oxygen limiting environments during the course of its life cycle, either within 

the rice paddy fields or in vivo. A genome wide analysis has shown an upregulation of 

nitrate reductase, the outer membrane nitrite reductase and formate dehydrogenase 

in the liver and spleen of a mouse infected with B. mallei, pointing towards a role for 

anaerobic respiration in these organs (Kim et al., 2005). Currently little is known about 

what role anaerobic respiration will play in virulence of B. pseudomallei. However there 

is evidence in the literature for a role of anaerobic respiration and molybdopterin 

biosynthesis, and more specifically nitrate reductase, in pathogenesis of various 

bacterial species, such as M. tuberculosis, Neisseria, and P. aeruginosa.  

 M. tuberculosis, the causative agent of tuberculosis, displays very similar clinical 

presentations to those seen with a B. pseudomallei infection, both displaying chronic 

and latent infections. Because of this melioidosis is often referred to as the great 

mimicker or ‘Vietnamese tuberculosis’ (van Schaik et al., 2009). Both M. tuberculosis 

and B. pseudomallei chronic infections are known to produce granulomas within 

infected organs and tissue (Conejero et al., 2011; Saunders & Britton, 2007). 

Granulomas are thought to be limiting in both nutrients and oxygen, highlighting the 

potential importance for anaerobic respiration in survival within this structured 

environment.  

 

1.6.1 Wayne’s model for hypoxic shift down 

 In 1996 Wayne and Hayes developed an in vitro model to study M. tuberculosis 

mechanisms of persistence and adaptation to anaerobiosis (Wayne & Hayes, 1996). 

This is now referred to the Wayne’s model for hypoxic shift down, which is 

characterised by two stages of non-replicating persistence (NRP); NRP-1 and NRP-2.  

NRP-1 is characterised as a shift to microaerophilic growth, displaying an increase in 

NAR activity, increase in glycine dehydrogenase activity, DNA synthesis and number 

of colony forming units (CFU) (Wayne & Hayes, 1996; Wayne & Hayes, 1998). The 

increase in NAR activity seen during NRP-1 is due to an increase in the expression of 

the narK2 transport protein (Sohaskey & Wayne, 2003). NRP-1 and NAR activity are 
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important for the adaptation to non-replicating persistence seen in NRP-2, which is 

characterised by a further reduction in oxygen levels to hypoxia, reduction in NAR 

activity and decrease in glycine dehydrogenase activity (Wayne & Hayes, 1996; 

Wayne & Hayes, 1998). Although an increase in NAR activity is seen during NRP-1, 

nitrate reductase is not required for shift-down to non-replicating persistence 

(Sohaskey, 2008). 

  

1.6.2 A role for the membrane-bound nitrate reductase in virulence 

 The main source of nitrate in the human body is obtained as a dietary source, or 

is produced through the L-arginine-NO pathway (Lundberg et al., 2004). Nitrate and 

nitrite can be found circulating within the blood, saliva and in various organs and are 

produced, along with NO, as part of the immune response (Kelm, 1999; Lundberg et 

al., 2004). Commensal organisms naturally found within the gut unlike some 

pathogenic species do not, almost without exception denitrify, with most species 

reducing nitrate to ammonia as seen in E. coli (Moir, 2011a). However many 

pathogenic bacteria are known to utilise the denitrification to aid survival within the 

host, with roles for both nitrate and nitrite reductase in virulence being described for 

various different pathogenic species such as Mycobacterium spp., Neisseria spp and 

P. aeruginosa (Moir, 2011a). 

 M. tuberculosis has been described as an obligate aerobe, but like other 

members of its genus it possess a NAR within its genome. M. tuberculosis is the 

strongest denitrifier out of all the Mycobacterium spp. M. tuberculosis encodes a fused 

nitrate reductase (NarX), a NarGHI, responsible for the majority of NAR activity, and 

various NarK transport proteins (Sohaskey & Wayne, 2003). The M. tuberculosis 

NarK2, a proposed Type I H (+)/nitrate symporter required for nitrate import into the 

cytoplasm, has been recently shown to be inactive in the presence of oxygen (Giffin 

et al., 2012). M. tuberculosis narGHJI is constitutively expressed under aerobic and 

microaerobic conditions during NRP-1, with its expression being independent of both 

nitrate and nitrite (Sohaskey & Wayne, 2003). The survival of both M. smegmatis (non-

pathogenic) and M. tuberculosis (pathogenic) declines dramatically on sudden switch 

to anaerobiosis (Dick et al., 1998; Wayne & Hayes, 1996). However, gradual 

acclimatisation to anaerobiosis and the addition of nitrate have been shown to 

significantly enhance long-term survival and entry into a non-replicating persistent 

state (Dick et al., 1998; Sohaskey, 2008).  
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 The role of M. bovis BCG ΔnarG mutant in virulence has been assessed using 

both immune competent BALB/c and immune deficient SCID mice. Deletion of the 

nitrate reductase (ΔnarG) in M. bovis BCG prevented the reduction of nitrate under 

anaerobic conditions, but did not affect survival in vitro under anaerobic conditions, 

with both the wild-type and mutant displaying similar viability after 15 week incubation 

(Fritz et al., 2002; Weber et al., 2000). In a study by Weber et al. (2000) a narG mutant 

displayed a difference in virulence using SCID mice, with fewer bacteria seen in 

granulomas of the liver and lungs, and no outward signs of clinical infection were seen 

when compared to wild-type infected mice (Weber et al., 2000). In comparison a study 

by Fritz et al. (2002) did not show a role for narG in chronic infection in SCID even 

though bacilli loads in the liver, kidney and lungs were reduced in comparison to the 

wild-type (Fritz et al., 2002).  

 Fritz et al. (2002) studied the histopathology of the lungs of SCID and BALB/c 

infected mice with either wild-type M. bovis BCG or the ΔnarG mutant. After 14 weeks 

wild-type infected SCID mice displayed large lesions containing acid-fast bacilli, with 

infected individuals suffering a severe pulmonary infection. In comparison mice 

infected with ΔnarG mutant, although displaying smaller lesions, succumbed to a fatal 

infection after 37 weeks. This indicated that although deletion of narG does not cause 

avirulence, the presence of a functional NarGHI affects survival of M. bovis within 

infected SCID mice (Fritz et al., 2002). Similarly although the deletion M. tuberculosis 

narG (ΔnarG) resulted in failure to persist under anaerobic conditions in vitro, infection 

of C57BL/6 mice with the ΔnarG mutant resulted in characteristic growth patterns 

within the lungs and both wild-type M. tuberculosis and mutant mice succumbing to 

infection after 400 days (Aly et al., 2006). By contrast, M. bovis NarG was shown to 

play a role in virulence when using BALB/c as an infection model. In the BALB/c 

(immune competent) murine model deletion of narG resulted in avirulence, with 

substantially lower lung tissue destruction and clearing of infected lungs, liver and 

kidney seen when infected with the mutant when compared to the wild-type M. bovis 

BCG (Fritz et al., 2002). These results taken together suggest that the role of 

Mycobacterium NarG in virulence is tissue specific and depends on the immune status 

of the host. 

 The difference in virulence levels seen in different infection models may also be 

due to the oxygen status of the lungs. For example although the lungs of C57BL/6 

mice infected with M. tuberculosis were shown to have a reduced level of oxygen, 
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compared to uninfected mice, the levels did not quite reach that of severe hypoxia or 

anoxia (Aly et al., 2006). By contrast to mice infected with M. tuberculosis, infection 

with M. avium displayed necrotizing lesions that were severely hypoxic (Aly et al., 

2006). Although lungs of mice infected with M. tuberculosis are not anaerobic (Aly et 

al., 2006; Tsai et al., 2006), tuberculosis infected guinea pigs, rabbits and non-human 

primates models display highly structured necrotic lesions with a hypoxic 

microenvironment, allowing entry into non-replicating persistent state (Via et al., 2008). 

Clinical samples obtained from patients with a tuberculosis infection have revealed an 

upregulation of genes required for anaerobic respiration such as narG, narX, and frdA 

within granulomas indicating a role for nitrate reductase in human pulmonary 

tuberculosis (Fenhalls et al., 2002; Rachman et al., 2006). 

 P. aeruginosa is an opportunistic, nosocomial pathogen known to cause lung 

infections in patients who are immunocompromised or have cystic fibrosis (CF). P. 

aeruginosa encodes both a NapA and NarGHI, required for anaerobic respiration and 

growth within CF sputum (Palmer et al., 2007). P. aeruginosa narG mutants 

demonstrated a severe anaerobic growth defect, significantly affecting growth within 

the CF sputum, whereas the napA mutant showed no growth defect growing at wild-

type levels (Palmer et al., 2007). The wild-type P. aeruginosa and the napA mutant 

were able to reduce the same amounts of nitrate, but the narG mutant was deficient 

in anaerobic nitrate reduction. Deletion of narGH is known to cause avirulence in C. 

elegans, and affect swarming motility and biofilm formation (Van Alst et al., 2007). 

 Brucella suis resides and multiplies within phagocytic vacuoles of macrophages, 

requiring various genes required for stress response, nitrogen reduction, sugar and 

lipid metabolism oxidoreduction and DNA/RNA metabolism (Kohler et al., 2002). 

Interestingly mutations within the cytochrome bd oxidase and narG caused a 2-fold 

attenuation 48 hours post infection, indication a role for nitrate reductase in growth 

within a macrophage (Kohler et al., 2002). 

  

1.6.3 Role of the molybdopterin biosynthetic pathway and molybdoproteins in 

pathogenesis 

 The molybdopterin biosynthetic pathway and molybdopterin containing proteins, 

other than NarGHI, have also been implicated in playing a role in in vivo survival. 
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Genes required for Moco biosynthesis are enriched in pathogenic Mycobacteria 

species, and show a degree of upregulation within macaque primate lungs (Dutta et 

al., 2010; McGuire et al., 2012). M. tuberculosis moeB1::Tn transposon mutant shown 

to exhibit an intracellular growth defect, attributed to a trafficking deficiency, and 

sensitivity to macrophage effector mechanisms (MacGurn & Cox, 2007). Indeed a link 

between various proteins required for Moco synthesis and pathogenesis has been 

found for M. tuberculosis. A moaC1 mutant, among other genes required for 

metabolism, DNA repair and stress responses, was shown to be attenuated for growth 

in macaque lungs following aerolised infection (Dutta et al., 2010). In this same study 

narX (a fused nitrate reductase), along with other genes required for hypoxia, was not 

attenuated for survival and growth in primate lungs (Dutta et al., 2010).  

 C. jejuni, an obligate microaerophile and human gastrointestinal pathogen, 

encodes a periplasmic sulfite reductase encoded by a monohaem cytochrome c 

(cj004c) and molybdopterin oxidoreductase (cj005c), required for the utilisation of 

sulfite as a respiratory electron donor (Myers & Kelly, 2005). Mutations within cj005c 

caused a significant reduction in invasion and adherence to Caco2 cells, reduced 

motility and reduction in growth in the presence of sodium sulfite (Tareen et al., 2011).  

 DMSO reductase has also been implicated in virulence and persistence. 

Actinobacillus pleuropneumonia, the causative agent of porcine pleuropneumonia 

(Bosse et al., 2002), is known to persist within the oxygen limiting environment of 

necrotic lung tissue. A. pleuropneumonia is known to respire anaerobically using 

DMSO as an alternative electron acceptor. Both DMSO reductase and asparate 

ammonium lyase have been shown to be upregulated during infection, playing a role 

in A. pleuropneumonia virulence (Baltes et al., 2003; Baltes et al., 2005). An A. 

pleuropneumonia dmsA deletion mutant was created and assessed for its role in 

virulence using pigs as an infection model. Pigs infected with ΔdmsA displayed fewer 

symptoms to wild-type infected animals, but both the mutant and wild-type could 

persist within host tissues, indicating DMSO reductase plays a role during the acute 

but not chronic stage of infection (Baltes et al., 2003; Baltes et al., 2005; Jacobsen et 

al., 2005). 

 Recently the assimilatory nitrate reductase from the plant pathogen Ralstonia 

solanacearum (NasA) was shown to aid in plant root colonisation, with a nasA mutant 

displaying inability to utilise nitrate as a sole nitrogen source, reduced virulence and 



74 
 

delayed tomato stem colonisation (Dalsing & Allen, 2014). The NasA was also shown 

to affect the production of extracellular polysaccharide, a key virulence factor in R. 

solanacearum (Dalsing & Allen, 2014). 

 Finally, E. coli nitrate reductase (narG) and fumarate reductase (frdA) mutants 

have been shown to exhibit severe intestinal colonisation defects (Jones et al., 2011) 

E. coli was shown to utilise nitrate and fumarate as alternative electron donors, 

preferentially using fumarate reductase as a terminal oxidase in the intestine as nitrate 

is often limiting (Jones et al., 2011). Fumarate reductase was shown to provide E. coli 

with a colonisation advantage, with nitrate reductase being required for long term 

persistence (Jones et al., 2011).   
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1.7 Aims of this project 

 The ability for bacteria to respire under aerobic and anaerobic conditions is likely 

to provide a distinct advantage aiding in environmental and in vivo survival. Currently 

little is known about the respiratory flexibility exhibited by B. thailandensis and B. 

pseudomallei, although it is speculated that the ability to respire aerobically and 

anaerobically will contribute to the pathogenesis of melioidosis. The aim of this PhD is 

to determine what role anaerobic respiration has to play in the survival and virulence 

of B. pseudomallei.  Work will first be conducted on B. thailandensis in order to identify 

anaerobic respiratory genes that may play a role in survival and virulence of B. 

pseudomallei.  

 

This PhD aims to: 

 Use bioinformatic analysis to determine the respiratory flexibility exhibited by B. 

thailandensis, B. pseudomallei and B. mallei 

 Identify genes required for anaerobic respiration, by creation of a random 

transposon mutant library in B. thailandensis E264 

 Characterise the transposon mutants for their role in aerobic and anaerobic 

respiration, in vitro survival, nitrate reductase activity and role in motility, biofilm 

formation and virulence. 

 Create clean deletion mutants in B. pseudomallei K96243 using the pDM4 suicide 

vector bearing a chloramphenicol resistance cassette 

 Characterise the role of the B. pseudomallei deletion mutants using various in vitro 

and in vivo assays including - anaerobic respiration, persistence, motility and 

virulence 
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Chapter 2 - Materials and methods 
 

2.1 Bioinformatics 

2.1.1 NCBI BLAST and K.E.G.G. analysis 

 NCBI (http://www.ncbi.nlm.nih.gov/) BLAST analysis and the Burkholderia 

Genome Database (Winsor et al., 2008) were used to identify  genes required for 

anaerobic respiration in B. thailandensis E264, B. pseudomallei K96243 and B. mallei 

ATCC 23344. A Kyoto Encyclopaedia of Genes and Genomes (K.E.G.G. - 

http://www.kegg.jp/) ortholog analysis was carried out to determine the degree of 

amino acid sequence conservation and orthology between various proteobacteria 

species.  

 Softberry promoter analysis (http://linux1.softberry.com/berry.phtml) was used 

to predict bacterial gene promoters to identify potential regulatory networks.  

 

2.1.2 Sequence alignments 

Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/), an online multiple 

sequence alignment tool, was used when performing nucleotide or protein sequence 

alignments (Higgins et al., 1996). The TMHMM server v. 2.0 (Krogh et al., 2001) was 

used to predict potential transmembrane helices in the putative copper nitrite 

reductases.  

 

2.1.3 Structure prediction 

The online platform for protein structure prediction, the I-TASSER server (Zhang, 

2008) was used in order to determine the degree of structural conservation between 

B. pseudomallei K96243 NarG (BPSL2309) and E. coli K-12 NarG (b1224) based on 

an amino acid sequence alignment. The sequence alignment generated was based 

on the E. coli NarGHI protein sequence (PDB: 1Q16) (Bertero et al., 2003). Discovery 

Studios (DS Visualizer 3.5 and DS Visualizer ActiveX Control 3.5) was used to 

visualise the predicted protein structures created by the I-TASSER server. SWISS-

MODEL (Kumar et al., 2012; Minch et al., 2012) was also used to determine the degree 

http://www.ncbi.nlm.nih.gov/
http://www.kegg.jp/
http://linux1.softberry.com/berry.phtml
https://www.ebi.ac.uk/Tools/msa/clustalo/
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of structural homology of the putative copper nitrite reductases encoded by B. 

thailandensis and B. pseudomallei, based on previous published structures. 

 

2.2 B. thailandensis work – transposon mutagenesis, PCR and enzymatic 

assays 

2.2.1 Media, growth conditions and bacterial strains 

All bacterial strains were routinely grown in Luria Bertani broth (L-broth), solidified 

when required using 1.5 % bacteriological agar. B. thailandensis (strain E264) was 

routinely grown at 37 oC in a shaking incubator (220 rpm) or statically for all procedures 

unless otherwise stated. E. coli strain 19851 (pir+), used for direct mating during 

transposon mutagenesis, was maintained in LB media supplemented with kanamycin 

(30 µg/mL) and ampicillin (100 µg/mL) to ensure the maintenance of the modified pir-

dependent plasmid pUTminiTn5Km2, encoding kanamycin resistance cassette 

(Cuccui et al., 2007; de Lorenzo et al., 1990). Where appropriate the growth media 

was supplemented with the appropriate antibiotic to maintain selection of the antibiotic 

resistance cassette (ampicillin – 100 µg/mL; chloramphenicol 35-50 µg/mL; 

gentamicin 100 µg/mL; kanamycin 50-250 µg/mL; tetracycline – 50 µg/mL).  

B. thailandensis anaerobic growth studies were conducted in medical flat 

bottomed flasks, or within an anaerobic chamber (10 % CO2, 80 % N2 and 10 % H2) 

using L-broth or M9 minimal media. M9 minimal media was supplemented with or 

without sodium nitrate (NaNO3
-) or sodium nitrite (NaNO2

-) (0-20 mM) and 20 mM of a 

carbon source (succinate or glucose). Sodium succinate was used for the majority of 

experiments as it is a non-fermentable carbon source capable of sustaining good 

aerobic and anaerobic growth, when in the presence of an electron acceptor. When 

using medical flat bottomed flasks the media was sparged for 20 minutes with oxygen 

free nitrogen. M9 media contained 2 mM MgSO4, 0.1 mM CaCl2, 20 % M9 salts (5 x 

stock solution; 85.5 gL-1 Na2HPO4, 15 gL-1 KH2PO4, 2.5 gL-1 NaCl, 5 gL-1 NH4Cl). 

When needed the M9 minimal media plates were solidified using 1.5 % agar and 

placed into an anaerobic chamber for 2 to 4 days.  

All frozen stocks of mutants or wild-type bacterial strains were made using a 

final glycerol concentration of 30 % and stored at -80 oC. 
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Bacterial strain Characteristics Reference 

Burkholderia thailandensis   

B. thailandensis E264 Wild-type  

Gram negative saprophyte, isolated from soil in 1995 (Thailand) 

(Brett et al., 1998) 

 

CA01 B. thailandensis BTH_I1704 Tn5Km2 transposon mutant, KmRa This study  

CA01_pDA-17::BTH_I1704 CA01, pDA-17::BTH_I1704, KmR, TetR This study  

   

Escherichia coli   

JM109 Chemically competent cells 

endA1, recA1, gyrA96, thi, hsdR17 (rk
–, mk

+), relA1, supE44, Δ(lac-proAB), [F´ traD36, 

proAB, laqIqZΔM15] 

Promega 

E. coli strain 19851 pir+,  pUTminiTn5Km2, KmRa (Cuccui et al., 2007; de 

Lorenzo et al., 1990)  

GT115 Chemically competent cells 

Δdcm, uidA::pir-116, sbcCD 

Invivogen 

DH5α lamda (λ) pir Chemically competent cells 

F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 

recA1 endA1 hsdR17 (rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1 

Laboratory stock 

S17 λ pir TpR SmR recA, thi, pro, hsdR-M+RP4: 2-Tc:Mu: Km Tn7 λpir Laboratory stock 

pRK2013 KanR, helper strain Clontech 

   

Table 2.1 - Bacterial strains and plasmids used for B. thailandensis transposon mutagenesis and complementation 
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Plasmids   

pJET1.2/blunt rep (pMB1), replication start, bla (AmpRa), eco47IR, PlacUV5
,, T7 promoter, multiple cloning 

site (MCS), insertion site, primer binding sites 

Thermo-Scientific 

pUTminiTn5Km2 Mini-Tn5Km2 (KanR), oriR6K mobRP4, tnp* (Cuccui et al., 2007; de 

Lorenzo et al., 1990) 

pJET-Tn#1 pJET1.2/blunt containing Tn#1 arbitrary PCR product (approximately 200 bp) 

Maintained in JM109 competent cells 

This study 

pJET-Tn#2 pJET1.2/blunt containing Tn#2 arbitrary PCR product (approximately 200 bp) 

Maintained in JM109 competent cells 

This study 

pJET-Tn#3 pJET1.2/blunt containing Tn#3 arbitrary PCR product (approximately 180 bp) 

Maintained in JM109 competent cells 

This study 

pDA-17 oripBBR1, TetRa, mob+, Pdhfr, FLAG epitope 

Maintained in DH5α competent cells 

(Flannagan et al., 2007) 

pDA-17::BTH_I1704 oripBBR1, TetRa, mob+, Pdhfr, BTH_I1704 gene 

Maintained in DH5α competent cells 

This study  

aKmR – Kanamycin resistance cassette; TetR -Tetracycline resistance cassette; AmpR – Ampicillin resistance cassette 
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2.2.2 Genomic DNA and plasmid extraction 

B. thailandensis E264 and mutant genomic DNA was extracted using Sigma 

Aldrich GenElute Genomic DNA extraction kit. All plasmids were extracted using either 

GeneJet Miniprep (Thermo Scientific) or QIAprep spin Miniprep kit (Qiagen). DNA 

concentration was determined using a nanodrop (ng/μL) (Thermo Scientific Nanodrop 

2000c).  

 

2.2.3 Transposon mutagenesis 

B. thailandensis E264 was screened on solid M9 minimal media plates 

supplemented with various concentrations of nitrate (0-30 mM) and succinate (0-30 

mM) to determine the lowest concentration of nitrate best able to support anaerobic 

growth. The results of this were then used to screen the transposon mutant library for 

mutants unable to grow anaerobically in the presence of nitrate. Each plate was 

streaked in triplicate with one colony of B. thailandensis and left either to grow at 37 

oC within an anaerobic chamber for three days or within a static aerobic incubator 

overnight.  

A transposon mutant library was created by conjugation using E. coli strain 

19851 pir+ containing the transposon delivery vector pUTminiTn5Km2, to allow for 

identification of those genes required for anaerobic growth (Table 2.1). E. coli 19851 

and B. thailandensis cultures were grown in the appropriate media overnight in a 

shaking incubator at 225 rpm set at 37 oC. A 100 µl aliquot of an overnight culture of 

E. coli (19851) carrying pUTminiTn5Km2 plasmid was sub-cultured into sterile L-broth 

supplemented with 100 µg/mL ampicillin and 30 µg/mL kanamycin, and left to grow for 

3 hours until exponential phase (absorbance at 600 nm of 0.5 to 0.6). This E. coli 

culture was then mixed at a 1:3 ratio with wild-type B. thailandensis prior to 

centrifugation for 10 minutes at 3,000 x g. The supernatant was decanted and the 

remaining cells where resuspended in 100 µl L-broth, plated out onto LB agar and left 

in the 37 oC incubator for 6 hours. Bacterial cells were then collected by scraping and 

resuspended cells in 1 mL L-broth, prior to plating out a 1 in 100 dilution onto antibiotic 

selective plates (containing 250 µg/mL kanamycin, to select for the mutants, and 100 

µg/mL gentamicin used to kill off any remaining E. coli cells) and incubating at 37 oC 

for 48 hours. The resulting transposon mutant colonies were re-picked into 96 well 

micro-titre plates containing 200 µL of L-broth supplemented with 100 µg/mL 
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gentamicin and 250 µg/mL kanamycin and left to grow overnight at 37 oC. The random 

transposon mutant library was then screened on M9 minimal media plates, containing 

5 mM nitrate and 10 mM succinate, and left to grow at 37 oC within in an anaerobic 

chamber for three days or within an aerobic incubator overnight. 

 

2.2.4 Agarose gel electrophoresis and DNA visualisation. 

Agarose gel electrophoresis was used to separate DNA products based on 

size. All gel electrophoresis was performed using a 0.75 % to 1.5 % TAE agarose gel 

and a 1 x TAE buffer, run at 110 volts for 30 to 90 minutes. PCR products were run 

with the appropriate volume of 6 x loading dye (Thermo Scientific) (2 μL per 10 μL 

DNA sample). Gels contained 5 % (v/v) ethidium bromide for visualisation of DNA 

fragments and DNA ladders. All gels were visualised under ultra-violet light. When 

required restriction digested products or PCR products were gel purified using either 

Qiagen Gel extraction kit (Qiagen) or the GeneJet gel extraction kit protocol (Thermo 

Scientific). 

 

2.2.5 Transposon mutagenesis - Polymerase chain reaction (PCR) 

All PCR reactions used to confirm transposon insertion were conducted using 

Fishers Thermostart master mix (2 X concentration), containing a heat active Taq DNA 

polymerase (requiring an initial 95 oC denaturation step of 15 minutes), 1.5 mM MgCl2 

and dNTPs, unless otherwise stated; reaction mix contained 12.5 µL Thermostart 2 X 

PCR master mix, 8.5 µL nuclease free water, 1 µL template (genomic DNA or a colony) 

and on occasion 1 µL DMSO. Primer sequences are listed in Table 2.2. 

 

2.2.6 PCR confirmation of the transposon mutants  

To confirm the transposon mutant contained the kanamycin resistance cassette 

and were in fact B. thailandensis and not E. coli, two separate PCR reactions were 

performed. PCR reactions used primers either binding to the kanamycin resistance 

gene (KanR and KanF) or those specific for B. thailandensis (S7 and S12). The PCR 

conditions to amplify the kanamycin resistance gene were 95 oC for 15 minutes, then 

34 cycles of 94 oC for 30 seconds (secs), 55 oC for S7 and S12 primers or 48 oC for 
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KanF and KanR for 30 seconds, 72 oC for 1 minute, finally followed by a 10 minute 72 

oC steps. 

2.2.7 Nested PCR using arbitrary and transposon specific primers 

Nested PCR was used to identify the site of insertion of the transposon (Tn5Km2) 

into the genome of B. thailandensis using the AmpliTaq Gold 360 master mix and 360 

GC enhancer. Arbitrary primers (Arb1, 3, 4, or Arb5) and transposon specific primer 

P7M1 were used for the first round of PCR under the following conditions; 95 oC for 

10 minutes, then 6 cycles of 95 oC for 30 seconds (secs), 30 oC for 30 secs, 72 oC for 

1.5 minutes, followed by 30 cycles of 95 oC for 30 secs, 45 oC for 30 secs, and finally 

72 oC for 2 minutes. The resultant PCR product was subsequently used for a second 

round of PCR with Arb2 and P7U under the following cycle; 35 cycles of 30 seconds 

(secs) at 95 oC, 30 secs 45 oC and 1 minute at 72 oC. Those arbitrary primers giving 

PCR fragments (150 to 300 bp) where then gel excised and purified.  

The purified PCR product was then cloned into pJET1.2/blunt following Thermo 

Scientific CloneJET protocol. To effectively ligate the PCR products into the 

pJET1.2/blunt cloning vector a blunting reaction was carried out to remove the 3’ A 

(adenine) nucleotides generated by the Taq polymerase. The resultant product was 

then transformed into E. coli JM109 competent cells (see section 2.2.10). Any 

successful transformants were verified using colony PCR and the plasmid was 

extracted sent off for sequencing using the supplied pJET1.2 forward primer. Once the 

sequencing was successful NCBI BLAST analysis was used to determine where in the 

genome the transposon had inserted. 

 

2.2.8 Transposon mutant (CA01) complementation 

 To ensure that the phenotypes exhibited by CA01 were due to transposon 

insertion into BTH_I1704 and not pleiotropic effects on genes within the same cluster, 

a mutant complement was created, using the constitutive expression vector pDA-17 

(7,360 bp) encoding a tetracycline resistance cassette. BTH_I1704 (1,299 bp) was 

cloned into pDA-17 in front of the dhfr promoter region via NdeI and XbaI restriction 

sites. Primers were designed to bind to the start and end of BTH_I1704 (see Table 

2.2). BTH_I1704 (1,299 bp) was amplified using Phusion PCR master mix with 5 x GC 
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Primer name Sequence (5’- 3’) Characteristics/reference 

Transposon mutagenesis    

KanF CGACTGAATCCGGTGAGAAT Binds within KmR cassette 

KanR CCGCGATTAAATTCCAACAT Binds within KmR cassette 

Arb1 GGCCACGCGTCGACTAGTACNNNNNNNNNNGATAT (Cuccui et al., 2007) 

Arb2 GGCCACGCGTCGACTAGTAC (Cuccui et al., 2007) 

Arb3 GGCCACGCGTCGACTAGTACNNNNNNNNNNTGACG (Cuccui et al., 2007) 

Arb4 GGCCACGCGTCGACTAGTACNNNNNNNNNNACGCC (Cuccui et al., 2007) 

Arb5 GGCCACGCGTCGACTAGTACNNNNNNNNNNTACNG (Cuccui et al., 2007) 

P7M1 GTCATTAAACGCGTATTCAGGCTGAC (Cuccui et al., 2007) 

P7U CTGCAGGCATGCAAGCTTCG (Cuccui et al., 2007) 

P7M GCCGAACTTGTGTATAAGAGTC (Cuccui et al., 2007) 

   

Complementation    

moeA1704_fwd GCCTCTAGATCAGATGGCGCCGTCG NdeI restriction site 

moeA-1704_rv GCCTCTAGATCAGATGGCGCCGTCG XbaI restriction site 

   

Southern Blot   

SB1 CACGCCCACGCCATCCGCCA Binds within BTH_I1704 

SB2 TCTTTCGCGACGCGGGGGCCG Binds within BTH_I1704 

   

Table 2.2 - Primers used in B. thailandensis E264 mutagenesis, complementation and RT-PCR 
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Reverse transcriptase PCR   

16s-RT1 GCCAGTCACCAATGCAGTTC Binds within 16s rRNA gene  

16s-RT2 ACCAAGGCGACGATCAGTAG Binds within 16s rRNA gene  

RT-1704_fwd CACGCCCACGCCATCCGCCA Binds within BTH_I1704 

RT-1704_rv TCTTTCGCGACGCGGGGGCCG Binds within BTH_I1704 

RT-2200_fwd CGGCCTGACCGGACAGCCCG Binds within BTH_I2200 

RT-2200_rv GGGGGTTGGGGTGGGACATCG Binds within BTH_I2200 
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master  mix and purified using GeneJet Gel extraction kit (Thermo Scientific). PCR 

reaction cycle included an initial denaturation step of 98 oC for 30 secs, and 30 cycles 

of 98 oC for 10 secs, 66 oC for 30 secs, 72 oC for 45 secs, and a final extension cycle 

of 72 oC for 7 minutes. DMSO was added to all PCRs when using moeA-1704_fwd 

and moeA-1704_rv primers to prevent formation of any undesired secondary 

structures. Purified PCR product and pDA-17 vector were both digested using NdeI 

and XbaI, ligated together using T4 DNA ligase, and transformed into DH5α competent 

cells as described in sections 2.2.10 to 2.2.12. Transformants were plated out on to 

LB agar plates containing tetracycline 50 µg/mL. Successful DH5α pDA-

17::BTH_I1704 transformants were confirmed using  PCR and sequencing.  

 

2.2.9 Tri-parental mating 

Tri-parental mating was performed to conjugate pDA-17::BTH_I1704 into 

CA01. CA01 (recipient), DH5α pDA-17::BTH_I1704 (donor), and E. coli pKR2013 

(helper strain) were grown overnight in L-broth supplemented with the appropriate 

antibiotics; kanamycin 30-50 µg/mL, or tetracycline 50 µg/mL. All 10 mL overnight 

cultures were centrifuged for 15 minutes at 5,000 x g at 4 oC, and both donor and 

helper cell pellets were resuspended in 2 mL sterile PBS. 1 mL donor and helper 

bacterial suspension was added to the CA01 cell pellet to give a final 1:1:2 mating mix 

ratio. The bacterial suspension was then re-centrifuged and resuspended in 2 mL 

sterile PBS. 100 µL of the mating mix was plated out on SOB agar plates onto three 

nitrocellulose membranes. As a control 100 µL of recipient, donor and helper cells 

were also plated out onto a nitrocellulose membrane as controls and the plates were 

incubated overnight. The next day the mating mix and controls were resuspended in 

1 mL of sterile L-broth, plated out onto LB plates containing tetracycline 100 µg/mL, 

gentamicin 100 µg/mL and kanamycin 50 µg/mL and incubated for 2 days at 37 oC. 

Tetracycline was used to select for the pDA-17::BTH_I1704 plasmid, gentamicin to kill 

off any remaining E. coli and kanamycin to maintain the transposon selection in CA01. 

Any potential complements were re-streaked onto the same antibiotic plates prior to 

PCR screening using crude DNA lysates. Crude DNA lysates were made by 

resuspending on colony in 20 µL lysis solution (0.05 M NaOH, 0.25 % SDS), incubating 

at 95 oC for 15 minutes and resuspending the crude lysate in 180 µL nuclease free 
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water. Qiagen HotStar Taq master mix, with Q-solution, was used in order to verify 

presence of pDA-17::BTH_I1704 in CA01 using moeA1704-fwd and moeA1704-rv 

primers. The PCR reaction cycle for involved an initial denaturation step of 95 oC for 

15 minutes, then 30 cycles of 94 oC for 1 minute, 56 oC for 45 seconds, 72 oC for 2 

minutes, with a final extension at 72 oC for 10 minutes.  

 

2.2.10 Competent cell preparation 

Chemically competent cells were made using buffers TFB1 and TFB2 (see Chapter 

8 – Appendix for buffer composition), both containing calcium chloride and glycerol. 

Competent cell preparation was carried out on ice at all times to ensure the bacterial 

cells remained stable. An overnight culture (25 to 50 mL L-broth) was inoculated with 

the desired bacterial strain and incubated overnight at 37 oC with shaking (220 rpm). 

The next day 200 mL of sterile LB supplemented with 20 mM MgSO4
- was inoculated 

with 2 mL of the overnight culture and incubated at 37 oC until the absorbance (600 

nm) reached 0.4 to 0.6. Cells were harvested via centrifugation at 6,800 x g for 10 

minutes. The cell pellet was resuspended in two 50 mL volumes of ice cold TFB1 and 

left to incubate on ice for 5 minutes. The culture was then re-centrifuged and 

resuspended gently in 10 mL of ice cold TFB2. This then was incubated on ice for over 

an hour before 200 µL aliquots were made and snap frozen in liquid nitrogen. The 

competent cells were stored at -80 oC until required.  

 

2.2.11 Digestion and Ligation  

Restriction enzyme digests were performed using Fast Digest restriction enzymes 

(RE) at 37 oC for 5 to 10 minutes (Thermo Scientific). RE digests were performed in a 

final reaction volume of 20 μL using 1 μL each RE, 2 μL 10 x fast digest buffer, 2-15 

μL vector or 10 μL PCR product. When required the digested vectors were treated 

with 1 μL FastAP alkaline phosphatase (Thermo-Scientific) for 10 minutes at 37 oC to 

remove the 5’ and 3’ phosphate groups and prevent self-ligation. Digested DNA 

fragments were run on a 1 % agarose gel, gel excised and purified. 

All ligations were performed at 22 oC for 1 to 2 hours, or overnight at 15 oC, using 

T4 DNA ligase (Thermo-Scientific). Ligation reactions were performed using different 

vector to insert ratios (1:1, 1:3, 1:5, 3:1 or 5:1) using 1 μL T4 DNA ligase, 2 μL T4 DNA 
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ligase buffer, with the final reaction volume made up to 10 or 20 μL using nuclease 

free water.  

 

  

BTH_I1704  (1,299 bp)

NdeI XbaI

NdeI XbaI

NdeI XbaI

TetR

dhfr

promoter

pDA-17::BTH_I1704
8,659 bp

NdeI XbaI

dhfr 

promoter 

region
pDA-17 (7,360 bp)

PCR

Digest

Ligate

Figure 2.1 – Cloning strategy for pDA-17::BTH_I1704 vector construction for 

transposon mutant (CA01) confirmation. See methods section 2.2.7 for more details. 

Briefly BTH_I1704 (in blue) was amplified by PCR, digested using NdeI and XbaI 

restriction enzymes prior to ligation into digested pDA-17. pDA-17 encodes a tetracycline 

resistance gene cassette (TetR – in green) and a dhfr promoter region to allow for 

constitutive expression of BTH_I1704. 
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2.2.12 Transformation  

All ligation reactions were transformed into the appropriate competent cells (E. 

coli JM109, DH5α, High efficiency 5α or S17 λ pir) and plated out on to antibiotic 

selective plates. 5 L of the ligation reaction was added to 50 L of competent cells 

and incubated on ice for 20 to 30 minutes. The reaction mixture was then heat shocked 

at 42 oC for 45 seconds and immediately placed back on ice for 2 minutes. L-broth or 

SOB medium (450 L) was then added and left in a 37 oC incubator for 90 minutes. 

The transformants where then plated out on the appropriate antibiotic selective plates. 

To increase the number of transformants the cells were centrifuged at 13,000 rpm, in 

a table top centrifuge (MiniSpin®, Eppendorf), for 4 minutes prior to resuspension in 

100 µL sterile L-broth and plating out on to antibiotic selective plates.  

 

2.2.13 Isolation of chromosomal DNA 

Chromosomal DNA was isolated from B. thailandensis and CA01 using buffers 

TNE (10 mM Tris, 10 mM NaCl, and 10 mM EDTA - pH 8) and TNE-X (TNE and 1 % 

Triton X-100 mL). One mL of an overnight bacterial culture was harvested via 

centrifugation for 4 minutes at 13,000 rpm and resuspended in 1 mL TNE. The 

suspension was then re-centrifuged and the supernatant was discarded. The pelleted 

bacterial cell culture was then resuspended in 270 μL TNE-X, and 30 μL lysozyme (5 

mg/mL) was then added and left to incubate for 20 minutes at 37 oC to ensure efficient 

cell lysis. 15 μL of proteinase K (20 mg/mL) was then added, gently mixed by inversion 

and incubated at 65 oC for 2 hours until the suspension became clear, ensuring all 

proteins were degraded.  The chromosomal DNA was precipitated out of solution using 

15 μL of NaCl and 500 μL 100 % ethanol, fished out or the eppendorf tube with a 

sterile loop and then transferred into a fresh tube containing 500 μL 70 % ethanol. This 

was then spun down at room temperature for 10 minutes (13,000 rpm), supernatant 

removed and the DNA pellet air dried prior to resuspension in 100 μL nuclease free 

water.  
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2.2.14 Southern blot 

A southern blot was performed using Amersham ECL Direct nucleic acid 

labelling and detection system and Hybond N+ positively charged nylon membrane 

(Amersham; GE Healthcare), to confirm the site transposon insertion in CA01. The 

ECL direct labelling and detection system is based on chemiluminescence allowing 

for visualisation of bound DNA using high-performance chemiluminescent film 

(Amersham Hyperfilm ECL). Briefly the system involved direct labelling of probe DNA 

with horseradish peroxidase (complex with a positively charged polymer), achieved 

through complete probe denaturation at 100 oC. Prior to hybridisation of the blot the 

peroxidase is linked to the DNA probe via the addition of glutaraldehyde. The DNA 

probe once bound then becomes immobilised to the membrane, and once washed 

can be visualised on a chemiluminescent film after the addition of detection reagents. 

The detection reagents provided in the kit couple the production of hydrogen peroxide 

with a light production reaction generated via the oxidation of luminal. The presence 

of an enhancer within the detection reagent helps to prolong the output and allow for 

detection on a blue-light sensitive film. The protocol is briefly described below.  For 

more information please refer to the manufacturer’s instructions (Amersham; GE 

Healthcare). 

Labelled DNA probes were created using 300 bp purified PCR products, 

generated using primers binding within BTH_I1704 (SB1 and SB2), for the wild-type 

probe, or primers binding within the kanamycin resistance cassette (KanF and KanR), 

for the mutant probe (see Table 2.2). The DNA probes were generated using PCR 

using the Phusion Pfu polymerase and High Fidelity (HF) master mix. The PCR 

reaction cycles included an initial denaturation step of 98 oC for 30 secs, then 30 cycle 

of denaturation 98 oC for 10 secs, annealing 64 oC (for primers SB1 and SB2) or 48 

oC (for KanR and KanF) for 30 secs, extension 72 oC for 20 seconds, and a final 

extension of 7 minutes at 72 oC. The PCR product was run on a 1 % agarose gel, gel 

extracted and purified using Qiagen Gel extraction kit   

B. thailandensis E264 and CA01 (BTH_I1704-Tn5Km2) chromosomal DNA 

were digested for an hour with XhoI prior to electrophoresis overnight on a 1 % TAE 

agarose gel. The gel was then washed using depurination solution (250 mM HCl), 

denaturation solution (1.5 NaCl, 0.5 M NaOH) and finally neutralisation solution (1.5 
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M NaCl, 0.5 M Tris-HCl – pH adjusted to 7.5) prior to performing capillary blotting. 

DNA was transferred overnight onto a Hybond N+ nylon membrane using Whatman 3 

MM filter paper soaked in 20 x SSC. Individual blots were used for either the wild-type 

or mutant DNA probes.  

 The blots were pre-hybridised at 42 oC for one hour using ECL gold hybridisation 

buffer containing 5 % (w/v) blocking reagent and 0.5 M NaCl (0.125 mL/cm2). 100 ng 

of the DNA probes were labelled with glutaraldehyde solution prior to addition to the 

hybridisation solution and incubation with the blots overnight at 42 oC. The hybridised 

blots were then washed in primary wash buffer (6 M urea, 0.4 % SDS, 0.5 x SSC) at 

42 oC for 20 minutes, and then in secondary wash buffer (2 x SSC) for 5 minutes at 

room temperature. An equal volume of both detection 1 and detection 2 reagents were 

mixed together and added to the hybridised blots and incubated at room temperature 

for 1 minute. The southern blot was then visualised and imaged using high 

performance chemiluminescent film (Amersham ECL).  

 

2.2.15 Griess reaction 

The concentration of nitrite produced throughout aerobic and anaerobic growth, 

in M9 minimal media was measured following an established Griess Reagent system 

protocol (Promega). The Griess Reagent System is based on the chemical reaction 

using sulfanilamide and N-1-napthylethylenediamine dihydrochloride (NED) used to 

detect nitrite levels in culture medium through the generation of a pink coloured azo 

compound. A nitrite standard curve was generated for each experiment to ensure 

accurate estimations of nitrite concentration in the sample medium.  

 

2.2.16 Methyl-viologen assay on cell membrane fractions 

In order to confirm the lack of NAR activity in CA01, a methyl-viologen assay was 

performed on cell membrane fractions, isolated from cultures acclimatised to 

anaerobic conditions. Both wild-type B. thailandensis and CA01 were grown 

aerobically overnight (37 oC, 200 rpm) in 100 mL of L-broth to obtain biomass. The 

entire culture was centrifuged at 4,000 x g for 20 minutes at 4 oC, and the cell pellet 

was washed in sterile PBS prior to re-centrifugation and resuspended in 30 mL M9 

minimal media, supplemented with 20 mM sodium succinate and 20 mM sodium 
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nitrate. The cultures were then incubated for four hours within an anaerobic chamber 

to ensure expression of the nitrate reductase.  After 4 hour incubation the cells were 

harvested following centrifugation at 5,000 x g for 30 minutes. The cells were 

resuspended in 50 mM phosphate buffer (pH 7.5) and sonicated for 3 minutes (10 

seconds on, 10 seconds off at an amplitude of 10 – 15 microns in a Soniprep 150 

Sonicator) to lyse the cells. Sonicated cells were then centrifuged at a low speed 

(3,000 x g) for 30 minutes (4 oC) to remove any cellular debris, the supernatant was 

decanted and centrifuged at 20,000 x g for 20 minutes (4 oC) to separate out the 

soluble and cell membrane fractions. 

An anaerobic quartz-cuvette viologen assay, using methyl-viologen as the artificial 

electron donor and NO3
- as the electron acceptor, was then performed in triplicate cell 

membrane fractions (Craske & Ferguson, 1986; Jones & Garland, 1977). Nitrate 

reductase activity was measured spectrophometrically (absorbance 600 nm), via the 

re-oxidation of viologen, following the addition of sodium dithionite. 

 2[Me-viologen]o+ + NO3
- + 2H+ 

 2[Me-viologen]2+ + NO2
- + H2O+ 

Each 3 mL quartz cuvette contained 2.8 mL 50 mM phosphate buffer (pH 7.5), 30 

µL 100 mM methyl-viologen, and 150 µL cell membrane fraction to give a final 

concentration of 1 mg/mL. Using a Hamilton syringe 100 mM sodium dithionite was 

titrated until the absorbance (600 nm) was approximately 2.5 units. After a stable base 

line was reached, normally after 130 seconds, 20 mM sodium nitrate was added and 

the change in absorbance was monitored until the reaction was complete. A no cell 

membrane control was used to monitor any spontaneous re-oxidation of viologen, 

when in the absence of nitrate reductase.  

 

2.2.17 Reverse Transcriptase PCR 

Reverse transcriptase PCR (RT-PCR) was performed to determine the 

expression of both putative moeA genes (moeA1 - BTH_I1704 and moeA2 -

BTH_I2200) during anaerobic growth. A starter culture of 50 mL B. thailandensis was 

grown aerobically in L-broth for 16 hours overnight, centrifuged at 6,000 x g, for 15 

minutes (4 oC), and resuspended in M9 minimal media. The next day 150 mL of 

anaerobic M9 minimal media, supplemented with succinate and nitrate, was 
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inoculated with B. thailandensis at an absorbance of 0.1 (600 nm). Cultures were then 

incubated at 37 oC and when required 10-30 mL culture was extracted, centrifuged 

and resuspended in 500 μL M9 minimal media prior to RNA extraction.  

RNA samples were extracted using Qiagen RNeasy Protect mini kit which 

includes an RNA protect Bacterial reagent for efficient stabilisation of RNA prior to 

extraction (Qiagen). RNA samples were extracted at various points during the 

anaerobic growth cycle (lag phase, early, mid and late exponential and stationary 

phase). RNA was also extracted from aerobic LB B. thailandensis overnight cultures 

(16 hours) grown in the presence of absence of nitrate.  All RNA samples were eluted 

using 30 μL RNase-free water and quantified using a nanodrop, used to determine 

level of purity and concentration of RNA. Once the RNA had been extracted all 

samples were treated with Ambion DNase-free kit (Applied Biosystems) to remove any 

contaminating DNA. The concentration of RNA was standardised to 50 ng/μL prior to  

performing RT-PCR to ensure level of band intensity seen on the agarose gel would 

reflect the relative expression level of each gene (moeA1, moeA2 or 16s RNA).  

 To confirm all RNA samples were free of DNA contamination, a PCR was 

performed using Phusion polymerase with the 5 x HF master mix and RT-1704-fwd 

and RT-1704-rv primers (Table 2.2). Phusion PCR reaction mix  consisted of 4 μL 5 x 

HF, 0.4 μL dNTPS, 1 μL each primer, 1 μL DMSO, 11.4 μL nuclease free water, 0.2 

μL Phusion polymerase, and 1 μL template (RNA sample or gDNA). Genomic B. 

thailandensis DNA was used as a positive control. PCR cycle; 98 oC for 30 secs, then 

35 cycles of 98 oC for 10 secs, 62 oC for 30 secs, 72 oC for 30 secs, and a final 

extension of 72oC for 7 minutes.  

RT-PCR performed using Invitrogen SuperScript III One-step RT-PCR mix with 

Platinum Taq polymerase. Superscript III One step RT-PCR (Invitrogen) mix allows 

for generation of complementary DNA (using reverse transcriptase), and PCR in one 

reaction. Primers amplifying an approximate 700 bp region of 16s rRNA (16S-RT1 and 

16S-RT2) and an approximate 300 bp region of BTH_I1704 (RT-1704-fwd and RT-

1704-rv) and BTH_I2200 (RT-2200-fwd and RT-2200-rv) were used in separate 

reactions (see Table 2.2). RT-PCR reaction mix (per 25 μL) consisted of 12.5 μL 2 x 

reaction mix, 0.5 μL of each primer, 1 μL Superscript III RT/platinum Taq, 9.5 μL 

nuclease-free water, 1 μL RNA (50 ng/μL) or gDNA (100 ng/μL). DMSO was added to 
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the reaction mix when using RT-2200-fwd and RT-2200-rv primers. Reaction cycle; 

cDNA synthesis 1 x 60 oC for 30 minutes; PCR reaction initial denaturation at 94 oC 

for 2 minutes, then 40 cycles of 94 oC 15 seconds, 62 oC for 30 seconds, 68 oC 20 

seconds and a final extension of 68 oC for 5 minutes.  

 

2.2.18 Anaerobic viability assay 

To determine whether the ability to grow under anaerobic conditions affects the 

viability of B. thailandensis, wild-type and CA01 were grown anaerobically in a static 

37 oC incubator in medical flat bottomed flasks  (initially sparged with nitrogen) for up 

to one year. The experiment was performed using L-broth supplemented with or 

without 20 mM NaNO3
 or 6 mM NaNO2. Every few weeks the number of viable cells 

was enumerated by spot plating 10 µl of a 10 fold serial dilutions onto LB agar and 

incubating the plates aerobically at 37 oC.  

 

2.3 B. thailandensis in vitro and in vivo virulence assays 

2.3.1 Swimming motility  

Motility assays were performed using nutrient broth supplement with 0.5 % 

glucose solidified using 0.3 % (w/v) bacteriological agar, supplemented with 20 mM 

sodium nitrate when required. Cultures, grown overnight with shaking at 37 oC (220 

rpm), were spun down and resuspended in fresh L-broth and standardised to an 

absorbance (600 nm) of 0.5. The centre of the motility plates were inoculated with 2 

µL of the standardised cell suspension and incubated at 37 oC for 18 hours to 24 hours. 

The zone of swimming was measured (mm) and recorded. Each biological replicate 

was assayed in triplicate.  

 

2.3.2 Biofilm formation  

Bacterial cultures were grown overnight in L-broth at 37 oC with shaking (220 

rpm) and standardised to an absorbance (600 nm) of 0.1 in either M9 minimal media 

or L-broth. The biofilm formation assays were conducted using Griener polystyrene 

flat bottomed 96 well plates. A 96 well plate was set up containing 200 μL bacterial 
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cultures supplemented with or without 20 mM sodium nitrate. The 96 well plates were 

then incubated for 3 days in a static aerobic or anaerobic chamber. Final growth 

readings (absorbance – 600 nm) were recorded prior to staining with crystal violet. 

After 3 days growth aerobically or anaerobically all planktonic cells were carefully 

removed and the biofilm was washed twice in 200 μL of sterile phosphate buffer saline 

solution (PBS). The cells were then heat fixed at 80 oC for one hour, prior to staining 

with 0.1 % crystal violet for 15 minutes. Once the biofilm was stained the crystal violet 

solution was gently removed and the crystal violet dye was solubilised using 200 μL 

of 70 % ethanol and the absorbance was measured in a plate reader at 570 nm. Three 

biological replicate were used, each with five technical replicates.  

 

2.3.3 Galleria mellonella infection assay 

Wax moth larvae (Galleria mellonella) have previously been used as a model 

organism for virulence studies on B. thailandensis and B. pseudomallei, as it has been 

shown to reflect the observed differences in virulence in murine infection models 

(Wand et al. 2011). G. mellonella were purchased from Exeter Exotics (Exeter, Devon, 

UK) and maintained on wood chips at 15 oC until required. Bacterial overnight cultures 

adjusted to give 450 to 500 CFU/10 μL, and 10 μL of either bacterial cell culture or 

sterile PBS was injected into the uppermost proleg using a Hamilton syringe. Each 

challenge was performed using 10 larvae and the numbers of surviving/dead G. 

mellonella were measured periodically. PBS was used as a control to measure any 

potential lethal effects of the infection process. The larvae were considered dead when 

no movement was displayed after gentle prodding. All experiments were carried out in 

triplicate.  

 

2.4 Burkholderia pseudomallei mutagenesis work  

2.4.1 Growth media and conditions used for B. pseudomallei work 

All work with B. pseudomallei (strain K96243) was carried out in a BSL3 

laboratory in a Class I/III safety cabinet. All media was prepared outside of the BSL3 

lab and all work was carried out on a mat soaked with 5 to 10 % Biocleanse. B. 

pseudomallei was routinely grown, aerobically with shaking 200 rpm, in universal 

tubes containing 4 mL L-broth based media or M9 minimal media. E. coli strains DH5α 
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and S17, used for the maintenance of pDM4 suicide vector and deletion constructs, 

were grown in the presence of 50 μg/mL chloramphenicol. Chloramphenicol stocks of 

50 mg/mL were made using 70 % ethanol and kept in the freezer until required.  

All centrifugation steps were performed in a table top centrifuge (MiniSpin®, 

Eppendorf) within the Class I/III safety cabinet.  

 

2.4.2 pDM4 deletion mutagenesis  

2.4.2.1 Creation of a knockout cassette 

The pDM4 suicide vector was used for the creation of B. pseudomallei deletion 

mutants (Logue et al., 2009). To create a knockout cassette 600 bp of both up and 

down stream flanking regions of the target gene were amplified using the appropriate 

primer set; primers 1 and 2 or primers 3 and 4 (Table 2.3 and Fig. 2.2). Each 600 bp 

5’ and 3’ flanking regions (left and right flanks) was amplified using Phusion Pfu 

polymerase with 5 x HF or 5 x GC master mix, dNTPs and DMSO. 0.5 μL of B. 

pseudomallei K96243 gDNA was used per 20 μL PCR reaction. Reaction cycles for 

each 600 bp flanking region were an initial denaturation of 98 oC for 30 seconds, 

denaturation 98 oC for 10 seconds, annealing X oC (X = 54 oC for p1159_1/p1159_2; 

68 oC for p2309_1/p2309_2, p2309_3/4, p1159_3/p1159_4, and p2299_1/p2299_2; 

65 for oC p2455_1/p2455_2; 70 oC for p2299_3/p2299_4; 71 oC p2455_3/p2455_4 

and p1479_1/p1479_2 and p1479_3/p1479_4 primer sets) for 30 secs, extension 72 

oC for 45 secs, and a final extension of 72 oC for 7 minutes. PCR products were 

electrophoresed and gel purified (see section 2.2.4). 

To create the knockout cassette both 5’ and 3’ flanking regions were fused 

together using a second ‘fusion’ PCR. Primers 2 and 3 contain homologous regions 

allowing for efficient ligation of both flanking regions together in a PCR reaction. 

Primers 1 and 4 were used together in a second fusion PCR reaction using purified 

600 bp PCR products of both left and right flanks as templates. Reaction cycles for 

each fusion PCR products included an initial denaturation of 98 oC for 30 seconds, 

denaturation 98 oC for 10 secs, annealing X oC (71 oC for p2455_1/p2455_4 and 

p1479_1/p1479_4; 68 oC p2309_1/p2309_4; and 66 oC for p2299_1/p2299_4) for 2 

minutes, extension 72 oC for 45 secs, and a final extension of 72 oC for 10 minutes. 

An extended extension time was used to ensure effective ligation of complementary 



96 
 

ends corresponding to the start codon, HindIII site, and stop codon (see Table 2.3). 

Fusion PCR for creation of a BPSS1159 proved difficult to optimise so further 

construction of a BPSS1159 pDM4 deletion construct was put on hold. The fusion 

PCR products were run on a 1 % agarose gel and the 1.2 kb PCR product was gel 

excised and purified.  
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Bacterial strain Characteristics Reference 

Burkholderia pseudomallei   

B. pseudomallei K96243 Wild-type 

Gram-negative saprophyte. Thailand patient isolate (1996) 

(Sarkar-Tyson et 

al., 2007) 

ΔnarG K96243 BPSL2309 pDM4 deletion mutant This study 

ΔnarG_pBHR-2309native K96243 BPSL2309 pDM4 deletion mutant, pBHR-BPSL2309native, CamRa This study 

ΔnarG::pBH01 K96243 BPSL2309 pDM4 deletion mutant, pBHR-BPSL2309-2312native, CamR  

   

Escherichia coli   

S17 λ pir Conjugal transfer of pDM4-deletion constructs (Sarkar-Tyson et 

al., 2007) 

Laboratory stock 

DH5α λ pir Chemically competent cloning strain 

F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 

recA1 endA1 hsdR17 (rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1 

Laboratory stock 

5 α DH5α derivative – fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 

relA1 endA1 thi-1 hsdR17 

High efficiency chemically competent cloning strain 

NEB 

DH5α pDM4-2309 DH5α λ pir, pDM4 BPSL2309 deletion construct, CamR This study 

DH5α pDM4-2455 DH5α λ pir, pDM4 BPSL2455 deletion construct, CamR This study 

DH5α pDM4-2299 DH5α λ pir, pDM4 BPSS2299 deletion construct, CamR This study 

DH5α pDM4-1479 DH5α λ pir, pDM4 BPSL1479 deletion construct, CamR This study 

Table 2.3 - Bacterial strains and plasmids used for B. pseudomallei mutagenesis and complementation 
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S17 pDM4-2309 S17 λ pir, pDM4 BPSL2309 deletion construct, CamR This study 

S17 pDM4-2455 S17 λ pir, pDM4 BPSL2455 deletion construct, CamR This study 

S17 pDM4-2299 S17 λ pir, pDM4 BPSS2299 deletion construct, CamR This study 

S17 pDM4-1479 S17 λ pir, pDM4 BPSL1479 deletion construct, CamR This study 

5α pBH01 5α, pBHR-MCS-1::BPSL2309-2312native construct, CamR  This study 

   

Plasmids   

pDM4 Suicide vector carrying sacB for sucrose counter selection 

 CamRa, TetRa, AmpRa, RP4 Mob, oriR6K, sacB, insB   

(Anand et al., 

2004), (Logue et 

al., 2009) 

pDM4-2309 pDM4, BPSL2309 deletion cassette, CamR This study 

pDM4-2455 pDM4, BPSL2455 deletion cassette, CamR This study 

pDM4-1479 pDM4, BPSL1479 deletion cassette, CamR This study 

pDM4-2299 pDM4, BPSS2299 deletion cassette, CamR This study 

pBHR::BPSL2309native pBHR-MCS-1 vector, BPSL2309 with its native promoter, CamR This study 

pJ01 pJET1.2/blunt, BPSL2309-2312 operon with native promoter (BPSL2309-2312native), AmpR This study 

pBH01 pBHR-MCS-1, BPSL2309-2312 operon with native promoter, CamR This study 

a AmpR – Ampicillin resistance cassette; CamR – Chloramphenicol resistance cassette; TetR – Tetracycline resistance cassette  
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2.4.2.2  Ligation of knockout cassettes into pDM4  

Once gel extracted and purified the 1.2 kb knockout cassettes and pDM4 

plasmid were digested using appropriate Fast Digest restriction enzymes; XbaI and 

SpeI (for BPSS1159, BPSS2299, BPSL2455 and BPSL1479) or NheI and XbaI (for 

BPSL2309) and ligated together using T4 DNA ligase (see 2.2.11 Digestion and 

ligation, and Fig. 2.2.). Once ligation was complete the plasmid was transformed into 

DH5α competent cells (see 2.2.12 Transformation) and plated out on to LB agar plates 

containing 35 μg/mL chloramphenicol. Successful transformants were isolated using 

colony PCR using primer 1 (p2309-1, p2299-1, p2455-1, or p1479-1) and primer 4 

(p2309-4, p2299-4, p2455-4, or p1479-4). Frozen stocks of successful transformants 

were made and plasmids (pDM4 deletion constructs – see Table 2.3) were extracted 

and sent for sequencing. Once confirmed the recombinant plasmids were then 

transformed into S17 λ pir competent cells, and verified using colony PCR.  

 

2.4.2.3  Conjugation into B. pseudomallei 

Once the pDM4 deletion construct was successfully created the recombinant 

plasmid (e.g. pD2309) was conjugated into wild-type B. pseudomallei in order to create 

an in-frame deletion mutant. B. pseudomallei K96243 and E. coli S17 λ pir strains 

containing the appropriate pDM4 recombinant plasmid were grown overnight in L-

broth, supplemented with 35 μg/mL chloramphenicol when required. The next day 

both B. pseudomallei and S17 pD2309 cultures were centrifuged at 13,000 rpm and 

the supernatant was carefully removed. Control B. pseudomallei and S17 cell pellets 

were resuspended in 500 μL sterile LB broth and 10 μL was plated out onto 

nitrocellulose membranes. The S17 cell pellet (containing the pDM4 recombinant 

plasmid; pD2309) was then resuspended in 100 μL L-broth and added to the B. 

pseudomallei cell pellet to give a 1:1 mating mix ratio. 400 μL L-broth was then added 

and mating mix was re-centrifuged, supernatant discarded and the pellet was 

resuspended in 100 μL L-broth. 10 μL of the mating mix was plated out on to 3 

separate nitrocellulose membrane on a LB agar plate incubated at 37 oC overnight.  

 The next day the entire bacterial growth from both the controls and mating mix 

were then scraped off and resuspended in 1 mL sterile PBS. 100 μL of each controls 

(S17 containing pDM4 recombinant plasmid) or B. pseudomallei of undiluted (neat) 

culture was then plated out onto LB agar plates containing 100 μg/mL chloramphenicol
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Primer name Sequence (5’- 3’) Characteristics 

pDM4 mutagenesis a   

p2309-1 CGAGCTAGCTCGCGATGTTCATCGTGCTG NheI site 

p2309-2 GGATCTTACAAGCTTCATCGTGTGTTTCTCCAAGGG HindIII site, start and stop 

codons  

p2309-3 CACACGATGAAGCTTTGAAGATCCGCGCACAAGTGG HindIII site, start and stop 

codons 

p2309-4 CGCTCTAGATGTAGACCGAGCCCGACGGG XbaI site 

p2455-1 CAGACTAGTCGGCTCGCGCCGCAGGTCGAC SpeI site 

p2455-2 ACGGATTCAAAGCTTCATCGGTGACGAGGCGCCGCT HindIII site, start and stop 

codons 

p2455-3 TCACCGATGAAGCTTTGAATCCGTACTCAGCACTTC HindIII site, start and stop 

codons 

p2455-4 CGCTCTAGACGTACAGATCCTCGAGATAC XbaI site 

p1479-1 GTCACTAGTTCGGCGGGCAGGCGGCACGC SpeI site 

p1479-2 CGGCTTTCAAAGCTTCATCGTCGATTGAAATGTTGA 
 

HindIII site, start and stop 

codons 

p1479-3 TCGACGATGAAGCTTTGAAAGCCGGGCGGCGTAGCG HindIII site, start and stop 

codons 

p1479-4 CAGTCTAGACCGCGGTGCGCGGACACGGT XbaI site 

p1159-1 GGCACTAGTTTGCGTGATTCCCGCCATTTTC SpeI site 

p1159-2 GGATCTTCAAAGCTTCATGGCTATCCTTGCGGGGAG HindIII site, start and stop 

codons 

Table 2.4 – Primers used for B. pseudomallei pDM4 mutagenesis, mutant confirmation and complementation 
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p1159-3 ATAGCC ATG AAGCTT TGA AGATCCGCGCGCAGATCG HindIII site, start and stop 

codons 

p1159-4 CAG TCTAGA TGTAGATCGAGCCCGACGGG XbaI site 

p2299-1 GAT ACTAGT GCGGCTGCCGCGAACGACG SpeI site 

p2299-2 TCCTCG TCA AAGCTT CAT CTTCACTTCGCGTGGTTC HindIII site, start and stop 

codons 

p2299-3 GTGAAG ATG AAGCTT TGA CGAGGAGGACGCGATGACGC HindIII site, start and stop 

codons 

p2299-4 CAG TCTAGA GCG GGC CGC GTT CCC CAT TC XbaI site 

   

pDM4 mutant confirmation   

2309-fwd-1 CTACGTGTCGTGCGTCGCGATC Binds 300 bp upstream of 

BPSL2309 

2309-rv-2 CGATCGCGGGCAGGTTCGGATTC Binds 300 bp downstream of 

BPSL2309 

2309_check_fwd CATCTGGCCGCTTCGCTGAGCG Binds within BPSL2309 

2309_check_rv GACGCGCTTCGCGGGCACGC Binds within BPSL2309 

 

pBHR-MCS-1 complementation 

  

narG_fwd(2) TTAGGATCCTGACGCCTCCCGCCTCTTTG BamHI site, binds 

approximately upstream of 
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BPSL2309 to amplify gene 

with its native promoter 

narG_rv(2) GGCGTCTAGACATTGTTCTGCTCCTTCG XbaI site, binds at the end of 

BPSL2309 

comp_rv(2) TAATCTAGAGCTGCGACATTCGAGCACGTGAG XbaI site, binds downstream 

of BPSL2312 

a Number denote primer number 1, 2, 3 or 4. See section 2.4.4 for more details.  

Restriction sites are highlighted in blue 

Those nucleotides in bold highlight the start and stop codons of each respective gene to be amplified 
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Figure 2.2 – Schematic of the work through for creation of a pDM4 suicide 

vector containing a knockout cassette. The 600 bp flanking regions, left (blue) 

and right (green) of the target gene (BPSL2309, BPSL2455, BPSL1479 or 

BPSS2299) were amplified by PCR, purified and fused together using second PCR 

reaction to create the knockout cassette (1,200 bp). Both the knockout cassette and 

pDM4 were digested with the appropriate restriction enzymes and ligated together 

to create pDM4-2309/2455/1479/2299, maintained in either DH5α or S17 λ pir 

competent cells. See section 2.4.2 for more details.  
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and 100 μg/mL gentamicin. A 10 fold serial dilution series to 10-2 was performed on 

the mating mix in PBS and 100 μL of each dilution (neat, 10-1
, and 10-2) was plated out 

onto LB agar plates containing chloramphenicol (100 µg/mL) and gentamicin (100 

µg/mL).  Addition of chloramphenicol was used to select for the pDM4 recombinant 

plasmid and gentamicin to select against E. coli S17 ʎ pir. Plates were incubated for 

two days at 37 oC.  

Selection for a B. pseudomallei merodiploid (B. pseudomallei containing 

integrated pDM4 deletion construct into target gene – 1st crossovers) was the 

performed by re-streaking colonies onto LB agar plates containing 100 µg/mL 

chloramphenicol and 100 µg/mL gentamicin. Frozen stocks were made of any 

successful merodiploids, and stored at -80 oC. 

 

2.4.2.4  Sucrose counter selection 

The pDM4 suicide vector contains a sacB gene allowing for efficient sucrose 

counter selection. Selection for the second crossover was achieved through selection 

for sucrose-resistance followed by a screening for chloramphenicol sensitivity to 

confirm excision of the suicide vector. B. pseudomallei strains have been shown to be 

resistant to sucrose, allowing for efficient use of sucrose counter selection to create 

deletion mutants (Logue et al., 2009) (Fig. 2.3).  

 B. pseudomallei merodiploids were grown in L-broth overnight and standardised 

to an absorbance (590 nm) of 0.4 in 1 mL media. A 10 fold serial dilution was then 

performed and 100 μL of undiluted, 10-2 and 10-4 diluted cultures were plated LB agar 

(no NaCl) supplemented with 10 % sucrose plates and left to incubate for 3 to 5 days 

at 24 oC. Excision of the integrated pDM4 in the target gene via sucrose counter 

selection can results in either allelic exchange resulting in a deletion mutant or 

reversion to the wild-type form of the gene (Fig. 2.3) (Logue et al., 2009). Colonies 

growing on the 10 % sucrose plates were then re-streaked onto LB agar plates and 

LB agar plates supplemented with 35 μg/mL chloramphenicol, to check for excision of 

the suicide vector. Any colonies exhibiting chloramphenicol sensitivity were then 

screened for deletion of the target gene using PCR. 
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pDM4-2309
-600 bp up (dark blue) and 600 bp downstream  (dark green) 
sequence of BPSL2309 with HindIII restriction site

Wild-type BPSL2309 
-plus 600 bp up  (light blue) and down stream  (light 
green) of BPSL2309 (orange)

sacB

1.) Homologous recombination
-Conjugation of pDM4-2309 
deletion construct into wild-type B. 
pseudomallei 

sacB

sacB

OR

2.) First cross-over 
– selection for  merodiploid strain based on 

chloroamphenicol resistance Two potential cross over sites

sacB

CamR

CamR

Wild-type BPSL2309
-reversion to wild-type copy of the gene 

Δ2309 
– BPSL2309 deletion mutant

3.) Sucrose counter selection
– selection for removal of integrated 
pDM4 
-selection for chloroamphenicol 
sensitivity

Figure 2.3 - Procedure for creation of a deletion mutant in B. pseudomallei. 

pDM4-2309 was conjugated into B. pseudomallei to create a ΔnarG deletion mutant.  

Diagram altered from Logue et al. (2009). 1.) Conjugation of pD2309 into the wild-

type caused its integration into the genome by homologous recombination.  2.) 

Integration of the deletion construct into the genome could result in two potential first 

crossover events (generating what is known as a merodiploid), selected for based on 

chloramphenicol resistance. Merodiploids, containing the integrated plasmid are 

chloramphenicol resistant and sucrose sensitive due to the presence of sacB.  3.) 

The integrated plasmid encoding sacB was then removed by sucrose counter 

selection and subsequent screening for chloramphenicol sensitivity. Deletion 

construct 600 bp up (dark blue) or down (dark green) stream sequence with start 

codon ATG (red box), HindIII site (white box) and stop codon TGA (green box). Wild-

type BPSL2309 gene shown in orange; wild-type 600 bp up (light blue) and 600 bp 

downstream sequences (light green), are represented with lighter colours for clarity.  

See sections 1.22.3 and 1.22.4 for experimental details.  

ΔnarG (BPSL2309) deletion 

mutant 

 

- 

Wild-type BPSL2309 – (reversion 

to wild-type copy of the gene) 

 

- 
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2.4.3 Boiled PCR lysates  

Boiled B. pseudomallei PCR lysates were used in all PCR reactions for 

confirmation of deletion mutants and complements. PCR lysates were created by 

boiling one colony in 150 µL of sterile water for 1 hour at 100 oC. 5 µL of the boiled 

PCR lysates were used in any subsequent PCR reaction. 

 

2.4.4 PCR to confirm deletion of target gene 

Two sets of PCR reactions were used to confirm deletion of BPSL2309, one using 

primers binding within the wild-type gene, generating a 300 bp product and one using 

primers binding outside BPSL2309, generating a 600 bp product. Primers binding to 

a 300 bp internal region of the gene (2309-check_fwd and 2309-check_rv) were used 

to verify the loss of BPSL2309 in the deletion mutant. Phusion PCR reaction mix with 

5 x HF buffer and DMSO) was used with a reaction cycle of; initial denaturation 98 oC 

for 30 seconds, then cycles of 98 oC for 10 secs, 65 oC for 30 secs, 72 oC for 30 secs 

with a final extension of 72 oC for 7 minutes. 

 Primers binding 300 bp outside of the target gene (2309-fwd-1 and 2309-rv-2) 

were used to further confirm the deletion mutant. The Qiagen HotStar Taq with Q 

solution and 10 x PCR buffer was used for this primer set. PCR reaction cycle 

consisted of an initial denaturation step of 95 oC 15 for minutes, then 30 cycles of 

denaturation at 94 oC for 1 minute, annealing at 63 oC for 1 minute 30 secs, extension 

72 oC for 5 minutes and a final extension time of 72 oC for 7 minutes.  

 

2.4.5 Complementation using pBHR-MCS-1  

  In order to complement the phenotype exhibited by the ΔnarG deletion mutant, 

BPSL2309 (narG) or BPSL2309-2312 (narGHJI) were separately cloned into pBHR-

MCS-1 with the native promoter. The pBHR-MCS-1 vector encodes a chloramphenicol 

resistance cassette and lacZ gene found within the multiple cloning site allowing for 

efficient blue/white screening to identify any successful transformants. The pBHR- 

MCS-1 vector was selected as it lacked any promoter site so would allow for use of 

the genes native promoter. 
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 BPSL2309 (narG) was amplified with its predicted native promoter by PCR using 

primers narG_fwd(2) and narG_rv(2) and Phusion polymerase (Thermo-Scientific) 

with 5 x HF master mix. DMSO was added to the PCR mix to prevent the formation of 

any unwanted secondary structures. PCR reaction cycle included an initial 

denaturation of 98 oC for 30 secs then 35 cycles of 98 oC for 10 secs, 64 oC for 30 

secs, 72 for 2 minutes 30 secs and a final extension of 72 oC for 7 minutes. The 

resultant 3,966 bp product was purified using Qiagen PCR purification kit and eluted 

into 30-50 µL nuclease free water. Both the PCR product and pBHR-MCS-1 vector 

were digested with BamHI and XbaI and ligated together using T4 DNA ligase, prior 

to transformation into DH5α competent cells (see section 1.9 and 1.10). Transformants 

were plated out onto LB agar plates containing chloramphenicol 50 µg/mL, X-GAL (20 

µg/mL) and IPTG (100 µg/mL) to allow for blue/white screening. Any successful 

transformants (DH5α pBHR-MCS::BPSL2309native) were confirmed using PCR and 

DNA sequencing and were maintained in LB medium containing chloramphenicol 50 

µg/mL. 

 The narGHJI operon and the native promoter (BPSL2309-2312native) was 

amplified using KOD Xtreme HotStart DNA polymerase, optimised for use in 

amplification of large PCR products and GC-rich templates. Each 25 μL PCR reaction 

contained 12.5 μL 2 x Xtreme buffer, 1 μL 10 mM dNTPs, 7.5 μL nuclease free water,  

0.75 μL each forward and reverse primer, 0.5 μL KOD Xtreme HotStart DNA 

polymerase and 1 μL 50 ng/μL K96243 genomic DNA. Primers used to amplify the 

entire narGHJI (BPSL2309-2312) operon bound upstream of the native promoter and 

slightly downstream of the end of BPSL2312 (see primer sequences narG_fwd(2) and 

comp_rv(2) in Table 2.4). PCR cycling conditions were 94 oC for 2 minutes then 35 

cycles of 98 oC for 10 secs, 65 oC for 30 secs and 68 oC for 7 minutes 30 secs. Initially 

the 6,632 bp PCR (BPSL2309-2312 with native promoter) product was purified, 

digested using BamHI and XbaI and ligated into pJET1.2/blunt, and transformed into 

High Efficiency 5α competent cells following the same protocol as described 

previously. Any successful transformants containing pJET1.2::BPSL2309-2312native 

(pJ01) were confirmed using PCR, restriction digest and DNA sequencing.  

 Next BPSL2309-2312 was sub-cloned into the pBHR-MCS-1 vector following a 

BamHI and XbaI restriction digest. Both the digested pBHR-MCS-1 vector and pJ01 

vectors were run on an agarose gel, and the appropriate products were gel excised 
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using GeneJet Gel Extraction kit (Thermo-Scientific). Once gel excised and purified 

the digested products, pBHR-MCS-1 and BPSL2309-2312native, were ligated 

together using T4 DNA ligase and transformed into 5α High efficiency competent cells. 

Successful constructs, pBHR::BPSL2309-2312native (pBH01) were confirmed with 

restriction digest, PCR (using 2309check_fwd/2309check_rv primers and 

narG_fwd(2)/comp_rv(2)) and DNA sequencing.  

 

2.4.6 Conjugation of pBHR vector constructs into the ΔnarG mutant– Tri-parental 

mating 

Tri-parental mating was performed to conjugate pBHR-MCS::BPSL2309native or 

pBH01 into the ΔnarG mutant. Overnight cultures of the ΔnarG mutant (recipient), 

DH5α pBHR-MCS::BPSL2309native (donor) or 5α pBH01, and E. coli pKR2013 

(helper strain), were grown in 4 mL LB broth supplemented when required with 

appropriate antibiotic; chloramphenicol 50 µg/mL (donor), or kanamycin 30 µg/mL 

(helper). One mL of the overnight cultures was centrifuged for 5 minutes at 13,400 rpm 

and both donor and helper cell pellets were resuspended in 200 μL sterile PBS. 100 

μL of each donor and helper bacterial suspension was added to the ΔnarG cell pellet 

to give a final 1:1:2 mating mix ratio. The bacterial suspension was resuspended in 

800 μL PBS prior to centrifugation and resuspended in 1 mL sterile PBS. 100 µL of 

the mating mix or controls were plated out onto nitrocellulose membranes placed onto 

a SOB agar plate and incubated at 37 oC overnight. The next day the mating mix and 

controls were resuspended in 1 mL of sterile L-broth and plated out onto LB plates 

containing gentamicin (100 µg/mL) and chloramphenicol (100 µg/mL) and plates were 

incubated for 2 days at 37 oC. Any potential complements were re-streaked onto 

antibiotic selective LB agar plates and confirmed with PCR using 2309check_fwd/rv 

primers. 
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2.5 B. pseudomallei in vitro and in vivo experiments 

 

2.5.1 Anaerobic growth of B. pseudomallei 

Due to the safety constraints when working in the BSL3 lab all the anaerobic 

experiments were performed using an anaerobic box, rather than medical flat bottles 

sparged with nitrogen. All anaerobic growth experiments were carried out in the BD 

GasPak EZ Incubation container with two GasPak EZ anaerobic container system 

sachets with indicator. The level of anaerobiosis was monitored with an anaerobic 

indicator provided with the GasPak Anaerobic system sachets (white = anaerobic; blue 

= aerobic). The GasPak EZ Anaerobe Container System Sachets produced an 

anaerobic atmosphere within 2.5 hour with less than 1.0 % oxygen, and greater than 

or equal to 13 % carbon dioxide within 24 hours. Due to the constraints of only being 

able to take one time point for an experiment (due to loss of anaerobiosis when the 

container is opened), anaerobic growth experiments were conducted as end point 

experiments in a 24 well plate or on solid agar medium. Bacterial overnight cultures 

were standardised to an absorbance of 0.1 (600 nm). 500 µL of the standardised 

culture was then added to 500 µL of the desired medium (LB or M9 minimal media 

supplemented with or without 20 mM sodium nitrate). 100 µL of the standardised 

overnight culture was retained to determine the input CFU/mL. Both input and output 

CFU counts were performed in a 96 well plate using a 10 fold dilution series, with 10 

µL spots plated out onto LB agar plates incubated aerobically at 37 oC. Input CFU/mL 

cell counts were divided by two to give the number of cells in the assay. Anaerobic 

growth of B. pseudomallei was determined by dividing output CFU/mL by the number 

of cells in the assay (input CFU per mL divided by 2).  

 

2.5.2 Determination of NAR activity under aerobic conditions  

To determine the effect of deletion of BPSL2309 on B. pseudomallei nitrate 

reductase activity both the wild-type and mutant (ΔnarG) were grown aerobically in M9 

minimal media supplemented with 20 mM sodium succinate, and a Griess reaction 

was performed in triplicate, as before (section 2.2.15). Samples were taken throughout 

aerobic growth and 1 mL samples were frozen at -80 oC. Three independent biological 

replicates were used per experiment, each with three technical replicates.  
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2.5.3 Motility 

Motility experiments were performed as described previously (section 2.3.1) 

using nutrient broth, L-broth or M9 minimal media solidified using 0.3 % bacteriological 

agar. Overnight cultures (16 to 18 hour) were grown in 4 mL L-broth at 37 oC with 

shaking at 200 rpm. Motility plates were incubated at 37 oC for 24 to 48 hours. When 

appropriate the motility was supplemented with 20 mM sodium nitrate or 5 mM sodium 

nitrite 

 

2.5.4 G. mellonella challenge 

A G. mellonella challenge was performed in a similar manner to that seen in 

section 2.3.3, with overnight cultures grown in L-broth overnight at 37 oC (200 rpm) 

The only difference in the protocol was the use of a hands-free injection method 

requiring the user to pin down the galleria using two sterile 1 mL pipettes and a blunted 

Hamilton syringe, used to reduce the risk of accidental injection.  

 

2.5.5 Sensitivity to acidified nitrite (pH 5) 

To test whether the ΔnarG mutant displayed altered sensitivity to RNIs both the 

wild-type B. pseudomallei and deletion mutant were grown in acidified L-broth (pH 5) 

containing varying concentrations of sodium nitrite (0 mM, 0.1 mM, 1 mM, 2 mM and 

4 mM). Overnight cultures (grown in L-broth at 37 oC with shaking at 200 rpm) were 

standardised to absorbance (590 nm) of 1, and 4 mL of the acidified LB nitrite medium 

was inoculated with 10 % of the standardised culture prior to incubation at 37 oC for 6 

to 24 hours. Input and output cell counts were performed using a 10-fold dilution series, 

spot plating onto LB agar plates and incubating overnight at 37 oC. 

 

2.5.6 Persister cell assay 

To test whether anaerobic respiration played a role in persister cell formation 

B. pseudomallei was treated with 400 μg/mL ceftazidime, in L-broth supplemented 

with or without nitrate. The persister cell assay was performed statically in a 24 well 

plate under conditions designed to mimic oxygen limiting conditions likely to be 
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experienced in vivo (Hemsley et al. unpublished data). B. pseudomallei was grown 

aerobically overnight (to late exponential/stationary phase – for 16 to 18 hours) in 4 

mL L-broth and standardised to an optical density of 0.2 (corresponding to 

approximately 2 x 108 CFU/mL). Overnight B. pseudomallei cultures were also sub-

cultured into fresh L-broth and grown for 6 hours to mid-log phase at 37 oC in 4 mL L-

broth. A ceftazidime stock (10 mg/mL) was freshly prepared prior to each experiment 

in 0.1 M NaOH. A working stock of 800 μg/mL ceftazidime was prepared in L-broth. 

500 µL of the ceftazidime working stock and 500 µL of the standardised bacterial 

suspension were mixed at a 1:1 ratio, to give a 400 μg/mL final concentration of 

ceftazidime and 1 x 108 CFU/mL. When appropriate 20 mM sodium nitrate was added 

to the 24 well plate assay wells prior to static incubation at 37 oC for 24 hours. After 

24 hours the persister assay mixture was centrifuged for 7 minutes at 13,400 rpm and 

the supernatant was removed. The persister cell pellets was then resuspended in 1mL 

sterile L-broth and a 10 fold serial dilution and spot plating was performed to determine 

the output persister counts.  Persister cell frequency was calculated by dividing the 

output CFU/mL by the number of cells in the assay (input CFU/mL divided by 2). All 

experiments were repeated in triplicate using at least three biological replicates. 

An antibiotic kill curve was performed in the same manner as the persister cell 

assay, taking CFU/mL counts after 0, 2, 4, 6, 8, 10, 24 and 30 hours post antibiotic 

(ceftazidime) treatment. 

 

2.5.7 Antibiotic minimal inhibitory concentration determination  

An antibiotic MIC experiment was performed on B. pseudomallei and ΔnarG 

mutant bacterial cultures in a 96 well plate in the presence or absence of 20 mM 

NaNO3 to determine whether nitrate addition affected susceptibility of B. pseudomallei 

to various antibiotics. Overnight cultures (grown in 4 mL L-broth with shaking at 200 

rpm, at 37 oC) were standardised to an optical density (OD) of 0.1 (absorbance 590 

nm) to give 1 x 108 CFU/mL prior to performing a 100 x fold serial fold dilution in L-

broth. 10 mg/mL antibiotic stocks were made in the appropriate media for ceftazidime 

hydrate (0.1 M NaOH), ciprofloxacin (0.1 M NaOH), trimethoprim (DMSO) and 

chloramphenicol (70 % ethanol), prior to preparation of a 1,024 μg/mL working stock 

in 1 mL L-broth. 100 μL of the antibiotic solution was added to the first well of a 96 well 

plate and a subsequent 1:1 dilution series was performed prior to addition of 100 μL 
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standardised bacterial culture. Experiment was performed using two independent 

biological replicates.  

 

 

2.5.8 Hydrogen peroxide sensitivity 

B. pseudomallei sensitivity to hydrogen peroxide was tested by treating 

standardised cultures with varying concentrations of hydrogen peroxide (H2O2) for 15 

minutes. Overnight bacterial cultures were standardised to give 1 x 108 CFU/mL (OD 

= 0.1; absorbance 600 nm) and treated with 0 mM to 15 mM H2O2 for 15 minutes, in 

a final volume of 1 mL. After 15 minutes treatment the cultures were centrifuged and 

resuspended in fresh medium prior to performing a 10 fold serial dilution series and 

spot plating. Percentage survival was determined by comparing number of CFU from 

0 mM treatment with those cells treated with hydrogen peroxide (2.5 mM, 5 mM, 10 

mM and 15 mM H2O2).  Experiment was performed using three biological replicates. 

 

2.5.9 Murine infection model 

 The role of B. pseudomallei NarGHI in virulence was determine using a murine 

infection model, C56BL/6, performed in collaboration with Dr. Gregory Bancroft’s 

group at the London School of Tropical Hygiene and Medicine. Female C57BL/6 mice 

(6-8 week-old; Harlan Laboratories, Bicester, Oxon, UK) were used throughout the 

studies. Groups of 8-10 mice were given free access to food and water and subjected 

to a 12 h light/dark cycle. For challenge the animals were handled under bio-safety 

level III containment conditions. All animal experiments were performed in accordance 

with the guidelines of the Animals (Scientific Procedures) Act of 1986 and were 

approved by the local ethical review committee at the London School of Hygiene and 

Tropical Medicine. For each infection, aliquots were thawed from frozen bacteria 

stocks and diluted in pyrogen-free saline (PFS). Prior to intranasal (IN) infection, mice 

were anesthetized intraperitoneally with ketamine (50 mg/kg; Ketaset; Fort Dodge 

Animal, Iowa, USA) and xylazine (10 mg/kg; Rompur; Bayer, Leverkusen, Germany) 

diluted in PFS. Challenge was performed administering a total volume of 50 µL IN 

containing 2000 CFU (high dose model) or 400 CFU (low dose model) of B. 

pseudomallei K96243 wild type or isogenic mutant. Control uninfected mice received 

50 µL of PFS. The animals were observed twice daily for up to 150 days. Humane 
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endpoints were strictly observed and animals deemed incapable of survival were 

humanely killed by cervical dislocation. 

 

2.5.10 Macrophage infection 

To determine whether deletion of BPSL2309 affect intracellular replication J774A.1 

murine macrophages were infected with either wild-type B. pseudomallei or the ΔnarG 

mutant following a similar protocol to that seen in (Wand et al., 2010). Cell culture was 

performed with the aid of Dr. Rachael Thomas. J774A.1 murine macrophage cell lines 

were maintained in DMEM medium supplemented with 10 % foetal bovine serum and 

1 % L-glutamine (Hyclone) in a 37 oC 5 % CO2
- incubator.   

J774A.1 murine macrophages were seeded at a cell density of 1.5 x 105, resulting 

in a multiplicity of infection (MOI) 10:1, and cells were maintained overnight at 37 oC 

in a 5 % CO2
- incubator. The next day the macrophages were washed three times in 

warmed modified DPBS and once with Leibovitz L-15 medium supplemented with L-

glutamine and L-amino acids (Gibco). B. pseudomallei overnight cultures were 

standardised, to an optical density of 0.0015 (absorbance 590 nm) to give 1 x 106 

CFU/mL, in L-15 media. The standardised bacterial suspension was carefully added 

to macrophage monolayers and incubated at 37 oC for 2 hours to allow for bacterial 

internalisation. Input cell counts were performed using standardised bacterial 

suspensions. After two hours cells were washed with DPBS and L-15 medium 

containing 1 mg/mL kanamycin, added to suppress the growth of extracellular 

bacteria. At appropriate time points (2, 4, 6 and 8 hours) cells were washed three times 

with warm PBS and cells were scraped off the bottom of the 24 well plate and lysed 

using purite water for 5 minutes. All cell counts were performed using a 10 fold dilution 

series and spot plating 10 µL onto LB agar plates, incubated overnight at 37 oC. The 

experiment was performed using three technical replicates. 

 

2.5.11 Transmission electron microscopy 

Transmission electron microscopy (TEM) was performed on samples taken from 

B. pseudomallei overnight cultures to determine whether the ΔnarG mutant displayed 

any difference in flagella. TEM was performed with the aid of Peter Splatt, using TEM 

grids prepared by myself under containment level three conditions. Wild-type and 
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mutant cultures were grown aerobically overnight in LB medium. Cultures were fixed 

for 10 minutes using 4 % formaldehyde. Fixed samples were then centrifuged for 8 

minutes at 3,000 rpm prior to resuspension in purite water and 2 μL of the fixed sample 

was placed onto a 3 mm TEM grid. Uranyl-acetate, a radioactive label and negative 

stain was added to the TEM grids prior to imaging. Three TEM grids were used per 

fixed bacterial samples, and a total of 15 images were taken.  
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Chapter 3 – Bioinformatic analysis of the 

respiratory flexibility exhibited by B. thailandensis, 

B. pseudomallei and B. mallei 

 

3.1  Introduction 

The ability to respire using a variety of diverse electron acceptors provides 

prokaryotic species with a distinct advantage, aiding the colonisation of a wide range 

of environments. Prokaryotic species possessing respiratory proteins that act under 

aerobic and anaerobic conditions are likely to have the greatest survival advantage, 

when compared to obligate aerobic or anaerobic respirers.  

The respiratory flexibility of number of prokaryotes (such as E. coli, and P. 

denitrificans) have been well described, but currently little is known about the diversity 

of respiratory proteins encoded by B. pseudomallei and B. thailandensis. Prokaryotes 

are known to encode a range of primary dehydrogenases (such as NADH 

dehydrogenase, formate dehydrogenase, formate hydrogen-lyase, hydrogenase, 

succinate dehydrogenase and glycerol-3-phosphate dehydrogenase) and terminal 

oxidoreductases (e.g. NAR, quinol oxidases, NIR, and DMSO reductase), allowing for 

growth on a number of electron donors (formate, succinate, NADH and glycerol-3-

phosphate) and electron acceptors (nitrate, nitrite and DMSO) (Unden & Bongaerts, 

1997). There are multiple different types of cytochrome c oxidases, known to display 

varying affinities for oxygen concentrations. The cytochrome bd oxidase displays a 

high affinity for oxygen and is induced in the presence of low oxygen concentrations. 

By comparison the aa3-type predominates under aerobic conditions, whereas the 

cbb3-type functions in a micro-aerophilic environment (Garcia-Horsman et al., 1994; 

Pitcher & Watmough, 2004).  

 The structure of prokaryotic electron transport chains is highly diverse and varies 

in different species depending on the lifestyles that they lead. Denitrification is often 

associated with free-living prokaryotic species (e.g. P. denitrificans) and those with 

clinical relevance (e.g. P. aeruginosa and N. gonorrhoeae). E. coli does not encode a 

cytochrome bc1 complex and it cannot denitrify, as it lacks dissimilatory NIR, NOR and 
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NOS. In comparison to E. coli, R. sphaeroides can take electrons from both the 

cytochrome bc1 complex (ubiquinol cytochrome c oxidoreductase) and quinone 

(Garcia-Horsman et al., 1994). P. denitrificans and P. aeruginosa both encode a full 

denitrification pathway, possessing all genes required for the reduction of nitrate to 

dinitrogen gas. Although E. coli does not encode a full denitrification pathway it can 

grow anaerobically via respiratory ammonification, reducing nitrate to ammonia via 

Nar and Nrf (Cole, 1996). The capacity for E. coli to only grow via respiratory 

ammonification is likely to be partly due to the lack of a cytochrome bc1 complex, 

required for electron transfer to NIR and NOR in the denitrification pathway. 

 Nitrate, nitrite, DMSO and TMAO can be utilised as alternative terminal electron 

acceptors to power growth in oxygen limiting environments (Richardson, 2000). 

Denitrification (anaerobic nitrate respiration) utilises a series of reductase enzymes, 

NAR, NIR, NOR, and NOS, to sequentially reduce nitrate to dinitrogen gas. Many of 

the enzymes required for anaerobic respiration, such as formate dehydrogenase and 

NarGHI, require a molybdenum cofactor for catalysis, synthesised via the 

molybdopterin biosynthetic pathway (Schwarz et al., 2009).  

 B. pseudomallei, the causative agent of melioidosis is closely related to the 

avirulent B. thailandensis and B. mallei (Galyov et al., 2010). All three of these 

Burkholderia spp. possess two chromosomes encoding genes required for core 

metabolic functions and virulence. The B. pseudomallei genome is composed of two 

chromosomes, one of 4.07 megabase pairs (chromosome 1) and one of 3.17 

megabase pairs (chromosome 2) (Holden et al., 2004). B. pseudomallei genome 

exhibits gene partitioning, with chromosome 1 encoding genes required for core 

metabolic function and cell growth, and chromosome 2 encoding genes required for 

accessory functions, virulence and adaptation (Holden et al., 2004). B. mallei is an 

obligate pathogen and has a smaller genome (5.8 Mb) to that seen in B. pseudomallei 

(7.2 Mb) and B. thailandensis (6.7 Mb) (Nierman et al., 2004).  B. thailandensis is a 

very close, but generally avirulent, relative of B. pseudomallei encoding a large 

majority of the same genes seen in the pathogenic B. pseudomallei and B. mallei. This 

high degree of genetic similarity of B. thailandensis to B. pseudomallei allows B. 

thailandensis to be utilised as a model organism to identify genes required for survival 

and virulence.   
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B. pseudomallei is a facultative anaerobe, and is known to survive for extended 

periods of time under both aerobic and anaerobic conditions (Dance, 2000; Hamad et 

al., 2011). Previous studies have shown B. pseudomallei to be able to respire 

anaerobically using nitrate (Hamad et al., 2011), but currently no studies have been 

done into identifying the molecular mechanisms required for anaerobic growth. This 

next chapter will present bioinformatic data used to determine the respiratory flexibility 

of B. thailandensis, B. pseudomallei and B. mallei. Genome wide searches, using 

NCBI, K.E.G.G. and the Burkholderia genome database, were undertaken in order to 

identify genes in B. thailandensis, B. pseudomallei and B. mallei required for aerobic 

respiration, anaerobic respiration and molybdopterin biosynthesis based on what is 

known in other prokaryotes.  

 

Results  

3.2 Identification of genes required for aerobic and anaerobic respiration 

 

3.2.1  Identification of respiratory proteins required for the B. thailandensis E264, B. 

pseudomallei K96243, and B. mallei ATCC 23344 electron transport chain 

Bioinformatic searches, using K.E.G.G and the Burkholderia genome database, 

were used to determine the respiratory flexibility of B. pseudomallei K96243, B. mallei 

ATCC 23344 and B. thailandensis E264, based on similarities with other prokaryotic 

species (Unden & Bongaerts, 1997). B. thailandensis, B. pseudomallei and B. mallei 

were shown to encode an array of different primary dehydrogenases (e.g. NADH 

dehydrogenase, succinate dehydrogenase, formate dehydrogenase, and formate 

hydrogen-lyase), and wide range of different cytochrome c oxidases and terminal 

oxidoreductases (Table 3.1). This diversity of respiratory proteins is likely to allow for 

growth under a wide range of conditions using multiple different carbon sources (e.g. 

succinate, formate, and glucose) and electron acceptors, (e.g. oxygen or nitrate). B. 

thailandensis and B. pseudomallei also encode a wide array of different c-type 

cytochromes, required for the electron transport chain during aerobic and anaerobic 

growth (see Chapter 8 – Appendix Table 1). 

 A putative cbb3-type cytochrome c oxidase was identified in B. thailandensis 

E264. Intriguingly, no ortholog of the putative B. thailandensis cbb3-type cytochrome 
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c oxidase (BTH_II1618-1619) was identified in any other Burkholderia species, apart 

from B. ambifaria MC40-6 (BamMC406_4623-4624). B. ambifaria is an environmental 

species and part of the B. cepacia complex (Coenye et al., 2001). BTH_II1618-1619 

displays around 70 % identity to BamMC406_4623-4624 found in B. ambifaria and 

around 55 to 60 % identity with CMR15_mp20073-20074 from R. solanacearum. B. 

thailandensis, B. ambifaria and R. solanacearum are found environmentally within the 

soil, often associated with plant roots. The significance of the putative cbb3-type 

cytochrome B. thailandensis and B. ambifaria alone and its absence in any pathogenic 

Burkholderia species is currently unknown. However, one could speculate that B. 

thailandensis, unlike B. pseudomallei or B. mallei, requires this putative cbb3-type 

cytochrome c oxidase specifically for environmental survival, and not colonisation of 

the host.  

 All three Burkholderia species, unlike E. coli and other prokaryotic species, 

encode a cytochrome bc1 complex and two ATP synthases, one on each chromosome 

(Table 3.1). Possession of two separate ATP synthases may indicate that they are 

differentially expressed, and may be required for either aerobic or anaerobic 

respiration. Interestingly the ATP synthase encoded on chromosome 2 of B. 

pseudomallei (BPSS1945-1953) has been shown to be induced under hypoxic 

conditions (Hamad et al., 2011). This indicates that BPSS1945-1953 may be required 

for ATP synthesis under anaerobic conditions, whereas the ATP synthase encoded 

on chromosome 1 (BPSL3395-3404) may function during aerobic respiration.   

 

3.2.2  Identification of genes required for denitrification 

A genome wide search using the NCBI database was successfully used to 

identify genes required for denitrification in B. pseudomallei K96243 (Fig. 3.1). 

Following the identification of a full predicted denitrification pathway in B. pseudomallei 

K96243 and B. thailandensis E264 a K.E.G.G ortholog analysis and NCBI BLAST 

analysis were used to determine the degree of sequence conservation and orthology 

with other Burkholderia spp. (Table 3.2).  

Both B. thailandensis E264 and B. pseudomallei K96243 encode two 

membrane-bound NAR, two putative multi-copper oxidases thought to be copper 



119 

 Genes B. thailandensis 

(E264) 

B. pseudomallei 

(K96243) 

B. mallei  

(ATCC 23344) 

Sequence 

identity (%)a 

Primary dehydrogenases      

NADH dehydrogenase nuoA-N 

ndh 

BTH_I1061-1074 

BTH_I0660 

BPSL1211-1224 

BPSS1769 

BMA1819-1829 

BMA0320 

97 – 100 

94 

NAD+ formate dehydrogenase fdsGBAD BTH_I1621-1624 BPSL2528-2531 BMA0448-0451 93 –100 

Formate dehydrogenase-N fdoGHI BTH_II0707-0710 BPSS1665-1667 BMA1680-1682 94 – 98 

Succinate dehydrogenase sdhCDAB BTH_II0660-0663 BPSS1717-1720 BMAA1746-1749 98.6 - 100 

Putative formate hydrogen-lyase - BTH_II1261-1266 BPSS1142-1147 - 95 

Glycerol-3-phosphate dehydrogenase glpD BTH_I0600 BPSL0688 BMA0241 96 

Pyruvate  dehydrogenase poxB - BPSS1636 BMAA1650 99.5 

      

Cytochrome bc1 complex petABC BTH_I2975-2977 BPSL3121-3123 BMA2696-2698 95 – 99 

ATP synthase  BTH_I3307-3315 BPSL3395-3404 BMA2950-2958 95-99 

  BTH_II0419-0426 BPSS1945-1953 BMAA0123-0131 90-100 

      

Terminal oxidases      

aa3 type cytochrome c oxidase coxABC BTH_I0426-0430 BPSL0453-0458 BMA3193-3197 96 - 99 

Cytochrome c oxidase(s) coxAB BTH_I2874-2875 BPSL1259-1260 - 97 

Table 3.1 - Predicted respiratory proteins encoded by B. thailandensis, B. pseudomallei and B. mallei. 
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 - 

 

BTH_I2175 

- 

BPSL1454 

BPSL0722-0723 

BMA1408 

- 

90.8 

- 

Cytochrome bd ubiquinol oxidase(s) cydAB BTH_I0453-0454 

BTH_II2148-2149 

- 

BPSL0501-0502 

BPSS0234-0235 

BPSS1376-1377 

BMA3177-3178 

BMAA1835-1836 

- 

96-100 

97-99 

Cytochrome bo3 ubiquinol oxidase cyoABCD BTH_I1785-1788 

BTH_II0479-0482 

BPSL2378-2381 

BPSS1894-1897 

BMA0600b 

BMAA0194-0197 

96-97 

95-100 

Putative cbb3-type cytochrome c 

oxidase 

ccoNOP BTH_II1618-1620 - - - 

Nitrate reductase narGHJI BTH_I1851-1854 BPSL2309-2312 BMA1731-1734  90-99 

Nitrate reductase narZYWV BTH_II1249-1252 BPSS1156-1159 - 90-99 

Putative DMSO reductase dmsABC - BPSS2299-2301 BMAA2047-2049 98-100 

a Sequence identity of B. pseudomallei K96243 and B. mallei ATCC 23344 genes to those orthologous genes found in B. thailandensis E264; 

according to a K.E.G.G ortholog search 

b Only one gene was identified in gene cluster for B. mallei ATCC 23344 (BMA0600), which appears to be missing two subunits required for 

formation of the cytochrome bo3 ubiquinol oxidase 

- marked in the table indicate absence of homolog or the absence of gene cluster in the respective Burkholderia species. 
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nitrite reductases (Cu-NIR), a NADH-dependent nitrite reductase (an assimilatory 

nitrite reductase not required for respiration), NOR and NOS (Table 3.2 and Figure 

3.1). Unlike B. thailandensis and B. pseudomallei, B. mallei ATCC 23344 only encodes 

one membrane-bound NAR and one NOS. All the genes predicted to be involved in 

denitrification in B. thailandensis display around 91 % to 99 % sequence identity with 

those seen in pathogenic B. pseudomallei and B. mallei. This high degree of 

percentage identity suggests B. thailandensis to be a good model for identification of 

those genes required for anaerobic nitrate respiration and determination of their role 

in virulence (see Chapter 4).  

 

3.2.3 Nitric oxide reductase and nitrous oxide reductase in B. thailandensis E264 and 

B. pseudomallei K96243 

 All three Burkholderia species analysed encode two separate norZ genes (Table 

3.2), predicted to encode a single subunit nitric oxide reductase. BTH_I1813 shares 

71.7 % identity with norB from R. solanacearum (RSp1505) and 48.2 % identity with 

norB from N. gonorrhoeae (NGO1275). The second norZ in B. thailandensis, 

BTH_II0945, shares 64.4 % identity with the norB from Legionella pneumonia 

(lpa_03215). 

 B. pseudomallei and B. thailandensis encode a multicopper nitrous oxide 

reductase composed of nosZ (catalytic subunit), nosD (periplasmic copper processing 

gene), nosF (cytoplasmic protein; related to ABC transporters), nosY (transmembrane 

protein) and nosL (Philippot, 2002) (Fig. 3.1 and Table 3.2) sharing around 90 to 97 

% identity. The nosZ gene in B. thailandensis shares 51 % identity with P. aeruginosa 

PA3392, and 47 % identity with Pden_4219 from P. denitrificans. 

 The majority of studies in to the role of anaerobic respiratory genes in virulence 

has concentrated on NAR and NIR, and not NOS or NOR. Because of this detailed 

bioinformatic analysis was not conducted on the nitric oxide and nitrous oxide 

reductases encoded by both B. thailandensis E264 and B. pseudomallei K96243.  
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BPSL2307 BPSL2308 BPSL2309 BPSL2310 BPSL2311 BPSL2312 BPSL2313 BPSL2314

narK2 narK1 narG narH narJ narI narX narL

narV narW narY narZ HK  

(PAS/PAC 

domain)

RR 

(LuxR family)

fnrnifMnarK

BPSS1154 BPSS1155 BPSS1156 BPSS1157BPSS1158 BPSS1159 BPSS1160 BPSS1161 BPSS1163

BPSS1485 BPSS1486 BPSS1487 BPSS1488 BPSS1489

Hypothetical 

protein

aniA Hypothetical 

protein

Hypothetical 

protein

Hypothetical 

protein

BPSL2350 BPSL2351 BPSL2352 BPSL2354

pseudogenenorZ Hypothetical

protein
Alkane mono-

oxygenase

BPSS1450 BPSS1450 BPSS1452

cu-nir2norZ

(pseudogene)
Hypothetical

protein

Hypothetical

protein
nosL nosY nosFHypothetical

protein

cycB
(Cytochrome 

c5)

BPSL1600 BPSL1601 BPSL1602 BPSL1603 BPSL1604 BPSL1605 BPSL1607

nosZnosD

BPSL1606

Nitrate reductase – NarGHJI and NarZYWV

Copper nitrite reductases – AniA and Cu-Nir2

BPSS1450 BPSS1450 BPSS1452

cu-nir2norZ  

(pseudogene)

Hypothetical

protein

Nitric oxide reductase - NorZ

Nitrous oxide reductase

BPSL1599

nosR

Figure 3.1 – Organisation of gene clusters encoding genes required for denitrification in B. pseudomallei K96243.  Arrows 

denote direction of transcription. Genes encoding the catalytic subunits are shown in blue and those genes in orange indicate those 

required for the function of the enzyme. BPSS1154-BPSS1161 gene operon encodes a HK – histidine kinase; RR – response 

regulator. The nitrous oxide reductase gene cluster includes a cycB encoding a cytochrome c5. Gene clusters have been previously 

identified in (Philippot, 2002). 
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Table 3.2 - Putative genes required for denitrification in B. thailandensis, B. pseudomallei and B. mallei 

 Gene name(s) B. thailandensis  

(E264) 

B. pseudomallei 

(K96243) 

B. mallei  

(ATCC 23344) 

Sequence 

identity (%)a 

Chromosome 1      

Nitrate reductase narGHJI  BTH_I1851-1854  BPSL2309-2312  BMA1731-1734  95 - 99  

NADH-dependent NIRb nirBD BTH_I0463-0464 BPSL0511-0512 BMA3130-3131  95 - 96  

Nitric oxide reductase norZ  BTH_I1813  BPSL2351   BMA0633  96  

Nitrous oxide reductase nosZDFYL BTH_I2317-2325  BPSL1599-1607      BMA09885-0995  90- 97  

      

Chromosome 2      

Nitrate reductase narZYWV BTH_II1249-1252  BPSS1159-1156  - 91 – 97  

Copper-nitrite reductase(s) aniA  

cu-nir2c 

BTH_II0881  

BTH_II0944  

BPSS1487  

BPSS1452  

BMAA0755 

BMAA0798  

94 

86  

Nitric oxide reductase norZ  BTH_II0945  BPSS1450  

(pseudogene)  

BMA0799  98  

NADH-dependent NIR b nirBD-2 BTH_II1170-1171 BPSS1242-1243  BMAA1085-1086  94  

a Sequence identity (%) relates to gene orthology (K.E.G.G) of B. pseudomallei and B. mallei genes to those orthologous genes found in B. 

thailandensis E264 

b NADH-dependent nitrite reductase (NADH-dependent-NIR) are not required for anaerobic respiration, but is likely to play a role in nitrate 

assimilation 

- Denotes absence of homologous gene cluster in the respective Burkholderia spp. 

c Annotated as cu-nir2 in this study 
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3.3  Bioinformatic analysis of the NAR and NIR genes encoded by B. 

pseudomallei and B. thailandensis  

 

3.3.1 Both B. pseudomallei K96243 and B. thailandensis E264 encode two 

membrane-bound nitrate reductases 

Both B. thailandensis and B. pseudomallei encode two membrane-bound 

nitrate reductases (Table 3.2), which display similarity to either the narGHJI or 

narZYWV operons found in other prokaryotic species. All genes encoded within the 

narGHJI and narZYWV operons in B. thailandensis E264 share between 90 and 100 

% sequence identity with the orthologous gene clusters in B. pseudomallei K92643 

and B. mallei ATCC 23344 (Fig. 3.2 a and c). B. mallei, in comparison to B. 

thailandensis and B. pseudomallei, does not encode a narZYWV operon within its 

genome. A K.E.G.G. ortholog analysis was performed on both the NAR operons to 

determine the degree of sequence identity of those B. thailandensis genes 

(BTH_I1849-BTH_I1856 or BTH_II1249-1252) in E. coli, P. aeruginosa and 

Salmonella. (Fig. 3.2 b and d). The genes encoding NAR are organised into operons, 

which in the case of narGHJI includes genes coding for a nitrate/nitrite transporters 

(narK1 and narK2) and a NarXL two component system (TCS), likely to be involved in 

its regulation (Fig. 3.1).  The B. thailandensis narG/narZ and narH/narY genes share 

between 60 to 70 % identity with those orthologous genes in E. coli, P. aeruginosa 

and Salmonella. In comparison the membrane anchor subunits (narI/narV) and the 

chaperone proteins involved in the assembly of NAR (narJ/narW), are less well 

conserved, and show only between 30 to 40 % and 40 to 50 % identity (Fig. 3.2). 

Like P. aeruginosa and E. coli, the B. thailandensis and B. pseudomallei 

narGHJI operon also encodes a NarK nitrate/nitrite transporter and a NarXL TCS. 

Most published narGHJI gene clusters exhibit the sequence order <narXL-

narK>narGHJI> (arrows indicate transcriptional direction), whereas the gene cluster 

in R. solancearaum and Burkholderia spp. narK>narGHJI>narXL> (Stewart, 2003) 

(Fig. 3.2). The significance of this gene rearrangement in the Burkholderia spp is 

currently unknown. Softberry promoter analysis has revealed the presence of an rpoD 

(a housekeeping sigma factor - σ70) recognition site in the predicted narG promoters 

of NarG encoded by B. pseudomallei (BPSL2309) and B. thailandensis (BTH_I1854). 

A putative NarL binding domain, similar to that seen in P. aeruginosa was also found 
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upstream of both BPSL2309 and BTH_I1854, within the promoter region. This pointed 

towards the potential role of NarXL in the regulation of the narGHJI operon in B. 

pseudomallei K96243 and B. thailandensis E264. 

 B. thailandensis E264 and B. pseudomallei K96243, unlike B. mallei ATCC 

23344, encode a second nitrate reductase on chromosome 2 (BTH_II1249-1252 or 

BPSS1156-1159). This NAR displays a high degree of similarity (40-70 %) with the 

cryptic nitrate reductase, narZYWV, seen in E. coli and Salmonella. This gene cluster 

was annotated in this study as a cryptic Nar due to the lack of a NarXL TCS within the 

operon and the fact that this cluster is not found in B. mallei. This second Nar 

(BTH_II1249-1252 or BPSS1156-1159) is thought to play a secondary role in 

adaptation to hypoxia or environmental survival rather than anaerobic respiration. 

Softberry promoter analysis has revealed the presence of a putative FNR binding site 

upstream of BPSS1159 (narZ), and argR and argR2 binding sites upstream of 

BTH_I1854.  

Sequence alignment and comparison with published NarG sequences has 

revealed that both nitrate reductases in Burkholderia to be part of the D-group of 

molybdoenzymes, containing the conserved aspartate (D) ligand, found within the 

substrate entry channel (Fig. 3.3 b.) (Jormakka et al., 2004; Martinez-Espinosa et al., 

2007). The N-terminal region of NarG in E. coli contains conserved cysteine residues 

and histidine residue (HxxxCxxxC(x)nC), involved in coordination of the high-spin [4Fe-

4S] cluster (Fig. 3.3 a.) (Bertero et al., 2003; Jormakka et al., 2004; Magalon et al., 

1998; Rothery et al., 2004). These same residues are also found in both nitrate 

reductase of all three Burkholderia spp. (Fig. 3.3). 

 Along with the identification of the amino acid residues involved in the 

coordination of the [4Fe-4S] cluster, a second signature relating to the substrate 

binding pocket (Martinez-Espinosa et al., 2007) was identified (Fig. 3.3 b). This 

signature relates to a the potential substrate entry site designated by tyrosine (Y), 

aspartate (D), glutamine (Q) and threonine (T) residues, as seen in E. coli and P. 

denitrificans (Martinez-Espinosa et al., 2007). 
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a.) narGHJI operon in B. thailandensis, B. pseudomallei and B. mallei 

b.) narGHJI operon in P. aeruginosa, E. coli and Salmonella spp. 

c.) narZYWV operon in B. thailandensis and B. pseudomallei  

d.) narZYWV operon in E. coli and Salmonella spp. 
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Figure 3.2 – K.E.G.G. ortholog analysis on both the nitrate reductase operons 

in B. thailandensis E264. K.E.G.G. ortholog analysis (diagram on the previous 

page) is based on the gene clusters BTH_I1849-1854 and BTH_II1249-1252 from 

B. thailandensis E264.  Diagram represents transcriptional direction of B. 

thailandensis genes.  Percentage sequence identity of each of the B. thailandensis 

E264 genes with orthologs in other prokaryotes (such as B. pseudomallei K96243 

and B. mallei ATCC 23344, or P. aeruginosa, E. coli and Salmonella), is shown with 

different colours (see key). a.) Similarities of the NarGHJI operon encoded on 

chromosome 1 in B. thailandensis, B. pseudomallei and B. mallei. All the genes 

encoded in the operon, including narK1 and narK2 and the narX/narL, share 

between 90 and 100 % sequence identity. b.) NarGHJI operon in P. aeruginosa, E. 

coli and Salmonella spp. Colours relate to percentage identity to the corresponding 

B. thailandensis genes. Please note only P. aeruginosa encodes two NarK genes 

(narK1 and narK2), whereas Salmonella and E. coli only one NarK (narK2). The 

sequence identity for B. thailandensis narK2 therefore only refers to its identity with 

the P. aeruginosa ortholog. c.) Second nitrate reductase encoded only in the 

genome of B. thailandensis and B. pseudomallei. This gene cluster is not found in 

B. mallei. d.) NarZYWV operon in E. coli and Salmonella spp. B. pseudomallei and 

B. mallei narGHJI and narZYWV operons are encoded on the opposite strand to B. 

thailandensis. See text for details.  
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Figure 3.3 – Burkholderia nitrate reductases are 

part of the D-group of molybdoenzymes. Figure 

shows a sequence alignment of the N–terminal 

region of NarG and NarZ from B. thailandensis E264 

(Bth_NarG/Bth_NarZ), B. pseudomallei K96243 

(Bps_NarG/Bps_NarZ), B. mallei ATCC 23344 

(Bma_NarG), and E. coli (Eco_NarG/Eco_NarZ). a.) 

Iron-sulphur cluster signature, highlighting potential 

cysteine and histidine residues involved in 

coordination of the high spin [4Fe-4S] cluster found 

in the E. coli NarG (Jormakka et al., 2004). b.) 

Potential substrate binding pocket signature in NarG. 

Arrow points towards the conserved Asp (D), within 

the substrate entry channel required for the 

coordination of Mo-bisMGD. Highlighted residues in 

the sequence alignment are based on similarity to 

the NarG sequences annotated in (Martinez-

Espinosa et al., 2007; Rothery et al., 2004). 

Alignment was performed by Clustal Omega. 

Asterisks (*) denote conserved amino acid residues 

in all sequences analysed. See text for details. 

b.) Iron-sulphur cluster signature 

a.) Substrate pocket signature 

a.) Iron sulfur cluster signature 

b.) Substrate pocket signature 
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3.3.2 B. pseudomallei K96243 NarG (BPSL2309) structural model 

 B. pseudomallei NarG shares 67.8% sequence identity with E. coli NarG. B. 

pseudomallei K96243 NarG (BPSL2309) was modelled against the E. coli NarGHI 

(PDB: 1Q16; (Bertero et al., 2003)) to determine the degree of structural homology. 

Structural analysis was performed using the online I-TASSER service. The B. 

pseudomallei NarG structure was shown to be almost identical to that seen in E. coli 

NarG (Fig. 3.4), both displaying a loop required for binding to the NarH subunit.  

 

3.3.3  B. thailandensis, B. pseudomallei, and B. mallei are predicted to encode two 

putative copper nitrite reductases  

  B. thailandensis E264, B. pseudomallei K96243 and B. mallei ATCC 23344 

encode two putative copper nitrite reductases (annotated as multicopper oxidase 

domain containing proteins) on chromosome 2, sharing between 86 to 94 % sequence 

identity (Table 3.2).  

  The crystal structure of the soluble domain of N. gonorrhoeae AniA (sAniA) has 

been solved and has revealed it to be part of the class II copper nitrite reductases 

(Boulanger & Murphy, 2002). BTH_II0881, BPSS1487 and BMAA0755 (referred to as 

AniA in Table 3.2) share around 60 % sequence identity with the outer membrane 

copper nitrite reductase (AniA) found in N. gonorrhoeae and N. meningitidis. Due to 

the high degree of similarity exhibited by BTH_II0881, BPSS1487 and BMAA0755 to 

the N. gonorrhoeae AniA an amino acid sequence alignment was performed, using 

Clustal Omega, to identity potential catalytic residues (Fig. 3.5). The N-terminus of 

BTH_II0881, BPSS1487 and BMAA0755 proteins were shown to contain all the key 

amino acid residues required for binding of the type I and type II copper atoms. The 

amino acid residues denoted with the arrows in figure 3.5 (His140, Cys181, His189 

and Met194) correspond to those involved in the coordination of the type I copper atom 

as seen in Neisseria sAniA (Boulanger & Murphy, 2002). Residues required for the 

binding of the type II (His145, His180 and His335), are required for catalytic activity 

and substrate binding in N. gonorrhoeae sAniA (Boulanger & Murphy, 2002), are 

shown with the ball and stick in figure 3.5. The Asp (D) and His (H) residues highlighted 

in green indicate those predicted to be 
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Figure 3.4 - B. pseudomallei NarG structural model.  B. pseudomallei NarG 

(BPSL2309) was modelled against the NarG from E. coli using E. coli NarGHI 

(1Q16) as a template. B. pseudomallei NarG (query) structure is shown in red; E. 

coli NarG (template) is shown in blue. Analysis was performed using the online I-

TASSER structural modelling service, with the image created using DS Visualizer 

3.5. 
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Figure 3.5 – Sequence alignment of the putative anaerobic outer membrane 

copper nitrite reductase from Burkholderia spp. with Neisseria AniA. Amino acid 

sequences the putative copper nitrite reductases (AniA) from B. thailandensis E264 

(BTH_II0881), B. pseudomallei K96243 (BPSS1487), B. mallei ATCC 23344 

(BMAA0755), were aligned with AniA from N. gonorrhoeae (NGO1276), and 

Bdellovibrio bacteriovorus (Bd2608) using Clustal Omega.  Potential type I and type II 

copper ligands denoted by an arrow (type I) or ball and stick (type II). The Asp (D) and 

His (H) residues highlighted in green indicate those required for nitrite reduction, in 

sAniA. The asterisks (*) indicate conserved residues between all amino acid 

sequences. See text for more details 
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 required for nitrite reduction, in sAniA. 

  The second putative copper nitrite reductase (Cu-Nir2) in B. thailandensis E264 

(BTH_II0944) shares around 85 % sequence identity with orthologous genes in 

various B. pseudomallei and B. mallei strains. By comparison, BTH_II0944 only 

exhibits around 47.6 % sequence identity with other characterised copper nitrite 

reductase, such as that found in Idiomarina loihiensis (IL0762), sharing only 35 % 

identity with AniA from N. gonorrhoeae (NGO1276).  

 Preliminary sequence alignment BTH_II0944 and BPSS1452 with NGO1276 

identified a difference in the highly conserved consensus YHCA sequence. To identify 

whether this difference was seen in other Burkholderia strains, the Cu-Nir2 amino acid 

sequences from a range of different B. pseudomallei (K96243 – BPSS1452; 668 - 

BURPS668_A2061; 1710b – BURPS1710b_A047; MSHR305 – BDL_4759) and B. 

mallei strains (ATCC 23344 – BMAA0798; NCTC 10247 – BMA10247_A1613) were 

aligned against BTH_II0944 using Clustal Omega (Fig. 3.6). The sequence alignment 

revealed all strains to have residues required for type I copper binding and Asp200 (D) 

required for nitrite reduction. Interestingly several of the B. pseudomallei (1710b, 

K96234 and MSHR305) and B. mallei (NCTC 10247) strains analysed displayed a 

difference in the generally conserved YHCx consensus sequence, having an arginine 

replacement for a key His residue (His236) implicated in type II copper binding 

(highlighted in red in Fig. 3.6). This amino acid replacement is not seen in B. 

thailandensis E264 (BTH_II0944), B. pseudomallei 668 (BURPS668_A2061) or B. 

mallei ATCC 23344 (BMAA0798). The replacement of His236 for an Arg residue at 

the same position could have implications of nitrite reduction since this His residue is 

likely to be required for the coordination of the type II copper atom required for nitrite 

reduction (Fig. 3.6). Whether or not Cu-Nir2 in these B. pseudomallei and B. mallei 

strains is in fact a true copper nitrite reductase remains to be determined.   
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Figure 3.6 - Sequence alignment of BTH_II0944 orthologs in different B. 

pseudomallei and B. mallei strains. The second putative copper nitrite reductase 

(Cu-Nir2), annotated as a multicopper oxidase domain-containing protein, in B. 

thailandensis E264 (BTH_II0944) was aligned with its orthologs in different B. 

pseudomallei (K96243 – BPSS1452; 668 – BURPS668_A2061; 1710b – 

BURPS1710b_A047; MSHR305 – BDL_4759) and B. mallei (ATCC 23344 – 

BMAA0798; NCTC 10247 – BMA10247_A1613) strains using Clustal Omega. 

Differences in amino acid residue, required for the coordination of the type II copper 

atom, between the strains are marked in red (see text for details). Potential type I 

and type II copper ligands denoted by an arrow (type I) or ball and stick (type II). 

The asterisks (*) indicate conserved residues between all amino acid sequences.  
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3.3.4 Prediction of transmembrane helices in both putative copper nitrite reductases 

 AniA from N. gonorrhoeae is known to be bound to the outer-membrane 

(Boulanger & Murphy, 2002; Hoehn & Clark, 1992). Due to the high degree of 

homology of BPSS1487 and BTH_II0881 with the AniA from N. gonorrhoeae (Fig. 3.5) 

the TMHMM server v. 2.0 (Krogh et al., 2001; Sonnhammer et al., 1998) was used to 

predict potential transmembrane helices in both putative copper nitrite reductases 

(BTH_II0881/BPSS1487 and BPSS1452/BTH_II0944) to determine their potential 

cellular location (Fig. 3.7). The TMHMM server v. 2.0 flagged up a predicted 

transmembrane helix in BTH_II0881 and BPSS1487 (AniA) in the N-terminus of the 

protein. In comparison, no transmembrane helices were identified in either 

BTH_II0944 or BPSS1452 (Cu-Nir2). Caution must be executed when interpreting 

these results as the TMHMM 2.0 program is known to also pick up N-terminal signal 

peptides. The TMHMM2.0 program was only used to help predict the potential location 

of the putative Cu-Nirs in B. thailandensis E264 and B. pseudomallei K96243 within 

the periplasmic space, either being associated with the outer-membrane (for 

BTH_II0881 and BPSS1487) or found freely within the periplasmic space (for 

BTH_II0994 and BPSS1452). Both the putative copper nitrite reductases from B. 

thailandensis and B. pseudomallei were predicted to contain Sec signal peptides 

(predicted using the SignalP 4.1 server) in the N-terminus, indicating both are likely to 

be translocated into the periplasmic space. 

 

3.3.5 Structural prediction of both putative copper nitrite reductases in B. pseudomallei 

 SWISS-MODEL (Bordoli et al., 2009; Bordoli & Schwede, 2012) was used to 

determine whether both copper nitrite reductases encoded by B. pseudomallei K96243 

and B. thailandensis E264 exhibited structural homology to published NIRs. Both 

BTH_II0881 and BPSS1487 were successfully modelled against sAniA from N. 

gonorrhoeae (PDB: 1kbv; (Boulanger & Murphy, 2002)), showing it to have the same 

quaternary structure (Fig. 3.8). All the residues required for the interaction with copper 

ligands were completely conserved and the model was successfully built (displaying 

a QMEAN Z-score of -0.012) as a trimer with all six copper ligands predicted to be 

required for catalysis (Fig. 3.8). This confirms that BTH_II0881 and BPSS1487 encode 
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an AniA like protein containing copper binding ligands required for the reduction of 

nitrite to nitric oxide.  

 

  
Figure 3.7 - Burkholderia copper nitrite reductase transmembrane helices 

prediction. The TMHMM server v. 2.0 was used to predict the presence of 

transmembrane helices in the putative copper nitrite reductases from B. 

thailandensis E264 and B. pseudomallei K96243. a.)  Predicted transmembrane 

helices in BTH_II0881 and BPSS1487 containing one predicted transmembrane 

helix in N-terminal sequence. This and their similarity with the membrane-bound 

nitrite reductase (AniA) from N. gonorrhoeae could indicate BTH_II0881 and 

BPSS1487 are associated with the outer-membrane. b.) No transmembrane 

helices predicted for BTH_II0944 or BPSS1452 (Cu-Nir2), corresponding with its 

predicted periplasmic location.   

a.) BTH_II0881/BPSS1487 

b.) BTH_II0944/BPSS1452 
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 Structural models for BPSS1452 and BTH_II0944 were also constructed based 

on several different template structures, but little structural homology was seen with 

other published nitrite reductases. As an example BPSS1452 was modelled, as a 

single chain, against the hexameric copper-containing nitrite reductase from H. 

denitrificans (PDB: 2dv6E) (Nojiri et al., 2007), but only displayed 33.4 % sequence 

identity. This structural model had a low QMEAN Z-score of -5.56, as the sequences 

were too diverse to infer a conservation of the oligomeric state, and not all the copper 

ligands were conserved. BTH_II0944 and BPSS1452 share little structural homology 

with any published copper nitrite reductase and no successful models could be made 

using either the amino acid sequence. This indicates, along with the sequence 

alignment (Fig. 3.5), that BTH_II0944 and BPSS1452 may not encode a true copper 

nitrite reductase, and may potentially be redundant in function. Further 

characterisation will be required to determine whether BTH_II0944 and BPSL1452 

play a role in either B. thailandensis or B. pseudomallei. 

 

3.4 Molybdopterin biosynthetic pathway in Burkholderia 

 Many proteins involved in anaerobic respiration (such as formate dehydrogenase, 

NAR and DMSO reductase) require the formation of a molybdopterin cofactor (Moco), 

synthesised via the molybdopterin biosynthetic pathway. Disruption of a gene cluster 

encoding moaA1-moaB1-moaC1-moaD1 and a moaD2 derivative, required for 

molybdopterin biosynthesis, in Mycobacterium was shown to cause an impairment of 

growth on nitrate leading to the accumulation of nitrite (Williams et al., 2011). The 

function of the denitrification pathway is known to be dependent on the formation of 

various metal cofactors, with NarGHI requiring [Fe-S] clusters and an active Mo-

bisMGD cofactor for the reduction of nitrate to nitrite (Gonzalez et al., 2006). Because 

a full denitrification pathway was identified in B. thailandensis and B. pseudomallei it 

seemed logical that these species would also encode genes required for the synthesis 

of the molybdenum cofactor. Therefore a bioinformatics analysis, using K.E.G.G. and 

NCBI searches, was performed to identify genes required for the molybdopterin 

biosynthetic pathway. Bioinformatic analysis successfully identified the presence of a 

full molybdopterin biosynthetic pathway in B. thailandensis E264, B. pseudomallei 

K96243 and B. mallei ATCC 23344, with all genes sharing between 88 and 99 % 

identity (Table 3.3). All three Burkholderia species, unlike some other prokaryotes,  
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Figure 3.8 – Predicted structure of B. pseudomallei AniA (BPSS1487). The 

structure of BPSS1487 was predicted using SWIS-MODEL and modelled on N. 

gonorrhoeae sAniA (PDB: 1kbv) (Boulanger & Murphy, 2002). a.) Predicted 

model for BPSS1487 showing copper ligands (grey balls), found within each 

subunit of the trimeric enzyme. b.) Global model quality estimation showing 

QMEAN Z-score of -0.012 (Benkert et al., 2011). A structural model was also 

constructed for BTH_II0881, showing it to display the same degree of homology 

to sAniA (1kbv) from N. gonorrhoeae.  

 

a.) b.) 
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encode two putative moeA genes (see Chapter 4 for more details). No MobB homolog 

was identified in any of the three Burkholderia spp. However E. coli MobB was shown 

not to be essential molybdopterin biosynthesis (Palmer et al., 1996). 

 The predicted Burkholderia molybdopterin biosynthetic pathway is identical to 

that seen in other prokaryotic species (Fig. 3.9) (Schwarz et al., 2009). The 

molybdopterin biosynthetic pathway is a highly conserved four step enzymatic 

pathway. This pathway initially involves the conversion of GTP to cPMP, which is then 

converted to molybdopterin, following molybdenum uptake, and finally Mo-bisMGD 

(see Chapter 1 – 1.4.1 Molybdopterin biosynthetic pathway). This pathway involves 

many different transport and biosynthetic proteins (Schwarz et al., 2009), all of which 

are found in B. thailandensis, B. pseudomallei and B. mallei (Table 3.3 and Fig. 3.9). 

 

3.5 Discussion 

 Bioinformatic analysis has shown B. thailandensis E264, B. pseudomallei 

K96243, and B. mallei ATCC 23344 to encode multiple types of primary 

dehydrogenases, terminal oxidases and anaerobic respiratory proteins (Fig. 3.10). 

This respiratory flexibility exhibited by all three Burkholderia spp. is likely to contribute 

to their environmental survival and virulence.  

 Bioinformatic analysis revealed B. pseudomallei K96243 to encode the widest 

range of primary dehydrogenases and oxidoreductases, possessing gene clusters that 

were not identified in either B. thailandensis E264 or B. mallei ATCC 23344 (Table 

3.1). For example B. mallei seems to lack a number of terminal oxidoreductases found 

in B. thailandensis or B. pseudomallei. This difference could be due to the fact that the 

B. mallei genome is thought to have undergone a degree of genome downsizing 

(Nierman et al., 2004). Although majority of B. mallei genome is around 90 % identical 

to that seen in B. pseudomallei, B. mallei is known to either lack genes or encode gene 

variants of 627 genes encoded on chromosome 1 and 819 on chromosome 2 in B. 

pseudomallei (Nierman et al., 2004). This difference is likely to reflect the fact that B. 

mallei, unlike B. pseudomallei and B. thailandensis, is an obligate pathogen, surviving 

poorly within the environment. The differences in respiratory flexibility between B. 

pseudomallei and B. thailandensis, may indicate that B. pseudomallei requires a
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Table 3.3 - Genes required for molybdopterin biosynthesis in B. thailandensis, B. pseudomallei and B. mallei 

Gene 

name 

Function  B. thailandensis 

(E264)  

B. pseudomallei 

(K96243)  

B. mallei  

(ATCC 23344)  

Sequence 

similarity
a
 (%)  

moaA  molybdenum cofactor biosynthesis protein 

A  

BTH_I1706  BPSL2453  BMA0519  95  

moaC molybdenum cofactor biosynthesis protein 

C  

BTH_I0653  BPSL0786  BMA0283  88 - 95.7  

moaD  molybdopterin converting factor subunit 1 

and 2  

BTH_I2201-2202  BPSL1480-1481  BMA1380-1381  92 - 98.8  

mogA  molybdenum cofactor biosynthesis protein  BTH_I1671  BPSL2480  BMA0391  96  

moeA1  molybdopterin biosynthesis protein A  BTH_I1704  BPSL2455  BMA0517  89-90  

moeA2  molybdopterin biosynthesis protein A BTH_I2200  BPSL1479  BMA1382  92.5  

modABC  molybdate specific transport system  BTH_II0591-0593  BPSS1786-1788  BMAA0297-0299  95 – 96  

modE  molybdate transport system transcriptional 

regulator  

BTH_II0590  BPSS1789  BMAA0294  93 - 94 

mobA  molybdopterin-guanine dinucleotide 

biosynthesis protein  

BTH_I1705  BPSL2454  BMA0518  90  

moeB Molybdopterin biosynthesis protein BTH_I0414 BPSL0441 BMA3210 95 - 100 

moaE  molybdenum converting factor subunit 2  BTH_I2202  BPSL1481 BMA1381 92 - 99 

a Sequence identity (%) relates to gene orthology (K.E.G.G) of B. pseudomallei and B. mallei genes to those found in B. thailandensis 
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2 x MoeA

GTP

Mo

MoaA MoaC

MoaD

MoaE

MoeB

MogA

cPMP 

Molybdopterin (MPT)

Mo-MPT

MobA

MobB (not identified)

Mo-bisMGD

ModABC

Figure 3.9 - Molybdopterin biosynthetic pathway in Burkholderia spp. Predicted 

pathway based bioinformatic searches (NCBI BLAST and KEGG) and published 

literature (Schwarz et al., 2009; Vergnes et al., 2004). All genes are present in B. 

pseudomallei and B. thailandensis (see Table 3.3). A homologue of MobB has not 

yet been identified in B. thailandensis or B. pseudomallei. Both B. pseudomallei and 

B. thailandensis encode two putative moeA genes as shown in bold (Table 3.3). 
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greater array of different cytochrome c oxidases to survive and persist within the 

human body.  

 Cytochrome c oxidase couples electron transfer from c-type cytochromes to 

proton translocation, via the conversion of oxygen to water, pumping protons into the 

periplasm. There are various types of cytochrome c oxidases that are known to 

function under different oxygen concentrations. The aa3-type cytochrome c oxidase 

predominates under aerobic conditions and is similar to the mitochondrial cytochrome 

c oxidase (complex III) (Kishikawa et al., 2010; Richter & Ludwig, 2009). The 

cytochrome bd oxidase displays a high affinity for oxygen and is generally induced 

under microaerobic conditions, often replacing the bo3-type which displays a lower 

affinity for oxygen (Garcia-Horsman et al., 1994). B. thailandensis E264, B. 

pseudomallei K96243 and B. mallei ATCC 23344 encode a putative aa3-type oxidase, 

cytochrome bd oxidase and bo3-type oxidase (Table 3.1 and Fig. 3.10) similar to that 

seen in other prokaryotic species. B. thailandensis, but not B. pseudomallei, encodes 

a putative cbb3-type oxidase, ccoNOP. The cbb3-type oxidases are expressed 

specifically under microaerobic conditions, under the control of FNR, to allow for 

colonisation of oxygen limited environments (Pitcher & Watmough, 2004). Although 

no homolog of the cbb3-type oxidase was found in B. pseudomallei, B. pseudomallei 

seems to encode an extra copy of a cytochrome bd oxidase not found in B. 

thailandensis (Table 3.1). The significance of these findings is currently unknown. 

However, one can speculate the absence of a putative cbb3-type cytochrome oxidase 

in pathogenic Burkholderia spp. may point to a role for that gene cluster in B. 

thailandensis (BTH_II1618-1619) in environmental survival. The extra copy of 

cytochrome bd oxidase may provide a compensatory role in B. pseudomallei, allowing 

for both environmental and in host survival, considering it does not encode a putative 

cbb3-type cytochrome c oxidase. 

B. thailandensis, B. pseudomallei and B. mallei encode a cytochrome bc1 

complex, required for aerobic and anaerobic respiration. All three Burkholderia spp. 

possess multiple types of cytochrome c oxidase proteins which are likely to take 

electrons either straight from the quinol pool (for cytochrome bd oxidase, cytochrome 

bo3 oxidase) or from c-type cytochromes via the bc1 complex (for aa3-type and cbb3-

type cytochrome oxidases), similar to that seen in R. sphaeroides (Garcia-Horsman et 

al., 1994) (Fig. 3.11).  
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Figure 3.10 - Diagrammatic representation of predicted primary dehydrogenases and terminal oxidases found in B. 

thailandensis E264 and B. pseudomallei K96243. Topology and reaction cycles are derived from previous published literature 

(Unden & Bongaerts, 1997). a.) Primary dehydrogenases found in both B. thailandensis and B. pseudomallei; b.) Terminal oxidases 

found in both B. thailandensis and B. pseudomallei. B. pseudomallei does not encode a predicted cbb3-type oxidase (see Table 3.1). 

Q and QH (in red) refer to quinones which may be in ubiquinone or menaquinone.  

a.) Primary Dehydrogenases 

b.) Terminal oxidases 
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 The Tat-secretion system is required for the export of proteins across the 

cytoplasmic membrane (Berks et al., 2000). Recently the Tat-system in B. 

thailandensis has been shown to be required for the export of a number of different 

proteins required for respiration, including the Rieske iron-sulfur protein PetA, and 

BTH_I2175/BTH_I1276 containing Ser/Thr phosphatase and cytochrome c oxidase 

subunit II PFAM domain matches (Wagley et al., 2013). PetA is part of the cytochrome 

bc1 complex (Table 3.1) required for aerobic respiration. Insertion of a rhamnose 

inducible gene in front of petA (E264-PrhaB::petA) and BTH_I2175 (E264-

PrhaB::BTH_I1275-1276) identified BTH_I2175/BTH_I2176, and not petA, as being 

required for aerobic, but not anaerobic respiration. BTH_I2175 was shown not to be 

Tat- exported, whereas BTH_I2176 was (Wagley et al., 2013). Because deletion of 

petA did not cause a growth defect aerobically it is likely that B. thailandensis can by-

pass this enzyme to transfer electrons directly to the terminal oxidases from the quinol 

pool, as seen in E. coli (Fig. 3.11). BTH_I2175 is annotated as a cytochrome c oxidase 

and is part of a gene cluster encoding a predicted Ser/Thr phosphatase. Currently it is 

not completely understood why disruption of this gene cluster would prevent aerobic 

growth but not affect anaerobic respiration (Wagley et al., 2013).      

 B. thailandensis E264, B. pseudomallei K96243 and B. mallei ATCC 23344 

encode a full denitrification pathway, encoding membrane-bound NAR (NarGHI and/or 

NarZYV), Cu-Nir (AniA), NOR and NOS, all required for the reduction of nitrate to 

dinitrogen gas (Table 3.2 and Fig. 3.1). The presence of the full denitrification pathway 

is likely to allow for generation of a PMF in the presence of nitrate to allow for growth 

within a hypoxic environment.  B. thailandensis and B. pseudomallei, unlike B. mallei 

encode two membrane-bound nitrate reductases, one on each chromosome. The NAR 

encoded on chromosome 2 (BTH_II1249-1252 or BPSS1156-1159) exhibits similarity 

to the cryptic nitrate reductase (narZYWV) seen in E. coli and Salmonella. NarZYWV 

in S. typhimurium has been shown play a role in response to carbon starvation and 

was negatively regulated under anaerobic conditions by FNR (Spector et al., 1999). 

Due to the similarity with the cryptic nitrate reductase narZYWV, BTH_II1249-

1252/BPSS1156-1159 are predicted to be required for adaptation to hypoxia, whereas 

the other nitrate reductase encoded on chromosome 1 (found in all three Burkholderia 

spp.) is likely to be the main nitrate reductase required for anaerobic growth (Fig. 3.12). 
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Figure 3.11 – Proposed respiratory and electron transport pathways in B. 

pseudomallei and B. thailandensis. Diagram represents the predicted electron 

transfer pathways in B. thailandensis E264 and B. pseudomallei K96243, based on 

respiratory pathways seen in other prokaryotic species (Garcia-Horsman et al., 1994).  

Terminal oxidases shown in green are predicted to function either under aerobic 

conditions, microaerobically (orange) or anaerobically (purple). Only B. thailandensis 

encodes a predicted cbb3-type oxidase. Electrons are transferred from primary 

dehydrogenase(s) (see Table 3.1) through the quinol pool and either directly to the 

terminal oxidases or via the cytochrome bc1 complex. Various different cytochromes 

thought to transfer electrons to the other three reductase enzymes and cytochrome c 

oxidase.  
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The regulation of the switch to anaerobiosis and regulation of nitrate reductase, 

involves multiple different mechanisms. These range from the relatively conserved 

NarXL and FNR family members (Fnr, Anr, Dnr)  (Benkert et al., 2008; Bouchal et al., 

2010; Gonzalez et al., 2006; Hartig et al., 1999; Lonetto et al., 1998; Schreiber et al., 

2007; Trunk et al., 2010; Whitehead & Cole, 2006), the cAMP-dependent regulator 

GlxR (Nishimura et al., 2010), ArcAB, Fur (Teixido et al., 2010), the Res system, and 

quorum sensing (Toyofuku et al., 2007; Toyofuku et al., 2008).  

Both the nitrate reductase operons in B. pseudomallei K96243 encode genes 

required for the formation of a TCS; either NarXL (BPSL2313-2314) encoded within 

the narGHJIKXL gene cluster, or a PAS/PAC sensor and LuxR regulator protein 

(BPSS1160-1161) found upstream of the narZYWV gene cluster (Fig. 3.1). Prokaryotic 

TCS are composed of a histidine kinase (HK), which senses environmental stimuli, 

and a cognate response regulator, which on phosphorylation by its respective HK can 

cause transcriptional change allowing the bacteria to response quickly to changes in 

the surrounding environment (Chang & Stewart, 1998). NarXL has been well 

characterised and is known to play a key role in regulating narGHJI in response to low 

oxygen levels and nitrate (Hartig et al., 1999; Schreiber et al., 2007; Stewart, 1993). 

Both B. pseudomallei and B. thailandensis encode a FNR gene 

(BPSS1163/BTH_II1244), which along with NarXL is likely to be required for 

transcriptional regulation in response to anaerobiosis. Unsurprisingly the BPSL2309 

promoter region contains a NarL response regulator binding region, indicating the 

likely involvement of NarXL in the regulation of narGHJI in B. pseudomallei and B. 

thailandensis. 

Upstream of the narZYWV operon in B. pseudomallei are genes encoding a 

predicted TCS; BPSS1160 encoding a sensor kinase similar to the PAS/PAC sensor 

signal transduction kinase and BPSS1161 encoding a response regulator exhibiting 

similarity to LuxR family regulatory proteins. PAS domain signal transduction kinase 

have been shown to sense oxygen, redox potential and light (Taylor & Zhulin, 1999). 

PAS sensors are thought to sense changes in the electron transport chain, serving as 

an early warning signal to allow for adaptation to response to changes in internal 

energy levels (Taylor & Zhulin, 1999). Whether or not this predicted PAS/PAC TCS is 

involved in the regulation of BPSS1156-1159, or other genes required for the electron 
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Figure 3.12 - Predicted denitrification pathway in B. thailandensis E264, B. 

pseudomallei K96243 and B. mallei ATCC 23344. Bacterial denitrification starts 

with the reduction of nitrate (NO3
-) to nitrite (NO2

-), releasing two protons to the 

periplasmic side of the membrane were NO2
- is reduced to nitric oxide (NO), then 

nitrous oxide (N2O) and finally dinitrogen gas (N2). Abbreviations - NAR 

(NarGHI/NarZYV), NarK (nitrate/nitrite antiporter), Cu-Nir (AniA), NO reductase 

(Nor), and N2O reductase (Nos).  Cytochromes involved in electron transfer are 

shown in yellow.  a.)  Adaptation to hypoxia. Putative cryptic nitrate reductase 

(NarZYV; BTH_II1249-1252; BPSS1159-1156), absent in B. mallei, potentially 

required for adaptation to growth in a hypoxic environment prior the induction of the 

NarGHI (BTH_I1851-1854/BPSL2309-2314). b.)  Anaerobic nitrate respiration. 

Main proposed denitrification pathway for B. thailandensis and B. pseudomallei. 

Includes predicted electron transport chain, based on known pathways known in 

other prokaryotes, e.g. P. denitrificans. QH2 could potentially come from a range of 

primary dehydrogenases. Diagram on previous page.  
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transport chain remains to be determined.  

 The second step in the anaerobic respiratory pathway is catalysed by nitrite 

reductase, reducing nitrite to nitric oxide. There are two different types of NIR 

(reducing NO2
- to NO) found in the periplasm of different prokaryotic species; cd1-type 

containing c and d-type hemes (Silvestrini et al., 1994), and copper containing nitrite 

reductase (Abraham et al., 1993; Boulanger & Murphy, 2002; Nojiri et al., 2007). An 

alternative NIR, required for the respiratory reduction of nitrite to ammonia, is found in 

E. coli and is known as the cytochrome c nitrite reductase NrfA (Bamford et al., 2002; 

Clarke et al., 2008). B. thailandensis, B. pseudomallei and B. mallei are predicted to 

encode two copper NIRs, one of which showing homology to the anaerobically induced 

outer-membrane AniA from N. gonorrhoeae (Boulanger & Murphy, 2002). Presence 

of a transmembrane helix within BPSS1487 and BTH_II0881 provides evidence that 

they may also be bound to the outer-membrane (Fig. 3.7), as shown in figure 3.12. 

Bioinformatic analysis has indicated that the second copper nitrite reductase (Cu-Nir2) 

may not function as a nitrite reductase, at least in some B. pseudomallei and B. mallei 

strains, considering it lacks key catalytic residues required for copper binding and 

seems to show little homology to published nitrite reductases.  

 The final two steps in the anaerobic respiratory pathway are catalysed by the 

membrane-bound NOR and periplasmic NOS, required for the reduction of nitric oxide 

(NO) to nitrous oxide (N2O) and then finally dinitrogen gas (N2) (Fig. 3.12). All three 

Burkholderia species encode two nitric oxide reductase (norZ) and one nitrous oxide 

reductase (nosZDFYL) (Table 3.2). NOR in A. eutrophus and N. gonorrhoeae is 

encoded a single subunit NorB/NorZ, which is induced under anaerobic conditions by 

nitric oxide (Cramm et al., 1997; Householder et al., 2000). Like N. gonorrhoeae and 

A. eutrophus, all three Burkholderia spp. encode a single subunit NOR (NorZ). By 

contrast P. denitrificans NOR (NorBC) is heme-copper oxidase family protein 

composed of two subunits, a membrane anchor with heme ligands for catalysis and a 

water soluble subunit required for electron transfer (Flock et al., 2006; Watmough et 

al., 2009).   

 The NOS found in Burkholderia is similar to other characterised copper containing 

NOS enzymes, such as that from P. stutzeri. NosZ, structural component of nitrous 

oxide reductase containing CuA and CuZ copper centres, is found on a large operon 

containing genes required for regulation (nosR) and those required for copper 
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incorporation (nosDFY) (Brown et al., 2000; Cuypers et al., 1995; Zumft et al., 1990). 

All these genes are found in B. thailandensis, B. pseudomallei and B. mallei. 

 Many of the proteins required for anaerobic respiration and electron transport in 

B. pseudomallei, B. thailandensis, and B. mallei are likely to require molybdenum 

cofactor for catalysis. It was therefore unsurprising then that all three species encoded 

a full molybdopterin biosynthetic pathway similar to that seen in other prokaryotic 

species (see Chapter 4 for more details).  

 

3.6 Conclusions 

 B. pseudomallei K96243, B. thailandensis E264 and B. mallei ATCC 23344 

encode a wealth of genes required for aerobic or anaerobic respiration likely to allow 

for colonisation of a range of different environments. Differences between these three 

Burkholderia spp. in terms of the number and variety of respiratory proteins that they 

encode may reflect their differing abilities to survive within the environment and/or the 

host. Currently little has been done to characterise these pathways on a molecular 

level. Using B. thailandensis as a model system, the role of anaerobic respiration will 

be initially characterised to determine whether it is likely be important for B. 

pseudomallei survival and virulence (see Chapters 4, 5 and 6).  
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Chapter 4 – Role of the molybdopterin biosynthetic 

pathway in anaerobic growth and survival of B. 

thailandensis 

 

NOTE: Results and discussion presented in this chapter have been published 

previously in Research in Microbiology (Andreae et al., 2014)  

 

4.1 Introduction 

 The anaerobic respiratory pathway is important for survival and virulence of 

multiple pathogenic bacteria. Under oxygen limiting conditions a number of alternative 

electron acceptors (such as nitrate, nitrite or DMSO), can be utilised to generate a 

PMF via a series of reductase enzymes (Richardson, 2000). Bioinformatic analyses 

have revealed that both B. thailandensis E264 and B. pseudomallei K96243 encode a 

full denitrification pathway encoding NAR, NIR, NOR and NOS, allowing for the 

sequential reduction of nitrate to dinitrogen gas (see Chapter 3). 

  NarGHI requires an active molybdenum cofactor (Mo-bisMGD) for the reduction 

of nitrate (NO3
-) to nitrite (NO2

-) (Gonzalez et al., 2006; Jormakka et al., 2004). The 

Mo-bisMGD cofactor is generated by a four step enzymatic pathway known as 

molybdopterin biosynthesis, and requires a variety of molybdenum transport and 

biosynthetic proteins. The first step in the enzymatic pathway involves the conversion 

of guanosine triphosphate (GTP) to the pterin intermediate cPMP using MoaA and 

MoaC. Next MPT synthase (MoaD2MoaE) converts cPMP to MPT dithiolate (Schwarz 

et al., 2009), prior to the ligation of molybdenum (Mo) to MPT, using MogA and MoeA, 

to generate Moco. Molybdenum is transported into the cell by the high affinity Mo 

transport proteins (Grunden & Shanmugam, 1997). Finally for pyranopterin based 

molybdo-cofactors Moco is converted to its various derivatives, such as Mo-bisMGD, 

using MobA or MocA (Leimkuhler et al., 2011; Schwarz et al., 2009) (see Chapter 1 

section 1.4.1 Molybdopterin biosynthetic pathway for more information). 
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 As described previously, disruption of anaerobic respiration, through mutation in 

NAR or lack of Moco biosynthesis, causes defects in intracellular growth, virulence, 

persistence, motility, biofilm formation, invasion and proliferation within Hep-2 

epithelial cells in a number of pathogenic species (Fritz et al., 2002; Kohler et al., 2002; 

MacGurn & Cox, 2007; Sohaskey, 2008; Van Alst et al., 2007; Weber et al., 2000). 

B. thailandensis, a Gram-negative soil dwelling saprophyte (Brett et al., 1998) 

is closely related to B. pseudomallei, the causative agent of melioidosis (Wiersinga et 

al., 2012). B. thailandensis, although displaying a very high degree of genetic similarity 

to B. pseudomallei, is avirulent rarely causing disease in humans (Deshazer, 2007; 

Glass et al., 2006). Due to the high degree of genetic similarity, ability to survive and 

replicate intracellularily and lower risk associated with handling, B. thailandensis is 

often used as a surrogate for B. pseudomallei (Chandler et al., 2009; French et al., 

2011; Haraga et al., 2008; Horton et al., 2012; West et al., 2008). 

Although B. pseudomallei has been shown to respire anaerobically on nitrate, 

and survive within a hypoxic environment for one year (Hamad et al., 2011), currently 

little is known about the role anaerobic respiration plays in Burkholderia spp. 

pathogenesis.  In this chapter work will be presented on the generation of a B. 

thailandensis E264 transposon library. The transposon mutant library was constructed 

in order to identify genes required for anaerobic respiration/molybdopterin 

biosynthesis, and determine the role of anaerobic respiration in nitrate reductase 

activity, virulence, biofilm formation and motility (Andreae et al., 2014) 

 

4.2 Results 

4.2.1 B. thailandensis E264 is an obligate respirer, only growing anaerobically in the 

presence of an alternative electron acceptor  

Bioinformatic analysis presented in Chapter 3 identified the presence of a full 

denitrification pathway in B. thailandensis E264, B. pseudomallei K96243 and B. mallei 

ATCC 23344 (Table 3.2). To verify this B. thailandensis was grown within either 

medical flat bottomed flasks or an anaerobic chamber in the presence or absence of 

nitrate or nitrite, in M9 minimal media or L-broth. The majority of anaerobic studies 

were conducted using M9 minimal media supplemented with sodium succinate as a 



152 
 

carbon source to ensure growth was due to generation of a PMF via the denitrification 

pathway rather than carbon fermentation.  

B. thailandensis was grown anaerobically in M9 minimal media containing 

either 20 mM sodium succinate or 20 mM glucose, in the presence or absence of 20 

mM sodium nitrate.  B. thailandensis could only grow under anaerobic conditions in 

the presence of nitrate (Fig. 4.1) or nitrite. B. thailandensis anaerobic growth using 

either glucose or succinate as a carbon source was not significantly different.  

To determine when B. thailandensis NAR was active during anaerobic growth 

a Griess reaction was performed on samples taken throughout the growth cycle. 

During the lag phase B. thailandensis displayed an increase in the concentration of 

nitrite (NO2
-), reaching around 120-140 μM after 25 to 30 hours incubation (Fig. 4.2). 

This increase in NO2
- is likely due to an increase in NAR activity and/or expression. 

The drop in NO2
- at the end of lag phase/early exponential phase indicates the 

increase in expression (or activity) of the copper nitrite reductase (AniA), NOS and 

NOR enzymes encoded within the B. thailandensis E264 genome (see Chapter 3).    

 To validate that the anaerobic growth exhibited by wild-type B. thailandensis E264 

was due to NAR, sodium tungstate, an analogue of molybdenum, was added to the 

anaerobic growth medium. Sodium tungstate has been used to inhibit the activity of 

molybdoenzymes, such as NarGHI, as tungsten (W) can either replace the 

molybdenum cofactor inhibiting catalytic activity or prevent the formation of Moco 

(Deng et al., 1989; Seki-Chiba & Ishimoto, 1977). Addition of increasing 

concentrations of sodium tungstate (1 mM to 10 mM) to the anaerobic growth media 

caused severe inhibition of growth anaerobically (Fig. 4.3). No growth inhibition was 

seen when the same experiment was performed under aerobic growth conditions (see 

Chapter 8 – Appendix figure 8.1). This confirms the role of NarGHI in anaerobic growth 

of B. thailandensis. 
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Figure 4.1 - Anaerobic growth of B. thailandensis E264. B. thailandensis was 

acclimatised to growth within an anaerobic environment prior to inoculation into 

anaerobic M9 minimal media. The experiment was performed in medical flat bottom 

flasks sparged with nitrogen and sealed with a rubber bung. B. thailandensis was 

grown in the presence (filled shapes) or absence (empty shapes) of 20 mM sodium 

nitrate (N) with various carbon sources; 20 mM glucose (red circles – M9G/M9GN), 

20 mM sodium succinate (blue triangles – M9S/M9SN) or no carbon source (black 

squares – M9/M9N). Data is the representation of two (for glucose and nitrate only) 

or three biological replicates (all other experiments). Error bars ± standard deviation 

(SD).  
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Figure 4.2 - B. thailandensis anaerobic growth and nitrate reductase activity. 

B. thailandensis was grown anaerobically in M9 minimal media in the presence of 20 

mM sodium nitrate and 20 mM sodium succinate (blue squares). The production 

nitrite, and therefore relative nitrate reductase (NAR) activity, was monitored 

throughout anaerobic growth cycle using the Griess reagent (red triangles). Nitrite 

concentration (μM) was determined using a nitrite standard curve. Three biological 

replicates each with three technical replicates used when conducting the Griess 

reaction. Error bars ± SD.  
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Figure 4.3 - Anaerobic growth of B. thailandensis E264 in the presence of 

sodium tungstate. Anaerobic growth of B. thailandensis in M9 minimal media 

supplemented with 20 mM sodium succinate, 20 mM sodium nitrate and varying 

concentrations of sodium tungstate (Na2WO4); 0 mM (black squares), 1 mM (blue 

circles), 5 mM (red triangles) 10 mM (green inverted triangle). Results are the average 

of three biological replicates. Error bars ± SD.  
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4.2.2 Construction of a B. thailandensis E264 transposon mutant library and 

identification of miniTn5Km2 insertion into BTH_I1704 

 B. thailandensis E264 encodes a wide range of genes required for anaerobic 

respiration. In order to determine which genes were important for anaerobic growth, a 

random transposon mutant library was created using the pUTminiTn5Km2 vector, 

encoding a kanamycin resistance cassette. The library of 1,344 random transposon 

mutants was screened on M9 minimal media containing 10 mM sodium succinate and 

5 mM sodium nitrate, supplemented with gentamicin (100 μg/mL) and kanamycin (250 

μg/mL). Insertion of the transposon into B. thailandensis was confirmed for three 

transposon mutants using primers specific for B. thailandensis and those specific for 

the kanamycin resistance cassette. Three transposon mutants (initially referred to as 

Tn #1, Tn #2, Tn #3) displayed a lack of growth anaerobically (Fig. 4.4). No growth 

defect was seen for any of the three transposon mutants when grown aerobically in 

rich or minimal media. 

 Nested PCR was performed, using both arbitrary and transposon specific 

primers, in order to identity the site of transposon insertion into the B. thailandensis 

E264 genome (Fig. 4.5 a and b). The nested PCR products were cloned into 

pJET1.2/blunt, transformed into JM109 competent cells (Fig. 4.5 c) and the resultant 

plasmid construct was sent for sequencing. The site of miniTn5Km2 insertion was 

successfully identified for one of the three transposon mutants (Tn #3 - now referred 

to as CA01), as having inserted into BTH_I1704 encoding moeA1, a gene required for 

the molybdopterin biosynthetic pathway. 

 B. thailandensis E264 is predicted to encode two moeA genes (BTH_I1704 and 

BTH_I2200) required for the second to last step of the molybdopterin biosynthetic 

pathway (Table 3.3 and Fig. 3.9). Transposon insertion into BTH_I1704 was confirmed 

with a southern blot using labelled DNA probes that would bind to either a 300 bp 

region within the kanamycin resistance (KmR) cassette (Δ probe), or to an undisrupted 

300 bp region within BTH_I1704 (wild-type probe).  Both wild-type B. thailandensis 

and transposon mutant (CA01) genomic DNA were digested using XhoI and the DNA 

fragments were run on a 1 % TAE agarose gel. XhoI restriction sites, found outside of 

BTH_I1704 and within the transposon, generated either a 2,927 bp band for the wild-

type or an approximately 2,000 bp band for the mutant with the wild-type probe (Fig.  
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Figure 4.4 – Screening of B. thailandensis E264 transposon (mini-Tn5Km2) 

mutants to identify those defective in anaerobic respiration.   B. thailandensis 

transposon mutants displaying initial anaerobic growth deficiency on the M9 minimal 

media selection plates (supplemented with 10 mM sodium succinate) were re-

streaked onto LB agar plates (control) and M9 minimal media agar plates 

supplemented with 5 mM sodium nitrate. Plates were incubated at 37 oC either 

aerobically (left and middle columns) or anaerobically (right column). Both the M9 

minimal and LB agar plates were supplemented with gentamicin (100 µg/mL) and 

kanamycin (250 µg/mL). Three transposon mutants (Tn #1-3) displayed no growth 

when incubated anaerobically but could grow under aerobic conditions, shown with 

white arrows.    
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Figure 4.5 – Cloning of the B. thailandensis transposon mutant nested PCR 

products into pJET1.2/blunt. Top gels are the result of the nested PCR reaction 

using (a.) Arb4 or (b.) Arb3 and P7M1. Wild-type (WT) B. thailandensis (E264) 

genomic DNA, Tn#1-3 DNA or H20 (negative (–ve) control) were used as templates 

in the first round of nested PCR, the products of which were then used as templates 

for another PCR reaction using Arb2 and P7U primers. PCR products (100 to 200 

bp) from nested PCR using Arb4 (Tn #1 and Tn #2) or Arb3 (Tn #3) were purified 

and ligated into the pJET1.2/blunt cloning vector. c.) PCR confirmation using 

pJET1.2 forward and reverse primers, of successful cloning of arbitrary PCR ligation 

into pJET1.2/blunt. Positive control (+ve control) - PCR control product (976 bp) into 

pJET1.2/blunt.  

a.) b.) 

c.) 
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Figure 4.6 - Schematic representation of the moeA gene clusters in B. 

thailandensis and southern blot confirmation of site of the insertion in CA01. a.) 

B. thailandensis E264 encodes two moeA encoded on gene clusters with other genes 

required for the molybdopterin biosynthetic pathway; BTH_I1704 (moeA1), BTH_I1705 

(mobA) and BTH_I1706 (moaA) and a second gene cluster encoding BTH_I2200 

(moeA2), BTH_I2201 (moaD) and BTH_I2202 (moaE). b.) Southern blot XhoI restriction 

sites and primer binding regions for the wild-type and mutant probes (small black 

arrows) found in BTH_I1704 (top – highlighted in blue) and CA01 (BTH_I1704-Tn5Km2 

- bottom). CA01 was previously referred to as Tn #3 prior to identification of site of 

transposon insertion. Both wild-type (WT) and CA01 gDNA were digested with XhoI, as 

XhoI restriction sites were found outside BTH_I1704, generating a 2,927 bp product, 

and within Tn5Km2, generating gene fragment of approximately 2,000 bp. c.) Southern 

blots (lanes 5-8 and lanes 9-10), and agarose gel (lanes 1-4) used to confirm Tn5Km2 

insertion into BTH_I1704. Lane 1, 1 kb GeneRuler DNA ladder (Thermo-Scientific); lane 

2, B. thailandensis digested DNA; lane 3, CA01 digested DNA; lane 4, 300 bp WT DNA 

probe. Lanes 5-8 – southern blot hybridised with WT probe; lane 5, 1 kb GeneRuler 

DNA ladder; lane 6, wild-type B. thailandensis digested DNA; lane 7, digested CA01; 

lane 8, 300 bp WT probe DNA. Lanes 9-10 – southern blot hybridised with mutant (Δ) 

probe; lane 9, digested B. thailandensis DNA; lane 10, digested CA01 DNA.  

 

 

 

a.) 

b.) 

c.) 
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4.6 b and c). This and the absence of a band in wild-type digest DNA, when using the 

Δ probe, confirmed the site of transposon insertion in CA01 (Fig.4.6 c). 

 

4.2.3 BTH_I1704 is required for anaerobic growth and nitrate reductase activity 

 Transposon insertion into BTH_I1704 in CA01 prevented anaerobic growth on 

nitrate (Fig. 4.7 a) but did not significantly affect aerobic growth in either M9 minimal 

media or L-broth. Addition of molybdate did not affect anaerobic growth of either the 

wild-type of mutant. Both wild-type B. thailandensis and CA01 are able to utilise nitrite 

anaerobically as an alternative electron acceptor, by-passing the need for the 

molybdenum dependent nitrate reductase required for anaerobic respiration.   

 The lack of anaerobic growth seen in CA01 is likely due to a reduction in NAR 

activity. To confirm a lack of NAR activity in the mutant both the wild-type and CA01 

were grown aerobically in M9 minimal media supplemented with 20 mM sodium nitrate 

(Fig. 4.7 b) and samples were taken at various time-points to determine the 

concentration of nitrite produced using the Griess reaction. Only wild-type B. 

thailandensis displayed an accumulation of nitrite during aerobic growth on nitrate, 

indicating NAR is active during late exponential and stationary phase of growth (Fig. 

4.7 c). To further confirm the lack of NAR activity in CA01 a spectrophotometric methyl-

viologen assay was performed on cell membrane fractions. Wild-type and CA01 

cultures were grown aerobically to generate biomass prior to incubation under 

anaerobic conditions for 4 hours in the presence of nitrate, to ensure expression of 

NAR. CA01 displayed a significant difference in NAR activity (T-test; p-value < 0.05) 

displaying 0.04 μmol [NO3
-]/min/g (ww) compared to 0.134 μmol [NO3

-]/min/g (ww) 

NAR activity seen in the wild-type (Fig. 4.7 d). These results together confirm the 

inability of CA01 to respire on nitrate is due to a reduction in NAR activity (Fig. 4.7).  

 

4.2.4 The B. thailandensis genome encodes two putative moeA genes  

 Two putative moeA genes have been identified in B. thailandensis E264 

(BTH_I1704 and BTH_I2200) and B. pseudomallei K96243 (BPSL2455 and 

BPSL1479) sharing around 39.5 % sequence identity and displaying 40 % homology 

to the MoeA found in E. coli K-12 (b0827). The moeA genes from B. thailandensis 

E264, B. pseudomallei K96243, B. mallei ATCC 23344 and E. coli were aligned using  
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Figure 4.7 - Nitrate-dependent growth and NAR activity of B. thailandensis E264 

and CA01.  B. thailandensis was grown in M9 minimal medium aerobically or 

anaerobically in the presence or absence of nitrate. a.) Anaerobic growth of B. 

thailandensis (filled) and CA01 (open) in the presence (squares) or absence (circles) of 

1 mM molybdate. b.) Aerobic growth in M9 minimal media supplemented with 20 mM 

sodium nitrate of WT (filled squares) and CA01 (filled circles). Samples were taken at 

various intervals (shown with the arrows) and used in a Griess reaction shown in (c.). 

c.) Nitrite production measured using the Griess reaction during aerobic growth – 4 

hours (h), early exponential; 8 h, exponential; 15 h, late exponential; 19 h, early 

stationary; 24 h, stationary; 27 h late stationary phase. No nitrite was detected in CA01 

at any time point tested. Time points are not from a sequential culture. Columns of the 

96 well plate represents three technical replicates from one biological replicate. d.) 

Nitrate reductase activity (in μmol [NO3
-]/min/g (ww)) of membrane fractions from 

anaerobically acclimatised wild-type (blue) and CA01 (red) cultures. Results are the 

average of three biological replicates. Statistically significant results (p-values ≤ 0.05) 

are shown with asterisk (*). Error bars ± SD.  

  

 

a.) b.) 

c.) d.) 
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Clustal Omega to determine the degree of sequence conservation and identify 

conserved residues required for MoeA function. E. coli MoeA contains a highly 

conserved sequence SSGGVSVG required for catalytic activity (Schrag et al., 2001). 

All Burkholderia spp. moeA genes analysed in (Fig. 4.8) contained highly conserved 

residues, Thr319 (T), Glu322 (E), Asp362 (D) and Gly390 (G) (residue numbers 

corresponding to BTH_I2200 amino acid sequence), predicted to be required for 

binding an coordination of the magnesium (Mg2+) hexahydrate ion, as seen in the E. 

coli MoeA (Schrag et al., 2001). In comparison to E. coli MoeA, all the Burkholderia 

MoeA have a threonine residue in replacement of serine residue, giving TSGGVSVG 

(Fig. 4.8), instead of SSGGVSVG seen in the E. coli MoeA. A point mutation within 

this conserved cluster in Anabaena, causing a replacement a key guanine residue for 

an asparate (SSGDVSVG), prevented MoeA function, and consequently disrupted 

nitrate reductase activity (Ramaswamy et al., 1996).  BTH_I2200, BTH_I1704, 

BPSL2455, BPSL1479, BMA0517 and BMA1382 all contain the highly conserved 

Gly390 (G) found within TSGGVSVG, and the conserved Thr319, Glu322 and Asp362 

it is unlikely that the replacement of S for T in Burkholderia would prevent MoeA 

activity. 

 BTH_I1704 (moeA1) is located within a gene cluster encoding moaA 

(BTH_I1706) and mobA (BTH_I1705), required for initial and final steps of Mo-bisMGD 

cofactor biosynthesis. A second moeA (BTH_I2200; moeA2), encoded within a gene 

cluster which included moaD and moaE required for MPT synthase, was also 

identified. Because the transposon insertion into BTH_I1704 (in CA01) prevented 

anaerobic growth and NAR activity, the function of BTH_I2200 was brought into 

question. To determine whether BTH_I2200 was expressed during aerobic and 

anaerobic growth RT-PCR was performed on mRNA extracted from wild-type B. 

thailandensis cultures grown anaerobically in minimal media and aerobically 

overnight. BTH_I1704 was shown to be constitutively expressed under anaerobic 

conditions in the presence of nitrate and was expressed to a similar degree after 

aerobic overnight growth in L-broth supplemented with or without nitrate (Fig. 4.9). No 

expression was seen for BTH_I2200 under the conditions tested in this study. The 

significance of BTH_I2200 is currently unknown. 
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Figure 4.8 – Sequence alignment of putative moeA proteins in Burkholderia 

spp. highlighting potential catalytic residues. Putative moeA genes from B. 

thailandensis E264 (BTH_I1704 and BTH_I2200), B. pseudomallei K96243 

(BPSL2455 and BPSL1479) and B. mallei ATCC 23344 (BMA1382 and BMA0517) 

were aligned against the moeA gene found in E. coli (b0827), using Clustal Omega. 

Highlighted residues correspond to those seen in Schrag et al. (2001) highlighting 

part of domain 1 = blue and domain 3 = green. Residues in bold in the red box are 

the potential conserved Mg2+ hexahydrate binding site and the active site of MoeA. 

Both putative MoeA proteins in Burkholderia spp. have the residues implicated in 

binding of Mg2+ hexahydrate, in the active site of the protein. The rest of the sequence 

is less well conserved between Burkholderia and the E. coli MoeA. Arrows denote 

conserved Thr319 (T), Glu322 (E), Asp362 (D) and Gly390 (G) residues required for 

MoeA activity (see text for details). Asterisks (*) denote conserved resides in all amino 

acid sequences analysed. 
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Figure 4.9 – Expression of B. thailandensis BTH_I1704 (moeA1) and BTH_I2200 

(moeA2) during anaerobic growth. Reverse transcriptase PCR (RT-PCR) was used 

to determine the expression of putative moeA genes in wild-type B. thailandensis E264 

when grown aerobically or anaerobically using nitrate as a sole electron acceptor. 

Primers amplifying regions within 16s rRNA, BTH_I1704 and BTH_I2200 were used in 

separate reactions. Lane 1 – aerobic LB overnight culture; lane 2 – aerobic LB overnight 

culture supplemented with nitrate; lane 3 - 2 h (lag phase); lane 4 - 24 h (early 

exponential); lane 5 - 47 h (mid-exponential); lane 6 - 54 h (late exponential); lane 7 - 

72 h (stationary phase); lane 8 – B. thailandensis gDNA. B. thailandensis gDNA was 

used as a positive control. Images are the representative of two independent biological 

replicates.  
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4.2.5 B. thailandensis E264 can remain viable for up to one year within an anaerobic 

environment 

B. pseudomallei has been shown to persist within an anaerobic environment 

for up to one year, when cultured in a modified version of the Wayne’s model for 

hypoxic shift down, in the absence of a terminal electron acceptor (Hamad et al., 

2011). The Wayne’s model allows for a gradual acclimatisation to an anaerobic 

environment. Initial growth of B. pseudomallei seen in the Hamad et al. (2011) study 

was likely due to aerobic/microaerobic respiration rather than denitrification.  To 

determine whether anaerobic growth in the presence of an electron acceptor affects 

entry into dormancy wild-type B. thailandensis E264 and CA01 were grown in the 

presence or absence of nitrate or nitrite (Fig. 4.10). Under anaerobic conditions, B. 

thailandensis could only grow in the presence of either nitrate or nitrite, displaying the 

best growth seen when cultured with nitrate (Fig. 4.10 a).  Considering CA01 cannot 

grow anaerobically in the presence of nitrate, CA01 was only grown in L-broth or L-

broth supplemented with 6 mM nitrite. CA01 initially displayed a slower anaerobic 

growth rate to the wild-type in the presence of nitrite, but reach a similar density to the 

wild-type after 40 hours anaerobic incubation. After around 14 days a sub-population 

(1 x 105 CFU/mL) of both wild-type and mutant cells entered a dormant/persistent 

state, lasting for up to one year. This entry into a dormant/persistent state occurred 

regardless of B. thailandensis ability to grow under anaerobic conditions, with similar 

CFU/mL seen for wild-type B. thailandensis and CA01 when grown in L-broth alone or 

L-broth supplemented with nitrate or nitrite (Fig. 4.10). Growth of dormant B. 

thailandensis and CA01 cells could be restored when transferred to fresh medium 

aerobically, but as expected only the only wild-type B. thailandensis could be revived 

for anaerobically on nitrate. Entry of B. thailandensis into a non-replicating persistent 

state under anaerobic conditions is consistent with what was seen for B. pseudomallei 

(Hamad et al., 2011). 
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a.) 

b.) 
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Figure 4.10 - Anaerobic viability of B. thailandensis E264. Wild-type B. 

thailandensis E264 and CA01 were grown anaerobically, in medical flat bottomed 

flasks sparged with nitrogen, in L-broth (LB) supplemented with either 20 mM 

sodium nitrate or 6 mM sodium nitrite. The viability of these B. thailandensis cultures 

was determined using colony counts (CFU/mL) taken every few weeks for up to 

one year. a.) Anaerobic growth of wild-type B. thailandensis (filled shapes) or CA01 

(open shapes) in L-broth; LB only/no electron acceptor (blue squares), LB 

supplemented with nitrate (green circles), or LB supplemented with nitrite (orange 

triangles). No significant growth was seen in the absence of any electron acceptor. 

b.) B. thailandensis LB only (blue), B. thailandensis LB nitrate (green), CA01 LB 

only (orange). Viability cell counts (CFU/mL) were taken every few weeks for up to 

one year. Arrows in (a.) show the times at which the first three CFU counts were 

taken; 0.5 days, 2 days and 3 days. Similar results were seen for both wild-type B. 

thailandensis and CA01 when incubated with nitrite. Data shown is the average of 

three biological replicates. All biological replicates had two or three technical 

replicates used when determining CFU/mL. Error bars ± SD.  
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4.2.6 BTH_I1704 plays a role in biofilm formation and motility but not virulence in G. 

mellonella 

The ability to form biofilms has often been associated with the capacity to grow 

under anaerobic conditions. To determine whether disruption of the molybdopterin 

biosynthetic pathway affects biofilm formation, wild-type B. thailandensis and CA01 

were grown aerobically or anaerobically in L-broth or minimal media in a 96 well plate 

supplemented with or without nitrate.  The plates were incubated for 3 days and the 

degree of biofilm formation was assessed using a crystal violet stain. In comparison 

to the wild-type, CA01 displayed a statistically significant (p-value ≤ 0.05) reduction in 

biofilm formation under most of the conditions tested (Fig. 4.11). Higher levels of 

biofilm formation were seen for both wild-type and CA01 when grown in L-broth. CA01 

did display an increase in growth after 3 days incubation anaerobically, potentially 

indicating the induction of BTH_I2200 allowing for growth. This may account for the 

similar biofilm formation capabilities of CA01 to the wild-type anaerobically in LB 

medium when supplemented with nitrate.  

No significant difference (p-value > 0.01) was seen in growth in L-broth when 

comparing wild-type B. thailandensis and CA01 in the 96 well plate grown under 

aerobic conditions that would account for the differences in biofilm formation seen 

between the strains tested. In minimal media a significant difference between growth 

rates was seen between the wild-type and the mutant, with the mutant displaying a 

higher growth rate to the wild-type. However, although the mutant displayed a higher 

growth rate (in terms of OD), the mutant displayed a statistically significant reduction 

in biofilm formation when compared to the wild-type. Due to the differences in growth 

seen anaerobically in the presence of nitrate, one cannot discount the possibility that 

under these conditions the differences in biofilm formation seen between the wild-type 

and mutant are not due to differences in growth rates. No significant growth was seen 

for either the wild-type or mutant anaerobically in the absence of nitrate, accounting 

for the low levels of biofilm formation seen for both strains. 

The ability to form biofilms is often dependent on motility. Since CA01 displayed 

a reduction in biofilm formation it was conceivable that flagella function was affected. 

CA01 displayed a significant reduction in swimming motility when compared to the 

wild-type (T-test; p-value ≤ 0.01) (Fig. 4.12). Addition of nitrate to motility media did 
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not affect degree of motility for either wild-type or mutant (Chapter 8 – Appendix figure 

8.2). 

G. mellonella have previously been used as an infection model for B. 

thailandensis (Wand et al., 2010). To determine whether CA01 displayed a difference 

in virulence, ten G. mellonella were challenged with either PBS (control), wild-type B. 

thailandensis or CA01 at a 450 – 500 CFU/galleria infectious dose. No significant 

difference was seen in virulence between the wild-type and mutant CA01 (Two way 

ANOVA; df =1, f = 5.2, p > 0.05) (Fig. 4.13). 
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Figure 4.11 - BTH_I1704 plays a role in biofilm formation under aerobic and 

anaerobic conditions. Both wild-type (WT) B. thailandensis E264 and CA01 were 

grown in L-broth or M9 minimal media supplemented with or without 20 mM sodium 

nitrate. Biofilm formation was measured using a crystal violet stain following a three 

day incubation period either aerobically (+ O2
-) or anaerobically (- O2

-); WT aerobic 

(blue), WT anaerobic (cyan with dashed lines), CA01 aerobic (red) and CA01 

anaerobic (orange with dashed lines). a.) Average biofilm formation of WT B. 

thailandensis or CA01 in L- broth (LB). b.) Average biofilm formation of WT B. 

thailandensis or CA01 in M9 minimal media supplemented with succinate. No 

significant growth is seen anaerobically in the absence of NO3
- for either LB or M9 

minimal media. Three biological replicates were used each with 5 technical 

replicates. Error bars ± SD. Statistically significant results (p-values < 0.05 or < 

0.01) are shown with asterisks (*) or (**). 

a.) 

b.) 
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Figure 4.12 - BTH_I1704 plays a role in swimming motility. Motility assays 

carried out on 0.3 % nutrient broth agar (NBA) supplemented with 0.5% 

glucose. a.) Representative image of wild-type (WT) and CA01 swimming 

motility. b.) Degree of motility (mm) for wild-type B. thailandensis E264 (blue) 

and CA01 (red). Measurements (mm) with taken after 18 hours (h) incubation 

at 37 oC. Asterisks (*) denotes significant difference (p-value ≤ 0.01) seen 

between wild-type B. thailandensis and CA01. Five biological replicates used 

each with three technical replicates. Error bars ± SD. 

 

a.) 

b.) 
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Figure 4.13 – Disruption of BTH_I1704 does not affect virulence in G. 

mellonella. Ten G. mellonella were challenged with either PBS (squares), wild-type 

B. thailandensis (circles) or CA01 (triangles). Data shown is the average of four 

biological replicates with an average infectious dose 450 - 500 CFU/galleria.  
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4.2.7 CA01 complementation with pDA-17::BTH_I1704 successfully restores 

anaerobic respiration, NAR activity and biofilm formation 

 In order to confirm that the phenotypes exhibited by CA01 were due to the 

disruption of moeA1, BTH_I1704 was cloned into the constitutive expression vector 

pDA-17 encoding a dhfr promoter and tetracycline resistance cassette (Fig. 4.14 a). 

This generated the pDA-17::BTH_I1704 plasmid which was confirmed using PCR and 

gene sequencing. The pDA-17::BTH_I1704 was then conjugated into CA01 and 

confirmed with using PCR (Fig. 4.14 b). Complementation of CA01 using pDA-

17::BTH_I1704 successfully restored anaerobic growth on nitrate for the mutant in 

both minimal and rich media and did not adversely affect aerobic growth (Fig. 4.15). 

All experiments with the mutant complement were performed in the presence of 50 

μg/mL tetracycline to ensure the maintenance of pDA-17::BTH_I1704 plasmid. 

 Once the mutant complement had been successfully created all the experiments 

showing a difference between wild-type B. thailandensis and CA01 were repeated. 

When the aerobic Griess reaction was repeated the wild-type B. thailandensis 

displayed a 2 hour longer lag phase, accumulating nitrite much earlier on within the 

growth cycle, when compared to the results presented in figure 4.7 c. 

Complementation of CA01 with pDA-17::BTH_I1704 was able to restore NAR activity, 

as seen with an accumulation of nitrite during aerobic growth on minimal media after 

16 hours (Fig. 4.16 a). After 24 hours CA01_pDA-17::BTH_I1704 nitrite levels were 

significantly (T-test; p-value ≤ 0.01) lower (15.5 ± 4 μM) to those seen in the wild-type 

(21 ± 3 μM). This suggests that the complement may not be able to fully restore nitrate 

reductase activity to the same extent as that seen in wild-type. In comparison to both 

the wild-type and the complemented mutant, CA01 nitrite levels only reached 2 ± 0.9 

μM after 24 hours growth. Complementation of CA01 with pDA-17::BTH_I1704 was 

able to successfully restore biofilm formation to the similar extent to that seen in the 

wild-type aerobically in the presence or absence or nitrate, but not anaerobically in the 

presence of nitrate (Fig. 4.16 b). The lack of a complete restoration of biofilm formation 

seen in the complement to wild-type levels, under anaerobic conditions in the 

presence of nitrate, could potentially be linked the lower levels of nitrite production, 

and therefore relative NAR activity, seen after 24 hours growth (Fig. 4.15 a). Although 

complementation did successfully restore anaerobic growth, NAR activity and biofilm 

formation it could not restore the motility defect seen in CA01 (Fig. 4.16 c). 
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Figure 4.14 – Construction of and validation of pDA-17::BTH_I1704. CA01 was 

successfully complemented with BTH_I1704 using the pDA-17 constitutive 

expression vector encoding a dhfr promoter and a tetracycline resistance gene 

cassette. a.) Method work through for creation of the pDA-17::BTH_I1704 vector for 

complementation of BTH_I1704 (see methods section 2.2.8 Transposon mutant 

complementation for more details). b.) PCR confirmation of CA01 pDA-

17::BTH_I1704 complement. Primers used to confirm presence of an undisrupted 

BTH_I1704 were moeA1704_fwd and moeA1704_rv. Lane 1 -1 kb gene ruler 

ladder; lane 2 - WT E264 gDNA; 3 - CA01 gDNA; lane 4 - CA01_pDA-

17::BTH_I1704 PCR lysate.  

a.) b.) 
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Figure 4.15 – Growth of wild-type B. thailandensis E264, CA01 and 

CA01_pDA-17::BTH_I1704. Wild-type B. thailandensis E264 (filled squares), 

CA01 (filled circles) and CA01_pDA-17::BTH_I1704 (filled triangles) were grown 

aerobically and anaerobically (in the presence of 20 mM sodium nitrate) in L-broth 

and M9 minimal medium. a.) Aerobic growth in L-broth; b.) Aerobic growth in M9 

minimal media; c.) Anaerobic growth in LB media supplemented with nitrate; d.) 

Anaerobic growth in M9 minimal media supplemented with nitrate. Data shown is 

the average of three biological replicates. Error bars ± SD.  

 

a.) b.) 

c.) d.) 
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  As of note when the motility experiment was repeated neither the wild-type or 

CA01 displayed the same degree of movement through the semi-solid agar, even with 

an increase in incubation time to 24 hours (see Fig. 4.12). Both motility experiments 

were repeatable at the time they were performed, with both showing statistically 

significant differences between wild-type and mutant. The same protocol was followed 

for all the experiments so the differences seen between experimental replicates could 

potentially highlight a problem with experimental replication. It is possible that the 0.3 

% agar plates, used when performing the experiment with the complement, may have 

been dried for a little longer to those used previously, resulting in a reduction in B. 

thailandensis motility.  

 

4.3 Discussion 

B. thailandensis and B. pseudomallei are environmental saprophytes, 

commonly found in rice paddy fields in Southeast Asia (Inglis & Sagripanti, 2006). 

Paddy soil becomes hypoxic at a 3 mm depth where nitrate predominates as the major 

anion, allowing for the colonisation of anaerobic microorganisms (Liesack et al., 2000; 

Ratering & Schnell, 2001). In the human body nitrate is normally obtained as a dietary 

source or is produced through the oxidation of nitric oxide, with both nitrate and nitrite 

found in circulating blood, urine, kidneys, saliva, plasma and in low amounts in the 

lungs (Kelm, 1999; Lundberg et al., 2004). B. pseudomallei has recently been shown 

to be able to survive and persist within an anaerobic environment for up to one year, 

and can utilise nitrate as a respiratory substrate (Hamad et al., 2011). Yet despite the 

obvious availability of nitrogen-oxyanions, the utilization of nitrate by Burkholderia spp. 

as a respiratory substrate to sustain growth either within the environment or during 

infection has remained poorly studied.  

  B. pseudomallei, the etiological agent of melioidosis, causes acute, chronic and 

latent infections, persisting within the human body for up to 62 years (Chua et al., 

2003; Currie et al., 2000a). Melioidosis is often misdiagnosed as tuberculosis, as both 

display similar clinical features such as granulomas, which often display a low oxygen 

tension (Conejero et al., 2011; Vidyalakshmi et al., 2008).  Although currently little is 

known about the mechanisms of persistence of B. pseudomallei, it is possible that the 

ability to survive under anaerobic conditions will play some role.   
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Figure 4.16 - Complementation of CA01 successfully restores NAR activity, 

biofilm formation but not motility. a.) Nitrite production, measured using the Griess 

reaction, during aerobic growth in M9 minimal media supplemented with 20 mM sodium 

nitrate, for WT (blue), CA01 (red) and CA01_pDA-17::BTH_I1704 (green). b.) Biofilm 

assay was performed in L-broth in the presence or absence of nitrate (NO3
-) for WT B. 

thailandensis (blue), CA01 (red) and CA01_pDA-17::BTH_I1704 (green). A 96 well 

plate was incubated for three days aerobically (+ O2; empty columns) or anaerobically 

(– O2; dashed columns), and the degree of biofilm formation was measured using a 

crystal violet stain. c.) B. thailandensis motility on 0.3 % nutrient broth agar after 24 hour 

incubation. Wild-type (blue), CA01 (red), CA01_pDA-17::BTH_I1704 (green). Three or 

four independent biological replicates were used each with three or five technical 

replicates. Statistically significant results (p-values ≤ 0.01), comparing WT and CA01 or 

WT and CA01_pDA-17::BTH_I1704 are shown with asterisks (*). Error bars ± SD.  

 

a.) b.) 

c.) 
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  B. thailandensis can utilise both nitrate and nitrite as alternative respiratory 

electron acceptors, powering growth in oxygen limiting environments via the 

denitrification pathway. B. thailandensis encodes two membrane-bound NAR 

enzymes, both of which require a molybdenum cofactor for their activity. The 

accumulation of nitrite during late exponential and stationary phase of aerobic growth 

of wild-type B. thailandensis, not seen in CA01, points towards the likely induction of 

NAR (Fig. 4.7 c), and could indicate a reduction in the oxygen levels of the culture 

allowing for expression of narGHJI. By comparison, nitrite accumulated during the lag 

phase of growth under anaerobic conditions (Fig. 4.2), declining rapidly at the start of 

exponential phase. This decline in nitrite levels at the start of exponential phase 

indicated an induction of the rest of the anaerobic respiratory pathway, allowing for 

growth and the generation of a PMF.  

B. pseudomallei is known to enter a dormant/persistent state under anaerobic 

conditions, in the absence of a terminal electron acceptor. To test whether the ability 

to respire under anaerobic conditions affected entry into a dormant state, B. 

thailandensis was grown anaerobically in the presence or absence of nitrate or nitrite. 

Similar to what was seen for B. pseudomallei and M. smegmatis (Dick et al., 1998; 

Hamad et al., 2011) a subpopulation (1 x 105 CFU) of B. thailandensis entered a 

dormant/persistent state under anaerobic conditions, lasting up to one year. This entry 

into a dormant state occurred regardless of B. thailandensis ability to grow under 

anaerobic conditions, indicating anaerobiosis was sufficient to induce dormancy and 

entry into a non-replicating persistent (NRP) state (Fig. 4.10). Cells that had entered 

a dormant/NRP state could be reawakened when transferred to fresh media and 

incubated aerobically or anaerobically in the presence of nitrate. One could 

hypothesise that the ability to respire using nitrate as an electron acceptor provides B. 

thailandensis, and potentially B. pseudomallei, with a competitive advantage, ensuring 

its replication once conditions become more favourable.  

Creation of a transposon mutant library successfully identified the 

molybdopterin biosynthetic pathway, specifically moeA1 (BTH_I1704), to be required 

for anaerobic nitrate respiration. The molybdopterin biosynthetic pathway is required 

for the formation of Moco, required for the function of a number of proteins involved in 

anaerobic respiration and electron transport. Molybdoenzymes fall into two distinct 

groups, bacterial nitrogenases and pterin-based molybdoenzymes such as the DMSO 
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reductase family, which includes NAR (Magalon, 2011). B. thailandensis and B. 

pseudomallei encode a wide range of different molybdo-proteins (such as formate 

dehydrogenase, sulfite oxidase, xanthine dehydrogenase, and NarGHI) which share 

90 to 99 % sequence identity (Table 4.1) (Holden et al., 2004). A number of 

molybdoproteins, such as nitrate reductase, DMSO reductase, sulfite oxidase, are 

known to play roles in anaerobic growth and virulence, and allow for the utilisation of 

DMSO, nitrate, and sulfite as alternative electron acceptors (Jacobsen et al., 2005; 

Tareen et al., 2011; Van Alst et al., 2007; Weber et al., 2000). Because the transposon 

disrupted the function of BTH_I1704, required for molybdopterin cofactor biosynthesis, 

one cannot be sure that the phenotypes exhibited by CA01 are due to the disruption 

of nitrate reductase alone, considering formate dehydrogenase and sulfite: 

cytochrome c oxidase have been implicated in motility and biofilm formation in C. jejuni 

(Kassem et al., 2012; Tareen et al., 2011). 

The crystal structure for MoeA has been solved to a 2.2 Å resolution, showing 

it to have a similar structure to MogA (Schrag et al., 2001). MoeA encodes a dimeric 

protein required for the ligation, along with MogA, of molybdenum to molybdopterin 

(MPT), generating the molybdenum cofactor (Moco) (Hasona et al., 1998a; Nichols & 

Rajagopalan, 2005; Schrag et al., 2001). Both moeA genes in B. thailandensis share 

around 40 % sequence identity and are both found within gene clusters encoding 

genes required for the molybdopterin biosynthetic pathway. RT-PCR was performed 

to determine the expression of BTH_I1704 and BTH_I2200 grown aerobically and 

anaerobically in the presence of nitrate. In comparison to the housekeeping gene (16S 

rRNA), BTH_I1704 (moeA1) was shown to be constitutively expressed at a low level 

both aerobically and anaerobically in the presence of nitrate. In contrast, no expression 

was seen for BTH_I2200 (moeA2) under any condition tested (Fig. 4.9). These results 

indicated that BTH_I1704 to be the main MoeA encoded by B. thailandensis E264. 

Although no expression of moeA2 was seen it is possible that BTH_I2200 may be 

expressed under different conditions not tested in this study.  

In other bacterial species the presence of two moeA gene has been suggested 

to reflect the different requirement for either molybdenum or tungsten metal ions 

(Bevers et al., 2008; Bevers et al., 2009). Therefore one can speculate that the two 

moeA genes in B. thailandensis perform different functions, responding to the 

presence of either molybdenum or tungsten. For example BTH_I1704 is likely to be
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Table 4.1 – Putative molybdoproteins in B. pseudomallei and B. thailandensis 

Name Gene name(s)a B. pseudomallei 

(K96243)a 

B. thailandensis 

(E264)a 

Similarityb 

(%) 

Predicted functionc 

Membrane-bound nitrate 

reductase(s) 

narGHJI 

narZYWV 

BPSL2309-2312 

BPSS1156-1159 

BTH_I1851-1854 

BTH_II1249-1252 

90-99 Dissimilatory nitrate reduction 

Nitrate reductase nasA BPSL0510 BTH_I0462 95.5 Assimilatory nitrate reduction 

Sulfite oxidase yedZY BPSL3177-3178 BTH_I3032-3033 89.7-94.1 Oxidation of S- and N-oxides 

NAD+ formate dehydrogenase fdsGBAD BPSL2528-2531 BTH_I1621-1624 93-96 Formate oxidation 

Formate dehydrogenase-N fdoGHI BPSS1665-1667 BTH_II0707-0710 96-98 Formate oxidation 

Xanthine dehydrogenase xdhAB BPSL2727-2728 BTH_I1408-1409 94-99 Purine metabolism 

Putative DMSO reductase dmsABC BPSS2299-2301 Absent - Putative role in anaerobic 

reduction of DMSO and/or TMAO 

MOSCh domain-containing 

protein 

ycbXd BPSS0707 BTH_II1722 93 Putative role in N-

hydroxylaminopurine (HAP) 

detoxificationd 

MOSCh domain-containing 

protein 

yiiM BPSL0935 BTH_I0802 92.5 Putative role in N-

hydroxylaminopurine (HAP) 

detoxificationd 
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Bifunctional reductase - BPSS1241 BTH_II1172 92.1 Putative nitrate/sulfite 

reductasee 

Molybdopterin oxidoreductase - 

- 

- 

BPSL2207 

BPSL3038 

BPSS0969 

BTH_I1975 

BTH_I1105 

BTH_II1422 

93 Unknown function 

Hypothetical proteinsg - 

- 

BPSL0733 

BPSL1294 

BTH_I0634 

BTH_I2840 

91-93.4 Unknown function 

Sulfite: cytochrome c 

oxidoreductase 

- Absent BTH_II1622 - Unknown function 

a Gene name and locus ID determined using NCBI GenBank database  

b Similarity of B. pseudomallei K96243 genes to those found in B. thailandensis E264. Determined using a K.E.G.G. ortholog analysis  

c Predicted based on known molybdo-protein function in other prokaryotic species 

d BTH_II1722/BPSS0707 and BTH_I0802/BPSL0935 are predicted orthologs of E. coli YcbX and YiiM MOSC domain-containing 

molybdoenzymes (Kozmin et al., 2008) 

e BTH_II1172 and BPSS1241share orthology with sulfite reductase (NADH) flavoprotein (according to K.E.G.G.)  

f BTH_I1067 and BPSL1217 contain a molybdopterin binding signatures 

g Hypothetical proteins containing SO-family motifs 

h MOSC - molybdenum cofactor sulfurase C-terminal domain 
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required for molybdenum ligation to MPT, whereas BTH_I2200 could be required for 

recognition and ligation of tungsten prior to its incorporation into various metallo-

proteins. It is also possible that BTH_I2200 plays no role in Moco biosynthesis, and is 

redundant in function. Further mutagenesis and biochemical analysis would be 

required to determine the role of BTH_I2200 in B. thailandensis molybdopterin 

biosynthesis, and whether or not B. thailandensis encodes any tungsten containing 

proteins.  

 BTH_I2200 is encoded on a putative operon encoding moaD and moaE (Fig. 4.6 

a), required for MPT synthase, an enzyme essential for addition of dithiolene to cPMP 

to form molybdopterin (Wuebbens & Rajagopalan, 2003). Both moaD and moaE are 

essential for molybdopterin biosynthesis. Since no other moaD or moaE genes are 

found within B. thailandensis it is plausible that BTH_I2201 and BTH_I2202 are under 

the control of an alternative promoter that does not control BTH_I2200. Preliminary 

Softberry promoter analysis isolated a putative promoter region within BTH_I2200, 

which could potentially control the expression of BTH_I2201 and BTH_I2202, however 

further experimentation would be required to verify this prediction.  

To determine whether the phenotypes exhibited by CA01 were due to disruption 

of BTH_I1704 and transposon insertion into BTH_I1704 did not have any polar effects 

on expression of BTH_I1705 and BTH_I1706, a mutant complement was constructed 

using the constitutive expression vector pDA-17 encoding a dhfr promoter and 

tetracycline resistance cassette. BTH_I1704 was cloned into pDA-17 and the pDA-

17::BTH_I1704 construct was conjugated into CA01 using triparental mating. The 

complemented mutant, CA01_pDA-17::BTH_I1704, successfully restored anaerobic 

growth, NAR activity and biofilm formation but could not restore the motility defect seen 

in CA01 (Fig. 4.15 and 4.16). This could be due to downstream effects of the over-

expression, differential regulation of BTH_I1704, or potentially the loss of the pDA-

17::BTH_I1704 plasmid. 

Biofilms are associated with virulence in many bacterial pathogens, and have 

been associated with chronic infection in N. gonorrhoeae and P. aeruginosa (Falsetta 

et al., 2010; Hassett et al., 2002; Hill et al., 2005). B. pseudomallei and B. thailandensis 

can form biofilms in vitro and in vivo. Although biofilms are not directly required for 

virulence of B. pseudomallei (Taweechaisupapong et al., 2005) they may play a role 



183 
 

in relapse of infection and antimicrobial resistance. Genes required for the 

molybdopterin biosynthetic pathway, such as moeA, moeB and moaA, show a degree 

of upregulation in biofilms of Listeria monocytogenes (Tirumalai, 2012), highlighting 

the importance of this pathway in biofilms. In B. thailandensis, transposon insertion 

into moeA1 (CA01) resulted in a reduction in biofilm formation under both aerobic and 

anaerobic conditions (Fig. 4.11), restored to wild-type levels by complementation with 

pDA-17::BTH_I1704 (4.16 b). This reduction in biofilm forming capabilities could be 

linked to the function of NAR, as similar results were seen with P. aeruginosa, with a 

ΔnarGH mutant demonstrating a thinner biofilm structure to the wild-type (Van Alst et 

al., 2007). The reduction in biofilm formation may also be due to the disruption of 

multiple molybdopterin proteins in B. thailandensis, and could be linked to the 

reduction in motility seen in CA01 (Fig. 4.12 and 4.16 c). It is possible that the reduction 

in biofilm formation and motility seen in CA01 is also due to the lack of NO production 

as a result of limiting the supply of nitrite by disabling the nitrate reductase. However 

since other molybdo-proteins have been shown to play a role in motility (Kassem et 

al., 2012; Tareen et al., 2011) the defect in motility and biofilm formation seen in CA01 

may not be due to a reduction in NAR activity alone. Further mutagenesis studies on 

NAR are required to determine its role in motility and biofilm formation in B. 

thailandensis and/or B. pseudomallei.  

Flagella are required for virulence and biofilm formation of B. pseudomallei 

(Chua et al., 2003; Sawasdidoln et al., 2010). Swimming and swarming motility are 

both dependent on flagellar function. Swimming motility is dependent on individual 

motility, whereas swarming motility requires movement of a group of bacteria over a 

semi-solid surface (Harshey, 2003). In comparison to wild-type B. thailandensis, CA01 

exhibited a significant difference in swimming motility (Fig. 4.12). By contrast P. 

aeruginosa ΔnarGH and ΔnapA mutants displayed a reduction of swarming but not 

swimming motility (Van Alst et al., 2007). Mutations within the anaerobic respiratory 

sulfite oxidoreductase, a molybdopterin containing protein, from C. jejuni results in 

significant reduction in invasion of Caco2 cells, motility and growth in the presence of 

sodium sulfite (Tareen et al., 2011). The reduction in swimming motility seen with 

CA01 could indicate a role for the molybdopterin biosynthetic pathway and molybdo-

proteins in ATP production required for B. thailandensis flagellar function. It is possible 

that the lack of NAR activity under aerobic conditions may have affected the 
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restoration of motility in CA01.  Considering the motility assay was performed under 

aerobic conditions it is unlikely that the reduced swimming motility is due to 

bioenergetic constraints. Transposon insertion into BTH_I1704 is not likely to have 

directly affected genes required for motility as there are no flagella genes within the 

gene cluster. The reduction in P. aeruginosa narGH mutant swarming motility was due 

to the reduced formation of NO, a signalling molecule for rhamnolipid production (Van 

Alst et al., 2007). 

Both NAR and the molybdopterin biosynthetic pathway have been implicated in 

virulence in P. aeruginosa and Mycobacterium when using C. elegans or murine 

infection models (Filiatrault et al., 2013; Fritz et al., 2002; Van Alst et al., 2007). No 

difference was seen between wild-type B. thailandensis and CA01 in virulence when 

using G. mellonella (Fig. 4.13). It is possible, due to the acute nature of the infection 

seen when this model organism, that G. mellonella may not be the appropriate system 

for studying the role of anaerobic respiration in virulence of Burkholderia. Use of a 

chronic infection model, allowing for the generation of abscesses or granulomas that 

may have hypoxic environments, may yet reveal a role for anaerobic respiration and 

molybdopterin biosynthesis in B. pseudomallei pathogenesis.  

 

4.4 Conclusions 

Until now, very little was known about the genes required for anaerobic nitrate 

respiration in B. thailandensis. Work presented in this chapter has demonstrated the 

importance of the molybdopterin biosynthetic pathway in anaerobic respiration, NAR 

activity, motility and biofilm formation in B. thailandensis. This set of work has indicated 

that NAR may play a role in the pathogenesis of melioidosis. Further work using 

deletion mutagenesis will be performed to determine the role of the membrane-bound 

nitrate reductases in virulence and anaerobic respiration in B. pseudomallei (see 

Chapter 5 and 6). 
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Chapter 5 - Deletion mutagenesis and 

characterisation of the role of NarGHI in 

anaerobic respiration 

 

5.1 Introduction 

 Previous work on B. thailandensis (Andreae et al., 2014) (Chapter 4) 

demonstrated the importance of molybdopterin biosynthesis in anaerobic respiration, 

NAR activity, biofilm formation and motility. Both B. thailandensis E264 and B. 

pseudomallei K96243 encode a variety of molybdoproteins, such as NarGHI, formate 

dehydrogenase, a putative DMSO reductase, xanthine oxidase and sulfite oxidase 

(Andreae et al., 2014) (Table 4.1). Considering disruption of the molybdopterin 

biosynthetic pathway was likely to affect the function of a number of B. thailandensis 

molybdoproteins it was not possible to determine which one was contributing to the 

phenotype exhibited by CA01. However, it is thought that disruption of NAR was likely 

to be the main reason for the phenotypes exhibited by CA01.  

   Members of the DMSO reductase family require a membrane anchor subunit 

(NarI, DmsC, or FdnI/FdoI) containing heme cofactors and a quinol binding site, 

electron transfer subunit (NarH, DmsB or FdnH/FdoH) containing [Fe-S] clusters, and 

a catalytic subunit (NarG, DmsA or FdnG/FdoG) containing an [Fe-S] cluster and Mo-

bisMGD cofactor (Bertero et al., 2003; Jormakka et al., 2002b; Kisker et al., 1997; 

McAlpine et al., 1998; Weiner et al., 1992) (see Chapter 1; sections 1.4 and 1.5).  

 B. pseudomallei encodes two membrane-bound NAR (narGHJI and narZYWV – 

Chapter 3 - Table 3.2) predicted to be required either for adaptation to hypoxia or 

denitrification (Chapter 3 - Fig. 3.11). B. pseudomallei NarGHI is part of the D-group 

of molybdoenzymes, exhibiting a high degree of sequence conservation with NarGHI 

(NRA) found in E. coli (Bertero et al., 2003). The narGHJI operon encodes a 

chaperone protein, NarJ, which specifically recognises the NarG catalytic subunit to 

aid in folding, assembly and insertion of Mo-bisMGD and [Fe-S] cluster into the apo-

protein (Blasco et al., 1998; Lanciano et al., 2007; Vergnes et al., 2004; Vergnes et 
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al., 2006). Strains lacking narJ have been shown to form an unstable and inactive 

NarGH complex (Blasco et al., 1998). MogA, MoeA, MobA and MobB are thought to 

form a complex which, along with the NarJ chaperone protein, is essential for the 

incorporation of Moco into the apo-nitrate reductase (Vergnes et al., 2004). 

 NAR and DMSO reductase both catalyse the two electron reduction of their 

respective substrate (nitrate or DMSO) to either nitrite or DMS, using the Mo-bisMGD 

cofactor (Bertero et al., 2003; Weiner et al., 1992). NAR reaction is shown below. The 

oxidation state of the Mo ion is known to change during this reaction from Mo (VI) is 

reduced to Mo (V) and then Mo (IV), allowing for the transfer of electrons. These 

reactions are key for anaerobic respiration and the generation a PMF, via quinol 

oxidation. 

NAR reaction: NO3
- + 2H+ + 2e- NO2

- + H2O 

   Currently little is known about the role different molybdopterin containing proteins 

play in anaerobic respiration and pathogenesis of melioidosis. The current chapter will 

outline mutagenesis methods used to create an in-frame narG deletion mutant using 

the pDM4 suicide vector (Logue et al., 2009), and characterise the role of narG in 

denitrification and nitrate reductase activity. 

 

5.2 Results 

5.2.1 Anaerobic growth of B. pseudomallei K96243 

 Bioinformatic analysis identified a gene cluster in B. pseudomallei K96243 

encoding a molybdopterin oxidase (BPSS2299), iron-sulfur cluster protein 

(BPSS2300) and a hypothetical protein (BPSS2301), exhibiting similarity to B. 

cenocepacia BCAM1176 (a putative DMSO reductase subunit - dmsC). This gene 

cluster is found in pathogenic Burkholderia species, such as B. cenocepacia, B. mallei 

and B. pseudomallei, but no homolog has been identified in B. thailandensis E264. 

Due to the gene arrangement, presence of PFAM motifs required for molybdopterin 

cofactor and [Fe-S] binding in BPSS2299 and BPSS2300, and similarity to genes 

annotated as dmsA, dmsB and dmsC, BPSS2299-2301 is thought to encode a 

putative DMSO reductase. Further mutagenesis and biochemical characterisation will 

be required to confirm this prediction.   
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 Preliminary studies on the anaerobic respiratory flexibility were conducted on LB 

or M9 minimal media agar plates supplemented with nitrate, nitrite and DMSO at a 

range of concentrations (Table 5.1 and Table 5.2). These anaerobic studies were 

conducted within an anaerobic box incubated at 37 oC for two to five days. Like B. 

thailandensis, B. pseudomallei displayed very little growth anaerobically in the 

absence of an alternative terminal electron acceptor. B. pseudomallei K96243 could 

grow anaerobically using either nitrate or nitrite as alternative electron acceptors, on 

both LB agar and M9 minimal media supplemented with 20 mM sodium succinate as 

a sole source of carbon and electrons. No significant growth was seen in the presence 

of DMSO at any concentration tested, when using LB media or M9 minimal media 

using succinate as a carbon source. 

 Previous studies have demonstrated that anaerobic growth in the presence of 

DMSO requires glycerol or formate to be utilised as a carbon source and energy donor 

(Bilous & Weiner, 1985a; Bilous & Weiner, 1985b). 0.5 % glycerol was therefore added 

to LB agar plates, supplemented with a range of DMSO concentrations (5, 10, 20, 40 

or 60 mM). B. pseudomallei could grow anaerobically in the presence of 10 to 40 mM 

DMSO, on LB media supplemented with 0.5 % glycerol, after 2 to 4 days incubation 

at 37 oC (Table 5.2).  

 

5.2.2 Identification of targets for pDM4 deletion mutagenesis 

 B. pseudomallei K96243 encodes a wide array of different molybdoproteins, a 

number of which are likely to function under anaerobic conditions (see Chapter 4 - 

Table 4.1). Information from transcript datasets obtained from publications (Hamad et 

al., 2011; Kim et al., 2005; Ooi et al., 2013) were used to identify potential targets for 

pDM4 deletion mutagenesis (Table 5.3). From this dataset the catalytic subunit of 

NarGHI (BPSL2309 - narG) and the putative DMSO reductase (BPSS2299 - dmsA) 

were selected, as both showed differential regulation under a number of conditions 

tested, including response to various different in vitro stresses and upregulation within 

a murine infection model (Table 5.3). NarGHI was shown to be upregulated under 

nutrient deprivation (water), down-regulated under acid stress (pH 4) (Ooi et al., 2013) 

but showed no difference in regulation under anaerobic conditions; when grown in the 

absence of an alternative electron acceptor. The NarGHI homolog in B. mallei was up- 
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Table 5.1 - Anaerobic growth of wild-type B. pseudomallei on LB or M9 minimal media 

agar plates 

 

 

 

 

 LB agar M9 minimala 

None + - 

20 mM sodium nitrate +++ ++ 

5 mM sodium nitrite ++ + 

5 mM DMSO + - 

10 mM DMSO + - 

20 mM DMSO + - 

40 mM DMSO +/- - 

Level of growth indicated with +b 

+++ = strong growth 

++ = medium growthb  

+ = faint growthb 

- = no growth  

a M9 minimal media plates were supplemented with 20 mM sodium succinate as a carbon 

source. 

b Compared to level of growth exhibited by wild-type in the presence of nitrate 

Plates were incubated anaerobically for 48 hours at 37 oC 

Results are the average of three biological replicates 
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Table 5.2 - Anaerobic growth of wild-type B. pseudomallei on LB agar plates 

supplemented with 0.5 % glycerol 

  

 2 daysa 4 daysa 

0.5 % Glycerol + + 

20 mM sodium nitrate +++ +++ 

5 mM sodium nitrite ++ +++ 

10 mM DMSO ++ +++ 

20 mM DMSO ++ +++ 

40 mM DMSO 

60 mM DMSO 

+ 

- 

++ 

- 

Level of growth indicated with +b 

+++ = strong growth 

++ = medium growthb  

+ = faint growthb 

- = no growth  

a Incubation time (days) 

b Compared to level of growth exhibited by wild-type in the presence of nitrate 

Plates were incubated anaerobically at 37 oC for two to four days.  

Results are the average of three biological replicates 
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regulated in the liver and spleen of murine infection model (Kim et al., 2005). 

Interestingly the putative DMSO reductase was induced under anaerobic conditions, 

in the mouse liver and spleen, within BALB/c lungs and under nutrient deprivation 

conditions (Table 5.3), indicating it to be a potential target for future virulence studies.  

Considering previous studies on the B. thailandensis E264 molybdopterin 

biosynthesis pathway mutant revealed a role for molybdoproteins in anaerobic 

respiration deletion constructs to knockout both the moeA genes in B. pseudomallei 

K96243 (BPSL2455 and BPSS1479) were also constructed.  

 

5.2.3 Knockout cassettes for pDM4 mutagenesis were successfully created for in-

frame deletion mutagenesis of BPSL2309, BPSS2299, BPSL2455 and BPSL1479  

 Deletion mutagenesis was carried out using the suicide vector pDM4, encoding 

a chloramphenicol resistance cassette and sacB allowing for efficient sucrose counter-

selection (Logue et al., 2009). pDM4 deletion mutagenesis required the creation of a 

deletion construct containing 600 bp of upstream and downstream flanking regions of 

the target gene (see methods section 2.4.2 – pDM4 deletion mutagenesis), to allow 

for allelic replacement and generation of an in-frame deletion mutant (Logue et al., 

2009). pDM4 knockout cassettes were successfully constructed  for BPSL2309 

(narG), BPSS2299 (putative dmsA), BPSL2455 (moeA1) and  BPSS1479 (moeA2), 

and confirmed with PCR (Fig. 5.1) and DNA sequencing. The pD2309 vector was 

further confirmed using restriction enzyme digest (Fig. 5.2).  

 

5.2.4 Creation of a BPSL2309 deletion mutant (ΔnarG) 

 The majority of published work on the role of anaerobic respiration in 

pathogenesis has focused on nitrate reductase. Although pDM4 deletion constructs 

for BPSS2299, BPSL2455, and BPSS1479 were successfully created only one 

deletion mutant (BPSL2309; ΔnarG) was made and further characterised during the 

rest of this study, considering previous studies on other pathogenic species have 

demonstrated a role for narG anaerobic respiration, virulence and persistence.  
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Table 5.3 – Regulation of B. pseudomallei K96243 putative molybdoproteins under a range of different conditions 

Name Gene name(s) Gene ID Anaerobicc  Hypoxiab BALB/c 

lungsc 

Mouse spleen 

and lungsa 

Membrane-bound nitrate 

reductase(s) 

narGHJI BPSL2309-2312 ND -d ND Up (BMA1732) 

narZYWV BPSS1156-1159 ND Up ND - 

Assimilatory nitrate reductase nasA BPSL0510 ND - ND - 

Sulfite oxidase yedZY BPSL3177-3178 ND - ND - 

NAD+ formate dehydrogenase fdsGBAD BPSL2528-2531 ND - ND - 

Formate dehydrogenase-N fdoGHI BPSS1665-1667 ND - Down Up (BMA1683) 

Xanthine dehydrogenase xdhAB BPSL2727-2728 ND - Down - 

Putative DMSO reductase dmsABC BPSS2299-2301 Up - Up Up (BMAA2047) 

MOSC domain-containing protein ycbX BPSS0707 ND - ND - 

MOSC domain-containing protein yiiM BPSL0935 ND - ND - 

Bifunctional reductase - BPSS1241 ND - ND - 

Molybdopterin oxidoreductase - BPSL2207 ND - ND - 

- BPSL3038 ND - ND - 

- BPSS0969 ND - ND - 
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Hypothetical proteins - BPSL0733 ND - ND - 

- BPSL1294 ND -  ND - 

a Gene regulation of B. mallei homologs in mouse liver and spleen (Kim et al., 2005) 

b Gene regulation after 4 hours in a hypoxic environment (Hamad et al., 2011) 

c Data taken from (Ooi et al., 2013) 

ND – no difference in expression seen 

d No transcript data available 
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Table 5.3 continued - Regulation of B. pseudomallei K96243 putative molybdoproteins under a range of different conditions  

Name 

 

Gene 

name(s) 

Gene ID Nutrient 

deprivation 

(water)c 

Acidc Human serum 

(NHS 30 %)c 

Insulin (11 

U/mL)c 

Membrane-bound nitrate 

reductase(s) 

narGHJI BPSL2309-2312 Up Down ND ND 

narZYWV BPSS1156-1159 Up ND ND ND 

Assimilatory nitrate reductase nasA BPSL0510 ND ND ND ND 

Sulfite oxidase yedZY BPSL3177-3178 Up Up Down Down 

NAD+ formate dehydrogenase fdsGBAD BPSL2528-2531 Up Up ND ND 

Formate dehydrogenase-N fdoGHI BPSS1665-1667 Up ND ND ND 

Xanthine dehydrogenase xdhAB BPSL2727-2728 Up ND Down Down 

Putative DMSO reductase dmsABC BPSS2299-2301 Up ND Down Up 

MOSC domain-containing 

protein 

ycbXd BPSS0707 Down Down Up ND 

MOSC domain-containing 

protein 

yiiM BPSL0935 ND ND ND ND 

Bifunctional reductase - BPSS1241 ND ND ND ND 

Molybdopterin oxidoreductase - BPSL2207 ND ND ND ND 
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- BPSL3038 ND ND ND ND 

- BPSS0969 ND ND ND ND 

Hypothetical proteins - BPSL0733 Up ND ND ND 

- BPSL1294 ND ND 

ND 

ND 

a Gene regulation of B. mallei homologs in mouse liver and spleen (Kim et al., 2005) 

b Gene regulation after 4 hours in a hypoxic environment (Hamad et al., 2011) 

c Data taken from (Ooi et al., 2013) 

ND – no difference in expression seen 

d No transcript data available 
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Figure 5.1 - PCR confirmation of pDM4 knockout cassette construction. 

PCR was performed on pD1479, pD2455, pD2309 and pD2299 using primer 1 

(p1479_1/p2455_1/p2309_1/p2299_1) and primer 4 

(p1479_4/p2455_4/p2309_4/p2299_4), generating a 1.2 kb PCR product (shown 

with the white arrows). Water was used as a negative control in each PCR 

reaction.  Lane 1 – 1 kb plus DNA ladder; lane 2 – negative control (-ve); lane 3 

– pD1479; lane 4 – -ve control; lane 5 – pD2455; lane 6 – DNA ladder; lane 7 – -

ve control; lane 8 – pD2309; lane 9 – -ve control; lane 10 – pD2299. PCR was 

performed using Phusion polymerase and High Fidelity master mix. Use of 

Phusion polymerase often results in some unspecific binding, as seen in the 

above gel. This did not affect subsequent cloning steps of the successful 

construction of a deletion mutant.  
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A BPSL2309 deletion mutant (ΔnarG) was successfully constructed by 

conjugation of pD2309 into wild-type B. pseudomallei K96243. This mutant was 

confirmed using two separate PCR reactions using primers binding outside the target 

gene and primers binding within the wild-type gene (Fig. 5.3). Use of the pDM4 suicide 

vector for deletion mutagenesis is known to result in either reversion to the wild-type 

copy of the gene, or removal of the target gene (Logue et al., 2009). A number of 

potential second cross-overs (sucrose resistant and chloramphenicol sensitive) were 

initially screened with an initial PCR reaction using primers binding to a 300 bp internal 

region of the BPSL2309 (Fig. 5.3 a and b). Successful deletion mutants lacking this 

300 bp band are marked with asterisks in figure 5.3 (b.). The BPSL2309 deletion 

mutant (ΔnarG) was further confirmed by a second PCR using primers that bind 300 

bp up and downstream of BPSL2309 to give a 600 bp band in the mutant and a much 

larger band (over 3.5 kb) in the wild-type (Fig. 5.3 c). The larger wild-type band was 

not detected under the PCR conditions used in this study. However the absence of a 

wild-type band and presence of a 600 bp PCR product in the mutant was considered 

enough to indicate successful in-frame deletion of BPSL2309 (narG). 

 

5.2.5 Deletion of BPSL2309 (ΔnarG) prevents anaerobic growth on nitrate and 

significantly reduces NAR activity 

 To confirm that deletion of BPSL2309 does not affect aerobic growth both wild-

type B. pseudomallei K96243 and the ΔnarG mutant were grown aerobically in L-broth 

(Fig. 5.4) or M9 minimal media supplemented with 20 mM sodium succinate. No 

difference was seen between the wild-type and the mutant in terms of growth under 

aerobic conditions. Anaerobic growth experiments were carried out using the BD 

GasPak anaerobic container system. Due to constraints when working in the BSL3 lab 

(which did not have an anaerobic chamber or permit use any glassware or syringes), 

all anaerobic growth studies were conducted within a BD GasPak anaerobic box, using 

two anaerobic sachets. Considering the anaerobic experiments were conducted within 

the BD GasPak EZ anaerobic box system, generating a hypoxic environment within 2 

hours, only one point could be taken when performing a growth experiment. The 

anaerobic growth experiments were therefore conducted using end point cell counts 

in 24 well plates containing 1 mL of L-broth or M9 minimal media supplemented with  
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Figure 5.2 – Restriction enzyme digest of pD2309 using XbaI and NheI. 

Successful ligation of the BPSL2309 knockout cassette (1.2 kb) into the suicide 

vector pDM4 was confirmed using XbaI and NheI restriction enzymes. Lane 1 – 1 kb 

DNA ladder; lane 2 – digested pDM4; lane 3 digested pD2309.  
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  Figure 5.3 – PCR confirmation of the B. pseudomallei BPSL2309 deletion 

mutant (ΔnarG). a.) Schematic diagram showing primer binding sites for 

BPSL2309 deletion mutant (ΔnarG) confirmation. Top – primer binding sites in wild-

type (WT) B. pseudomallei K96243; A1 and A2 denote primers 2309-

check_fwd/2309 check_rv binding within BPSL2309 to give a 300 bp band for the 

WT and absent in the deletion mutant; B1 and B2 refer to primers 2309_fwd1 and 

2309_rv2 respectively, binding outside of BPSL2309 giving a 600 bp product for the 

mutant but not the WT (see Chapter 2 Table 2.4 for primer sequences). b.) PCR 

using primers A1 and A2 to identify successful second crossovers.  Lane 1 – 1 kb 

DNA ladder; lane 2 – negative control (-ve) (pDM4-2309); lane 3 – WT gDNA; lane 

4 to 12 – potential ΔnarG second crossover colony lysates. Successful second 

crossovers (marked with asterisk) were identified by a lack of 300 bp band, as seen 

in lanes 5, 7 and 9. c.) Confirmation of deletion mutant PCR using primers B1 and 

B2. Lane 1 – 1 kb DNA ladder; lane 2 – negative control (H2O); lane 3 – pDM4-

2309; lane 4 – WT colony lysate; lane 5 – ΔnarG colony lysate. Lack of a WT band 

and presence of 600 bp band for ΔnarG confirms the deletion of BPSL2309. 

a.) 

b.) 

c.) 
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or without 20 mM sodium nitrate. Only wild-type B. pseudomallei displayed significant 

anaerobic growth when cultured with nitrate, with no growth seen for ΔnarG (Fig. 5.5). 

No significant anaerobic growth on nitrate was seen for ΔnarG in either M9 minimal 

media or L-broth.  

 Like B. thailandensis E264, B. pseudomallei K96243 encodes two NARs, one 

sharing homology with the cryptic NarZVY found in E. coli and Salmonella. Since 

deletion of BPSL2309 prevented growth under anaerobic conditions, it is very likely 

that this is the main NAR encoded by B. pseudomallei. To confirm this hypothesis a 

Griess reaction was performed on wild-type and the ΔnarG mutant grown aerobically 

in M9 minimal media supplemented with 20 mM sodium nitrate. No difference was 

seen between wild-type and mutant in terms of aerobic growth (Fig. 5.6 a). Only the 

wild-type started to accumulate significant amounts of nitrite after 8 hours of growth 

under aerobic conditions (Fig. 5.6). After 24 hours wild-type B. pseudomallei 

accumulated around 256 µM nitrite whereas the ΔnarG mutant accumulated only 7 

µM nitrite (Fig. 5.6 b. and c).  This indicates the BPSL2309-2312 (narGHJI) encodes 

the main nitrate reductase in B. pseudomallei, which may function under aerobic as 

well as anaerobic conditions. Previous literature on other prokaryotic species has 

stated that NarGHI is expressed under anaerobic conditions in the presence of nitrate, 

and not under aerobic conditions. It is entirely possible that the cultures became micro-

aerobic during the growth cycle, which may have resulted in an increased in 

expression of narGHJI resulting in a high level of nitrate reductase activity is seen in 

the wild-type. Considering B. pseudomallei narGHJI is likely to be under control of 

NarXL it is also possible that the presence of nitrate in the culture medium resulted in 

the expression of the operon under aerobic conditions. Further experiments would be 

required to confirm this prediction.  
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Figure 5.4 - Aerobic growth of wild-type B. pseudomallei and the ΔnarG mutant 

in rich media. Wild-type B. pseudomallei (filled squares) and the ΔnarG mutant 

(filled circles) were grown aerobically in L-broth for 24 hours. Experiment performed 

using three independent biological replicates. Error bars ± SD.  

WT

ΔnarG
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Figure 5.5 - Anaerobic growth of B. pseudomallei K96243 in the presence or 

absence of nitrate. Wild-type B. pseudomallei (blue) and ΔnarG (red) were grown 

in an anaerobic box for 48 hours (h) in M9 minimal media, supplemented with 20 

mM sodium succinate, in the presence or absence of 20 mM sodium nitrate. Three 

independent biological replicates were used, each with two technical replicates. 

Error bars indicate ± SD. Asterisks (**) denote statistically significant difference 

between WT and ΔnarG (Two tailed T-test assuming equal variance; p-value < 

0.01).  

** 
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Figure 5.6 - Aerobic nitrate reductase activity exhibited by wild-type B. 

pseudomallei and the ΔnarG deletion mutant. B. pseudomallei K96243 cultures 

were grown aerobically in M9 minimal media supplemented with 20 mM sodium 

succinate and 20 mM sodium nitrate for up to 24 hours. a.) Aerobic growth in M9 

minimal media for wild-type (WT) B. pseudomallei (squares) and the ΔnarG mutant 

(circles). 1 mL samples were taken throughout the growth curve and frozen at –80 

oC prior to performing the Griess reaction. b.) Concentration of nitrite (NO2
-) 

produced during aerobic growth for the WT (blue) or ΔnarG (red), determine using 

the Griess reaction. c.) Representative image for the Griess reaction and nitrite 

standard curve use to determined NO2
- concentration of the experimental samples. 

The experiment was performed using three independent biological replicates, each 

with three technical replicates used when performing the Griess reaction. Error bars 

± SD. 

  

a.) b.) 

c.) 
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5.2.6 NarGHI is not required for the assimilation of nitrate in B. pseudomallei K96243 

 A study on M. tuberculosis has highlighted a novel role for NarGHI in the 

assimilation of nitrate, as well as the dissimilation of nitrate and anaerobic growth 

(Malm et al., 2009). To determine whether B. pseudomallei NarGHI was involved in 

nitrate assimilation, nitrogen-free M9 minimal salts were made up, omitting NH4Cl from 

the recipe. The nitrogen free M9 minimal media containing succinate as a carbon 

source, was solidified using 1.5 % bacteriological agar and supplemented with either 

20 mM sodium nitrate, 5 mM sodium nitrite or 5 mM ammonium chloride. Wild-type B. 

pseudomallei and ΔnarG were streaked out, in triplicate, on to all the M9 minimal agar 

plates (Table 5.4). Little growth for either the wild-type or mutant was seen on M9 

minimal media plates supplemented with succinate alone. No difference was seen in 

growth between the wild-type and the ΔnarG mutant when grown on M9 minimal plates 

supplemented with nitrate, nitrite or ammonium. These results indicate that, unlike the 

M. tuberculosis NarGHI, the B. pseudomallei NarGHI is not required for the 

assimilation nitrate, when grown on media containing nitrate as a sole source of 

nitrogen. 

 

5.2.7 Complementation of the ΔnarG mutant using BPSL2309 (narG) with its native 

promoter 

 In order to ensure that the phenotypes seen in ΔnarG were due to the deletion of 

BPSL2309 a complement was created using pBHR-MCS-1 vector encoding 

chloramphenicol resistance cassette, multiple cloning site and lacZ gene. This vector 

was selected for complementation as it would allow for use of the predicted native 

promoter and blue/white screening. Softberry promoter analysis was used to predict 

the position of the promoter, found to be approximately 250 bp upstream of the start 

of BPSL2309.  BPSL2309 with its native promoter (3,996 bp) was amplified by PCR 

and successfully cloned into the pBHR-MCS-1 vector, via BamHI and XbaI restriction 

sites. This generated the plasmid construct pBHR::BPSL2309native, which was 

confirmed with PCR (Fig. 5.7) and DNA sequencing and maintained in DH5α 

competent cells.   

 The pBHR::BPSL2309native was conjugated into ΔnarG and selected for based 

on chloramphenicol resistance, giving ΔnarG_pBHR::BPSL2309native (Fig. 5.8). This  
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Table 5.4 – Growth of B. pseudomallei K96243 on M9 minimal media agar 

supplemented with different nitrogen sources 

   

 Controla Nitrateb (NO3
-) Nitritec (NO2

-) Ammonium chlorided 
(NH4Cl) 

Wild-type + +++ +++ +++ 

ΔnarG + +++ +++ +++ 

+ - little growth 

+++ - strong growth 

a – M9 minimal media supplemented with succinate only, no nitrogen source 

b – 20 mM NaNO3  

c – 5 mM  NaNO2 

d – 5 mM  NH4Cl 

All M9 minimal media agar plates were supplemented with 20 mM sodium succinate, and 

incubated aerobically at 37 oC overnight  

Results are the average of two biological replicates 
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complement displayed no difference in growth under aerobic conditions, compared to 

the mutant and the wild-type. Unfortunately complementation with BPSL2309 with its 

native promoter did not restore growth under anaerobic conditions in the presence of 

nitrate (Fig. 5.9). It is possible that the lack of narG in the mutant could have affect the 

expression of narH and the rest of the operon, as it has been shown to be expressed 

as one transcriptional unit.  

Considering strong hydrogen bond links are seen between NarG and NarH 

subunits in the E. coli NarGHI (Bertero et al., 2003) it is possible that the expression 

of NarG on its own may have resulted in improper subunit folding of the enzyme. It is 

also likely that the entire narGHJI operon, which including the NarJ chaperone protein, 

needs to be expressed as one transcriptional unit to ensure proper folding and 

assembly of the protein. B. pseudomallei NarG shares 67.8 % sequence identity with 

E. coli NarG. B. pseudomallei BPSL2309 (NarG) was modelled against the E. coli 

NarGHI (PDB: 1Q16), using the I-TASSER service, in order to determine the degree 

of structural homology. As expected the structure of B. pseudomallei NarG was almost 

identical to that seen in E. coli NarG (see Chapter 3 Fig. 3.4), both displaying a loop 

required for binding to the NarH subunit. 
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Figure 5.7 - Construction and PCR confirmation of pBHR::BPSL2309native. 

a.) BPSL2309 was PCR amplified with its predicted native promoter and cloned 

into pBHR-MCS-1 vector via BamHI and XbaI restriction sites and transformed into 

DH5α competent cells (see methods section 2.4.5 Complementation using pBHR-

MCS-1). b.) PCR confirmation of a successful pBHR::BPSL2309native construct 

using primers amplifying BPSL2309 with its native promoter (3,966 bp). Lane 1 – 

1 kb DNA ladder; lane 2 – negative (-ve) control (water); lane 3 – positive (+ve) 

control (wild-type B. pseudomallei gDNA); lane 4 – pBHR::BPSL2309native 

plasmid DNA. 

 

a.) b.) 
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Figure 5.8 – PCR confirmation of pBHR::BPSL2309native in ΔnarG. The 

pBHR::BPSL2309native plasmid was successfully conjugated into the BPSL2309 

deletion mutant (ΔnarG) using tri-parental mating. PCR was performed using 

2309check_fwd and 2309check_rv primers, binding to a 300 bp internal region of 

BPSL2309. Lane 1 – 100 bp plus DNA ladder; lane 2 – ΔnarG boiled PCR lysate; 

lane 3 - ΔnarG_pBHR-BPSL2309native boiled lysate.  

 



208 
 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.9 – Complementation of ΔnarG with pBHR::BPSL2309native does not 

restore anaerobic growth. Wild-type (blue), ΔnarG (red), and 

ΔnarG_pBHR::2309native (green) were grown anaerobically in L-broth 

supplemented with or without 20 mM sodium nitrate. No growth restoration was 

observed for ΔnarG_pBHR::2309native. Results shown are the average of one 

biological replicate, performed with two technical replicates. 

ΔnarG

ΔnarG::pBH01

WT
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5.2.8 Complementation of ΔnarG using the narGHJI operon with its native promoter 

 The majority of published work on narG or narGH deletion mutants have 

complemented the phenotype with the entire narGHJI operon, either via chromosomal 

insertion using mini-Tn5 transposable elements or use of a cosmid library (Van Alst et 

al., 2007; Weber et al., 2000). The B. pseudomallei narGHJI operon (BPSL2309-2312) 

is a four gene cluster of 6,634 bp, including its native promoter. Initial attempts to PCR 

this large operon using conventional Taq polymerases proved difficult, even after 

repeated attempts at optimisation. Eventually the operon was successfully amplified 

as one PCR fragment using KOD Xtreme polymerase, which is specific for the 

amplification of GC rich and long DNA sequences. Creation of pBHR-

MCS::BPSL2309native was successfully achieved by directly cloning the PCR 

fragment, after restriction digest, into the digested pBHR-MCS-1 vector. Initial and 

repeated attempts of direct cloning of the BPSL2309-2312native PCR product straight 

into pBHR-MCS-1 proved unsuccessful, with most clones containing empty vector or 

an incomplete PCR product. To try to overcome this issue BPSL2309-2312native was 

cloned into pJET1.2/blunt (Thermo-Scientific), giving pJET::BPSL2309-2312native 

(pJ01) (see figure 5.10 for cloning protocol). pJ01 was then transformed into High 

Efficiency 5α competent cells (NEB) as previous transformation attempts using 

alternative cell lines such as JM109 and DH5α had proved unsuccessful. Successful 

pJ01 clones were confirmed using DNA sequencing, restriction digest and PCR (Fig. 

5.11) 

 Sub-cloning of BPSL2309-2312native (6,634 bp) into pBHR-MCS-1 (5,963 bp) 

again proved difficult but after repeated attempts a pBHR::BPSL2309-2312native 

(pBH01) construct was successfully created and maintained in E. coli High Efficiency 

5α competent cells. Potential pBH01 constructs were initially screened using a PCR 

reaction using primers generating a 300 bp band internal to BPSL2309 (Fig. 5.12 a). 

Any successful constructs were then further confirmed using a restriction enzyme 

digest, sequencing and PCR to amplifying BPSL2309-2312native product in pBHR-

MCS-1 using KOD Xtreme polymerase and narG_fwd(2) and comp_rv(2) primers (Fig. 

5.12).  

 Next pBH01 was conjugated into ΔnarG using triparental mating. Any colonies 

were re-streaked onto LB agar plates containing 100 µg/mL chloramphenicol to select 
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for the pBH01 vector, and several colonies were screened by PCR using 

2309_check(fwd) and 2309_check(rv) primers (Fig. 5.13 a). The ΔnarG mutant 

complement (ΔnarG::pBH01), was grown on media supplemented with 50 µg/mL 

chloramphenicol, to maintain selection for the resistance cassette in pBH01 

Complementation of ΔnarG with pBH01 was able to successfully restore anaerobic 

growth of the ΔnarG mutant on LB agar plates supplemented with nitrate, but only to 

wild-type levels when grown in the presence of chloramphenicol (Fig. 5.13 b). In 

comparison no anaerobic growth restoration was seen for the complemented mutant 

(ΔnarG::pBH01) after 48 hours incubation in 1 mL M9 minimal media (Fig. 5.13 c), 

even with addition of chloramphenicol (50 µg/mL) to both the culture media and agar 

plates. It is possible during the 48 hour anaerobic incubation period the 

chloramphenicol activity may have reduced or become degraded, resulting in the loss 

of pBH01 plasmid from ΔnarG::pBH01 and a reversion back to the mutant (ΔnarG) 

phenotype. After 48 hours ΔnarG::pBH01 was plated out on to LB agar plates 

containing chloramphenicol at 50 µg/mL. A slight decrease (less than one log) in 

colony forming units was seen for the ‘complement’ after 48 hour anaerobic incubation, 

when comparing it to the input CFU/mL count. This reduction in CFU/mL for the 

complemented mutant was thought to be due to a reversion back to the mutant 

phenotype, resulting in the bacterial culture becoming susceptible to chloramphenicol.  

 It was thought that perhaps the lack of anaerobic growth restoration in M9 minimal 

media for the complemented mutant was due to a loss of the pBH01 plasmid. To test 

the stability of pBH01 in the ΔnarG mutant, ΔnarG::pBH01 was cultured overnight in 

L-broth containing 50 µg/mL chloramphenicol. The next day 100 µL of the 

ΔnarG::pBH01 overnight culture was spread onto a LB agar plate (no antibiotic) and 

incubated overnight at 37 oC, prior resuspension in 4 mL of L-broth, serial dilution and 

spot plating on LB agar plates supplemented with or without 50 µg/mL 

chloramphenicol. No difference in CFU/mL counts was seen for ΔnarG::pBH01 when 

grown on LB agar plates supplemented with or without chloramphenicol. This indicated 

that the pBH01 plasmid can remain stable within the ΔnarG mutant when grown 

absence of antibiotic selection in LB media under aerobic conditions. 
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Figure 5.10 – Schematic representation of cloning work through for creation 

of a pBHR-MCS-1 vector containing B. pseudomallei narGHJI (BPSL2309-

2312) operon with its native promoter. BPSL2309-2312 (BPSL2309 – orange; 

BPSL2310 – yellow; BPSL2311 – pink; BPSL2312 – light pink) with its native 

promoter (green) was amplified by PCR using narG_fwd(2) and comp_rv(2) primers 

prior to ligation into the pJET1.2/blunt cloning vector, generating pJ01. Both 

BPSL2309-2312native and the pBHR-MCS-1 vector were digested using BamHI 

and XbaI, ligated together to create pBH01. Both pJ01 and pBH01 were maintained 

in High Efficiency 5α competent cells. 
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Figure 5.11 – Confirmation of a pJET1.2/blunt containing BPSL2309-2312 

with its native promoter (pJ01). a.) PCR confirmation of pJ01 using 

narG_fwd(2) and comp_rv(2) using KOD Xtreme DNA polymerase. Lane 1 – 1 

kb DNA ladder; lane 2 – Wild-type K96243 gDNA; lane 3 – pJ01; lane 4 – 

pJET1.2/blunt; lane 5 – negative control (H2O). b.) Restriction enzyme digest of 

pJ01 using BamHI and XbaI. Lane 1 – 1 kb DNA ladder; lane 2 – digested pJ01. 

 

a.) b.) 
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Figure 5.12 – Cloning of BPSL2309-2312native into pBHR-MCS-1 and 

confirmation using PCR and restriction digest. a.) Colony PCR using 

2309check_fwd and 2309check_rv primers of potential pBH01 E. coli 

transformants. Lane 1 – 100 bp plus DNA ladder; 2 – wild-type B. pseudomallei 

K96243 gDNA; 3 – pJ01; pBHR-MCS-1; lanes 4 – unsuccessful ligation of pBHR-

MCS-1 and BPSL2309-2312native; lane 5 – successful pBH01 transformant. b.) 

Restriction enzyme digest of pBH01. Lane 1 – 1 kb plus DNA ladder; lane 2 – XbaI 

digested potential pBH01; lane 3 - BamHI digested potential pBH01; lane 4 – XbaI 

and BamHI digested potential pBH01; lane 5 – 1 kb plus DNA ladder. c.) PCR using 

KOD Xtreme polymerase using narG_fwd(2) and comp_rv(2). Lane 1 – 1 kb plus 

DNA ladder; lane 2 – WT gDNA; lane 3 – pBH01.  

 

 

 

a.) 

b.) 

c.) 
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  Figure 5.13 – Complementation of ΔnarG with pBH01 successfully restores 

anaerobic growth on nitrate on LB agar but not in M9 minimal media. a.) PCR 

of potential ΔnarG::pBH01 complement lysates. PCR was performed using 

2309check_fwd and 2309check_rv primers and pBH01 plasmid extract as a 

positive control. Lane 1 – 100 bp plus DNA ladder; 2 to 5 – potential ΔnarG::pBH01 

colony lysates; 6 – negative control (H2O). Arrow denotes successful conjugation 

of pBH01 into ΔnarG, as shown with a 300 bp PCR product. b.) Wild-type B. 

pseudomallei, ΔnarG and ΔnarG::pBH01 were sub-cultured onto LB agar plates 

containing 20 mM sodium nitrate and incubated anaerobically for 48 hours. The LB 

agar plates were supplemented with or without chloramphenicol (100 µg/mL) to 

ensure selection of the pBH01 in ΔnarG::pBH01. The pBH01 plasmid containing 

BPSL2309-2312 (narGHJI) with its native promoter successfully restored anaerobic 

growth of the mutant but only when grown in the presence of chloramphenicol. c.) 

Anaerobic growth in M9 minimal media supplemented with 20 mM sodium 

succinate and 20 mM sodium nitrate for wild-type B. pseudomallei (blue), ΔnarG 

(red), and ΔnarG::pBH01 (green). No growth restoration of the complement was 

seen when incubated for 48 hours in M9 minimal media supplemented with 20 mM 

sodium nitrate and 50 µg/mL chloramphenicol. Results for the 48 hour anaerobic 

M9 minimal media (20 mM sodium nitrate) growth experiment are the average of 

two biological replicates each with two technical replicates. Error bars ± SD. 

Chloramphenicol (50 µg/mL) was added to the media, both liquid culture and plates 

to ensure selection of the pBHR-MCS-1 plasmid containing BPSL2309-2312native 

and chloramphenicol resistance cassette.  
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5.3 Discussion 

 B. pseudomallei, like B. thailandensis, can respire anaerobically using nitrate and 

nitrite as terminal electron acceptors. Initial studies have indicated that B. 

pseudomallei K96243 may also respire anaerobically using DMSO as a terminal 

electron acceptor, when grown in the presence of glycerol. Anaerobic respiration using 

DMSO as a terminal electron acceptor requires glycerol, formate or hydrogen to be 

used as electron donors to allow for sufficient generation of a PMF (Bilous & Weiner, 

1985a; Bilous & Weiner, 1985b). B. pseudomallei K96243 encodes multiple different 

primary dehydrogenases, including glycerol-3-phosphate dehydrogenase (Table 3.1 - 

Chapter 3) which may be used to couple electron transfer to the putative DMSO 

reductase (encoded by BPSS2299-2301) to allow for anaerobic growth using DMSO 

as a terminal electron acceptor (Weiner et al., 1992). Further mutagenesis and 

biochemical characterisation of BPSS2299-2301 will be required to determine whether 

this hypothesis is correct and whether or not the gene cluster encodes a putative 

DMSO reductase. 

 A B. pseudomallei narG (BPSL2309) deletion mutant was successfully made 

using the pDM4 suicide vector. This mutant (ΔnarG) displayed no growth deficiency 

when grown aerobically (Fig. 5.4 and 5.6 a) in either rich or minimal media 

supplemented with nitrate. In comparison to the wild-type, the ΔnarG mutant could not 

grow under anaerobic conditions in the presence of nitrate and displayed a significant 

reduction in its ability to reduce nitrate to nitrite (Fig. 5.5 and Fig. 5.6).  

 Complementation of anaerobic growth in the presence of nitrate for ΔnarG was 

unsuccessful when using narG on its own, likely due to a need for narGHJI to be 

transcribed together to ensure proper folding and assembly of the enzyme.  Cloning 

of the narGHJI operon with its native promoter into pBHR-MCS-1 was able to restore 

the anaerobic growth deficiency exhibited by the ΔnarG mutant on LB agar 

supplemented with nitrate (Fig. 5.13 b). In comparison, no anaerobic growth 

restoration was seen for the complement when grown for 48 hours in M9 minimal 

media supplemented with nitrate (Fig. 5.13 c). Because the pBH01 plasmid was shown 

to remain stable within ΔnarG in the absence of antibiotic selection, it is not completely 

understood why anaerobic growth was not restored when using M9 minimal media, 

but was when using LB agar.  
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  Like E. coli, B. pseudomallei encodes two NAR enzymes; NarGHI and NarZYV. 

In E. coli NarGHI (NRA) is expressed under anaerobic conditions in the presence of 

nitrate and performs around 90 % of all NAR activity (Blasco et al., 1990; Bonnefoy & 

Demoss, 1994). In comparison NarZYV (NRZ) is constitutively expressed and is not 

directly affected by anaerobiosis or nitrate (Blasco et al., 1990; Bonnefoy & Demoss, 

1994; Chang et al., 1999). Under aerobic conditions E. coli exhibits NAR activity during 

early stationary phase of growth. Deletion of E. coli NRA (in a NRA-NRZ+ mutant) 

causes an almost a complete loss of NAR activity, with only a small amount of nitrite 

accumulation seen, due to NRZ activity (Chang et al., 1999). This is very similar to 

what was seen in B. pseudomallei cultures grown aerobically in the presence of nitrate. 

Under these growth conditions only wild-type B. pseudomallei accumulated significant 

amounts of nitrite during late exponential/early stationary phase. Deletion of B. 

pseudomallei narG (BPSL2309) resulted in almost a complete loss of NAR activity, 

with the ΔnarG mutant only accumulating 7.4 µM NO2
- after 24 hours growth, 

compared to 256 µM NO2
- seen in the wild-type (Fig. 5.6). This indicated BPSL2309-

2312 (narGHJI) to encode the main NAR required for denitrification, with BPSS1156-

1159 (narZYWV) likely to play accessory role in adaptation to hypoxia.   

 Expression of E. coli narG during aerobic respiration increased on entry into 

stationary phase, thought to be attributed to a reduction in oxygen levels in denser 

cultures, with a significant increase in expression seen when the medium was 

supplemented with nitrate (Chang et al., 1999). It is likely that B. pseudomallei K96243 

expresses narGHJI (BPSL2309-2312) during aerobic growth as a hedge betting 

strategy to ensure its continued survival and growth in potentially oxygen limiting 

environments.  Many prokaryotes possess the ability to reduce nitrate under aerobic 

conditions, normally using the periplasmic Nap, indicating there to be an alternative 

role other than the generation of a PMF (Berks et al., 1995a). 

  B. pseudomallei BPSS1159 (narZ) has recently been shown to be induced after 

4 hours exposure to hypoxia when grown in L-broth supplemented with glucose (no 

nitrate) (Hamad et al., 2011). In comparison no genes required for B. pseudomallei 

denitrification (narGHI, aniA, nor and nos) were induced under hypoxic conditions. 

However, genes encoding proteins required for the arginine deiminase pathway and 

electron transfer to high-oxygen-affinity cytochrome c oxidases and c-type 
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cytochromes were induced after 4 hours exposure to oxygen limiting conditions 

(Hamad et al., 2011).  

 Recently B. pseudomallei narGHJI, arcDABC and paaABCDE gene clusters have 

been shown to exhibit dynamic regulation across 66 in vitro conditions. Interestingly 

none of these were related to growth in oxygen limiting environments, with the gene 

clusters being induced in response to temperature, ultra-violet exposure and oxidative 

stress (Ooi et al., 2013) (see Table 5.3 for examples). Not only did narGHJI operon 

exhibit expression under various in vitro stress conditions the BPSL2309-2312 gene 

cluster was shown to be upregulated after 3 hours aerobic growth in L-broth (Ooi et 

al., 2013). The expression of narGHJI under a range of different conditions tested in 

this study suggests that this gene cluster is constitutively expressed in response to a 

range of different stress conditions and may play alternative roles to just being required 

for anaerobic respiration. 

  Under aerobic conditions nitrate can be assimilated into biomolecules via its 

conversion to ammonia using the assimilatory nitrate reductase (Nas) and NADH-

dependent nitrite reductase (NADH-NIR) (Berks et al., 1995a). Aerated M. tuberculosis 

cultures have been shown to reduce nitrate to nitrite at a logarithmic rate 

corresponding to the log increase bacilli growth (Wayne & Hayes, 1998).  M. 

tuberculosis does not encode a Nas even though its genome contains an assimilatory 

nitrite reductase (Sohaskey & Wayne, 2003). Growth of a M. tuberculosis narG mutant 

in minimal media using nitrate as a sole carbon source revealed NarGHI play a role in 

assimilation of nitrate along with NirBD (Malm et al., 2009). The B. pseudomallei 

ΔnarG mutant was shown to be able to utilise nitrate as a sole nitrogen source, 

indicating, that unlike the NarGHI from M. tuberculosis, the B. pseudomallei NarGHI 

does not perform an assimilatory function. B. pseudomallei, in comparison to M. 

tuberculosis, encodes a putative assimilatory nitrate reductase (BPSL0510) likely to 

be involved in the assimilation of nitrate to ammonia, along with NirBD (BPSL0511-

0512). 

  Microarray analysis has revealed the upregulation of genes required for 

anaerobic respiration (nitrate reductase, outer-membrane nitrite reductase, and 

formate dehydrogenase) in the liver and spleen of mice infected with B. mallei, 

suggesting a role for anaerobic respiration in these organs (Kim et al., 2005). Another 
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molybdopterin containing oxidoreductase family protein (BMAA2047) also showed an 

increase in expression in mouse liver and spleens. This gene exhibits some homology 

to dmsA found in other bacterial species, such as R. capsulatus, and is also found in 

B. pseudomallei but not its avirulent relative B. thailandensis. The upregulation of 

nitrate reductase, formate dehydrogenase and putative dmsA in B. mallei infected 

mouse liver and spleens implicates molybdopterin containing proteins to play a role in 

pathogenesis of Burkholderia. The putative DMSO reductase in B. pseudomallei was 

also shown to be induced under anaerobic conditions and within the lungs of BALB/c 

infected mice (see Table 5.3). Further work is required to determine the roles of these 

genes in vivo. 

 

5.4 Conclusion 

 B. pseudomallei K96243 can respire anaerobically on a range of different terminal 

electron acceptors, such as nitrate, nitrite and potentially DMSO. Deletion of 

BPSL2309 encoding narG resulted in the lack of growth anaerobically and a significant 

reduction in NAR activity under aerobic conditions indicating BPSL2309-2312 to 

encode the main NarGHI. Further characterisation of this mutant will be performed to 

determine the role of NarGHI in virulence of B. pseudomallei (see Chapter 6). 
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Chapter 6 – A role for nitrate reductase in 

pathogenesis of melioidosis 

 

6.1 Introduction 

 B. pseudomallei causes acute, chronic and latent infections and can relapse after 

several months or years after initial presentation. The ability for B. pseudomallei to 

survive within the host for extended periods of time is thought to be linked to its ability 

to survive under anaerobic conditions.  

 Nitrate is a strong electron acceptor able to generate a PMF upon its reduction to 

nitrite, by NarGHI. Not only does nitrate reductase play a significant role in respiration 

and bioenergetics, it has been shown to contribute to virulence, motility, intracellular 

survival and resistance to acid and acidified nitrite stress (Kohler et al., 2002; Tan et 

al., 2010; Van Alst et al., 2007). Disruption of the molybdopterin biosynthetic pathway 

in B. thailandensis has been shown to cause a disruption of flagella motility (Andreae 

et al., 2014) (Chapter 4). Flagella are known to play a role in virulence of B. 

pseudomallei (Chua et al., 2003). Considering the B. thailandensis moeA1 transposon 

mutant (CA01) displayed a reduction in motility, along with an inability to respire 

anaerobically on nitrate, it was hypothesised that a lack of nitrate reductase activity 

was also somehow contributing to the decrease in motility seen in this mutant.  

 The role of NarGHI in virulence is controversial and seems to depend on the 

infection model used and site of infection. Mutations in P. aeruginosa or 

Mycobacterium spp. narGHI have been shown to result in avirulence when using C. 

elegans (Van Alst et al., 2007) and immune-competent BALB/c mice as infection 

models (Fritz et al., 2002). However, when immune-deficient SCID mice were 

challenged with M. bovis BCG ΔnarG mutant the mice succumbed to infection after 37 

weeks, rather than 14 weeks as seen with the wild-type. This indicated that the 

disruption of narG did not affect the capacity to cause a chronic infection within SCID 

mice (Fritz et al., 2002). Similarly a M. tuberculosis ΔnarG mutant strain displaying 

lack of anaerobic persistence in vitro, displayed characteristic growth patterns within 

the lungs of infected C57BL/6 mice, with both mutant and wild-type infected mice 
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succumbing to infection after 400 days (Aly et al., 2006). The differences in virulence 

levels seen for the ΔnarG mutants is thought to be partially due to differences in 

oxygen status of infected organs. For example the lungs of infected C57BL/6 mice 

challenged with M. tuberculosis have been shown to display reduced oxygen levels 

but not to the levels of hypoxia (Aly et al., 2006). This difference in role of nitrate 

reductase in pathogenesis is likely to depend on tissue specificity, oxygen 

concentration and levels of nitrate within infected organs.  

 Survival of B. pseudomallei within the host is likely to depend on it having various 

mechanisms to resist killing by reactive oxygen species (ROS) and reactive nitrogen 

intermediates (RNI). Both RNI and ROS are produced by the immune system in 

response to invading bacteria. B. pseudomallei is susceptible to killing by nitrite, 

produced as a consequence of iNOS activation, when internalised within IFN-γ 

stimulated macrophages (Miyagi et al., 1997). The intracellular environment is known 

to be highly acidic. Under acidic conditions nitrite (NO2
-) can be spontaneously 

converted to the toxic nitric oxide (NO). Aerobic and anaerobic B. pseudomallei are 

known to be susceptible to the antimicrobial action of NO, with a marked reduction in 

culturable cells seen when grown in the presence of 50 µM NaNO2 in acidified minimal 

media (pH 5) (Jones-Carson et al., 2012; Miyagi et al., 1997).  Nitrate respiration and 

NAR activity in M. tuberculosis has been shown to play a protective role in acid 

tolerance and survival under NO stress, two conditions encountered during infection 

(Tan et al., 2010). 

 A recent study on C. jejuni has demonstrated a role of various respiratory proteins 

in survival when in the presence of oxidative stress, with ΔnapA and ΔfdhA mutants 

displaying an increased susceptibility to hydrogen peroxide. This suggested a role for 

these respiratory proteins in bacterial homeostasis and redox balancing (Kassem et 

al., 2012). 

 One of the problems facing the treatment of bacterial infections is partially due to 

the acquisition of antibiotic resistance genes, and the formation of persister cells. 

Persister cells have been characterised as a subpopulation of a bacterial culture, 

distinct from exponential and stationary phase cells that exhibit multidrug tolerance, a 

lower rate of protein turnover and reduced metabolic activity (Keren et al., 2004b; 

Lewis, 2010; Shah et al., 2006). The number of cells becoming persisters within a 
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bacterial population increases with the age of the culture, reaching its peak during 

stationary phase (Keren et al., 2004a). Recently bacterial persistence has been shown 

to be due to halted protein synthesis, and a reduction in ATP synthesis (Kwan et al., 

2013), both likely to be experienced in a stationary phase culture and during 

dormancy. In contrast to popular belief it has been proposed that persisters do not 

form a distinct subpopulation in stationary phase, but simply reflect differences in 

awakening from dormancy (Joers et al., 2010).  This study showed that when grown 

in rich media (LB) E. coli showed a faster exit from dormancy whereas those grown in 

MOPS (MOPS- 3-(N-morpholino) propanesulfonic acid) minimal media exhibited a 

delayed exit from dormancy, increasing their ability to withstand antibiotic treatment 

(Joers et al., 2010). 

 B. pseudomallei is able to persist within the body for extended periods of time, 

even after antibiotic treatment. Relapse of infection often occurs due to poor 

adherence to antibiotic treatment, and is thought to be partially due to the formation of 

persister cells. Both B. thailandensis and B. pseudomallei are known form persister 

cells after treatment with ceftazidime or ciprofloxacin, with a higher persister frequency 

seen with stationary phase cultures compared to exponential phase cultures (Hemsley 

et al. unpublished data) (Butt et al., 2014). The formation of Burkholderia persister 

cells is thought to involve a switch towards an anaerobic metabolic state. However, 

currently little is known as to what role anaerobic respiration and NAR will play in 

persister cell formation.  

 One of the major contributing factors to the formation of persister cells is the 

regulation and expression of toxin-antitoxin (TA) modules, such as hipA (Keren et al., 

2004b; Lewis, 2010). Recently the HicAB TA system from B. pseudomallei has been 

shown to play a role in persister cell formation, with a ΔhicAB mutant displaying 

reduced persister frequencies when compared to the wild-type when cultured with 

ciprofloxacin, but not ceftazidime (Butt et al., 2014). A reduction in persister frequency 

was also seen with a M. tuberculosis ΔhicAB mutant. Transcript profiling of M. 

tuberculosis persister cells has indicated that a small number of genes upregulated 

within persister cells, including TA systems, display the same degree of regulation in 

an in vitro dormancy model, whereas those genes required for energy and metabolic 

pathways were downregulated (Keren et al., 2011). 
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  The role of NarGHI in pathogenesis of melioidosis has yet to be characterised, 

although it has been speculated that it will play some role in motility, virulence and 

persistence.  The current chapter will outline work into determining the role of NarGHI 

in pathogenesis of melioidosis. The role of ΔnarG in susceptibility to hydrogen 

peroxide and acidified nitrite stress, motility, intracellular survival and virulence and 

persister cell formation will be assessed using a range of different in vitro and in vivo 

assays.  

 

6.2 Results 

6.2.1 Response of wild-type B. pseudomallei K96243 and the ΔnarG mutant to 

acidified nitrite and hydrogen peroxide stress 

 Macrophages often produce both ROS and RNI as a part of the immune response 

to invading bacteria. C. jejuni respiratory proteins, such as NapA, have been shown to 

play a role in susceptibility to hydrogen peroxide (H2O2) stress (Kassem et al., 2012). 

The periplasmic nitrate reductase (NapA) was thought to play a role in response to 

H2O2 stress due to its role in redox balancing within the periplasm. In comparison to 

NapA, the catalytic subunit of NarGHI (NarG) is cytoplasmically orientated so it was 

hypothesised that B. pseudomallei NarGHI would play no role in redox balancing. To 

confirm this prediction wild-type B. pseudomallei K96243 or mutant (ΔnarG) cultures 

were treated with a range of different H2O2 concentrations for 15 minutes. B. 

pseudomallei was shown to be highly sensitive to H2O2 at concentrations above 2.5 

mM, with a dramatic reduction in survival rate seen for both the wild-type and the 

mutant. As predicted no difference in survival in response to H2O2 was observed 

between the wild-type and mutant (Fig. 6.1). 

 M. tuberculosis nitrate respiration has been shown to protect against acidified 

nitrite stress (Tan et al., 2010). In order to determine whether NarGHI plays a role in 

response to acidified nitrite stress, wild-type B. pseudomallei and ΔnarG were grown 

in acidified L-broth (pH 5) at a range of nitrite concentrations. Cell counts were taken 

after 6 and 24 hours growth in the acidified nitrite medium (Fig. 6.2). After 6 hours 

incubation both wild-type B. pseudomallei and the ΔnarG mutant showed a reduced 

growth rate in the presence of over 0.1 mM nitrite (Fig. 6.2 a). After 24 hours, both 

cultures displayed an increase in growth at all nitrite concentrations tested, although 
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the cultures exposed to 2 and 4 mM acidified nitrite still displayed a reduction in growth 

when compared to the L-broth controls (Fig. 6.2 b). Although the ΔnarG mutant 

displayed a slightly better growth rate to wild-type B. pseudomallei, no significant 

difference was seen between the wild-type and mutant in response to acidified nitrite 

stress. 

  

Figure 6.1 - Response of B. pseudomallei K96243 to hydrogen peroxide 

(H2O2) stress. Wild-type B. pseudomallei (filled squares) and ΔnarG mutant (filled 

circles) overnight cultures were standardised to 1 x 108 CFU/mL prior to a 15 minute 

exposure to varying concentrations (0 to 15 mM) of H2O2. Three independent 

biological replicates were used. Error bars ± SD. 

 

WT

ΔnarG
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Figure 6.2 - Response of B. pseudomallei to acidified (pH 5) nitrite stress.  

Wild-type B. pseudomallei (filled squares) and the ΔnarG mutant (filled circles) 

were grown aerobically at 37 oC in acidified (pH 5) L-broth supplemented with 

varying concentrations of sodium nitrite (0 – 4 mM). Cell counts were performed to 

determine the number of surviving bacteria/change in CFU/mL after either a.) 6 

hours or b.) 24 hours treatment. Experiment was performed using three 

independent biological replicates. Error bars ± SD.  

 

 

a.)

b.)

WT

ΔnarG

WT

ΔnarG

a.) 

b.) 
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6.2.2 Deletion of narG causes a defect in motility in rich but not minimal media 

 Disruption of the molybdopterin biosynthesis pathway lead to a reduction in 

motility in B. thailandensis, thought to be due to a reduction in NAR activity. To 

determine whether NarGHI in B. pseudomallei plays a role in motility various assays 

were performed using rich or minimal media solidified with 0.3 % bacteriological agar.  

 Initial studies were performed using nutrient broth supplemented with glucose, 

following the same protocol used for B. thailandensis (Chapter 4) (Andreae et al., 

2014). The ΔnarG deletion mutant displayed a significant reduction in motility on 

nutrient broth agar (Fig. 6.3). To test what effect nitrate addition had on B. 

pseudomallei motility, 20 mM sodium nitrate was added to the motility medium. In 

contrast to what was seen with B. thailandensis (Chapter 4 – section 4.2.6), the 

addition of nitrate caused a significant reduction in wild-type B. pseudomallei motility, 

but did not affect the general motility defect exhibited by the mutant (Fig. 6.3).  

 The majority of work presented in this study has been performed using either L-

broth or M9 minimal media. In order to avoid any potential differences in gene 

expression due to the media used the motility assays were repeated using either L- 

broth or M9 minimal media solidified 0.3 % bacteriological agar. M9 minimal media 

was also used as B. pseudomallei is likely to experience more of a nutrient limiting 

environment in vivo. 

 In LB media the ΔnarG mutant displayed a significant reduction in motility when 

compared to the wild-type. Considering addition of nitrate caused a reduction in 

motility for the wild-type B. pseudomallei it was reasoned that this could be due to its 

reduction to nitrite, which may be having an inhibitory effect on B. pseudomallei 

motility. To confirm this hypothesis 5 mM sodium nitrite was added to the motility media 

(Fig. 6.4 a). As predicted the addition of nitrite resulted in a significant reduction in 

wild-type motility, to a similar extent to that seen with nitrate addition. In contrast,   
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Figure 6.3 - The ΔnarG mutant displays altered motility on nutrient broth (NB) 

0.3 % agar media.  Standardised wild-type B. pseudomallei and ΔnarG cultures 

were inoculated into the centre of semi-solid (0.3 %) NB motility agar plates, 

supplemented with or without 20 mM sodium nitrate. Plates were incubated for 24 

hours in a 37 oC incubator. Asterisks (**) denote significant differences between 

WT (blue) and ΔnarG (red) (two tailed T-test p-value < 0.01). Brackets with 

asterisks identify significant differences between wild-type motility when treated 

with nitrate. Two to three independent biological replicates were used each with 

three technical replicates. Error bars ± SD. 
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neither the addition of nitrate or nitrite to the LB agar motility media had any effect on 

the general motility defect seen for the ΔnarG mutant (Fig. 6.4). 

 In contrast to what was seen when using LB and nutrient broth motility plates, no 

motility defect was seen for the ΔnarG mutant when using M9 minimal media. Both 

nitrate and nitrite addition still resulted in a decrease in motility seen for the wild-type. 

In comparison only nitrite resulted in a significant decreased motility seen in the ΔnarG 

mutant, similar to that seen in the wild-type (Fig. 6.4 b). 

 Since the ΔnarG mutant did not display a motility defect when using minimal 

media, it was hypothesised that the mutant still had flagella. To confirm this hypothesis 

both wild-type B. pseudomallei and ΔnarG were grown overnight in L-broth and 

imaged using transmission electron microscopy (TEM). Bacterial cultures were fixed 

using a final concentration of 4 % formaldehyde and the cells were washed in distilled 

water prior to fixation on a TEM grid. Fifteen different images, taken from three 

separate TEM grids, were used to get an overall picture of whether the ΔnarG mutant 

still possessed flagella. A number of flagella had broken off during treatment of the 

both the wild-type and mutant cultures, but overall the majority of the cells possessed 

one or more flagella, confirming that the motility defect seen for ΔnarG mutant is not 

due to a lack of flagella (Fig. 6.5). 



229 
 

 

  

** **
**

**

**

****

**

a.)
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Figure 6.4 – Deletion of BPSL2309 (ΔnarG) effects B. pseudomallei K96243 

motility in LB but not in M9 minimal motility media. Standardised wild-type B. 

pseudomallei and ΔnarG cultures were inoculated into the center of semi-solid (0.3 

%) agar (a.) LB or (b.) M9 minimal motility agar plates, supplemented with either 

20 mM sodium nitrate or 5 mM sodium nitrite. All M9 minimal media motility plates 

were supplemented with 20 mM sodium succinate as a carbon source. Plates were 

incubated for 24 or 48 hours in a 37 oC incubator. Asterisks (**) denote significant 

differences between wild-type B. pseudomallei (blue) and the ΔnarG mutant (red) 

(two tailed T-test p-value < 0.01). Brackets with asterisks identify significant 

differences between wild-type or ΔnarG mutant motility when treated with nitrate 

or nitrite. Two to four independent biological replicates were used each with three 

technical replicates.  Error bars ± SD. 

 

 

b.) 

a.) 
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Wild-type B. pseudomallei ΔnarG

1 μM 2 μM

2 μM 2 μM

Figure 6.5 – Reduction in motility seen for the ΔnarG mutant is not due to a 

lack of flagella. TEM microscopy was performed, with the aid of Peter Splatt, on 

wild-type B. pseudomallei K96243 and ΔnarG cells taken from an L-broth overnight 

culture, fixed using 4 % formaldehyde and washed with distilled water. Fifteen 

images were taken from three separate TEM grids. Scale bar for top left hand image 

denote 1 µM. Scale bars for all other images denote 2 µM. The above images are 

the representative of what was seen for both the wild-type and mutant.  
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6.2.3 No virulence defect is seen for the ΔnarG mutant when using G. mellonella as 

an infection model 

 To determine whether B. pseudomallei NarGHI played a role in virulence, G. 

mellonella were challenged with wild-type, ΔnarG or PBS. No death was seen after 

challenge with PBS. Ten Galleria were challenged with 1,300 to 1,400 CFU/galleria of 

either wild-type or the ΔnarG mutant (Fig. 6.6). No difference was observed in the time 

to death of Galleria infected with either wild-type B. pseudomallei K96243 or the ΔnarG 

mutant. Similar results were seen when using a higher infection dose of 1 x 104 

bacteria. This is unsurprising considering no virulence defect was observed for the 

moeA (CA01) B. thailandensis transposon mutant (Chapter 4 – Fig. 4.13). 

 

6.2.4 NarGHI is not required for intracellular replication 

 Murine J774A.1 macrophages were used to determine whether the deletion of 

narG (BPSL2309) affected intracellular replication (Wand et al., 2010). J774A.1 

macrophages were seeded at a multiplicity of infection of 10:1 and infected with 1 x 

106 CFU/mL of either wild-type B. pseudomallei or the ΔnarG mutant. The infected 

macrophages were then incubated at 37 oC for 2 hours to allow for adherence and 

internalisation of extracellular bacteria. After 2 hours 1 mg/mL of kanamycin was 

added to suppress the growth of any extracellular bacteria and to ensure that the cell 

counts for the next time points (4 to 8 hours) would only be the number of intracellular 

bacteria.  No growth of wild-type B. pseudomallei was seen in the presence of 1 mg/mL 

kanamycin. Intracellular growth was measured after cell lysis by a 10 fold serial dilution 

and spot plating. An initial decline in the number of CFU/mL was noted for the first two 

time points; 0 hours measuring the total number of cells in the assay, and 2 hours 

measuring intracellular and adhered bacteria. Both wild-type and mutant CFU/mL cell 

counts increased after 4 hours post infection indicating an increase in intracellular 

replication. No difference in intracellular replication at any time point (0, 2, 4, 6 or 8 

hours) was seen for ΔnarG when compared to the wild-type (Fig. 6.7), indicating 

NarGHI does not play a role in intracellular replication in this model system.   
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  Figure 6.6 - Deletion of BPSL2309 does not affect virulence in G. mellonella. 

Ten G. mellonella larvae were each challenged with 1,300 to 1,400 CFU of wild-

type B. pseudomallei K96243 (filled circles) or ΔnarG mutant (filled triangles). No 

difference in virulence was seen between the wild-type and mutant. PBS was used 

as an infection control (filled squares). Results are the average of two independent 

challenges each with 10 galleria per challenge.  

 

ΔnarG

WT

PBS
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Figure 6.7 – The ΔnarG mutant does not exhibit a difference in intracellular 

replication in murine J774A.1 macrophages. J774A.1 murine macrophages 

were exposed to wild-type B. pseudomallei (filled squares) or the ΔnarG mutant 

(filled circles) at an MOI of 10 and the number of intracellular bacteria was 

determine at 0 (input CFU) 2, 4, 6 or 8 hours post infection. 1 mg/mL kanamycin 

was added after 2 hours to suppress the growth of any extracellular bacteria. Any 

extracellular bacteria were killed off 2 hours post infection using 1 mg/mL 

kanamycin. Results shown are the average of one biological replicate performed 

in triplicate. Error bars ± SD.  

 

WT

ΔnarG
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6.2.5 Role of B. pseudomallei anaerobic respiration in a murine model of infection 

 Preliminary studies have been conducted, in collaboration with Dr. Gregory 

Bancroft’s group at the London School of Hygiene & Tropical Medicine, to determine 

the role of NarGHI in virulence of B. pseudomallei. C56BL/6 mice were challenged 

with two different CFU of wild-type B. pseudomallei K96243 or the ΔnarG deletion 

mutant. Two different CFU were used, either 200 CFU or 4,000 CFU, to achieve either 

a chronic (low dose) or acute (high dose) infection (Fig. 6.8). In the chronic infection 

model 90 % of the ΔnarG infected mice were alive after around 150 days post infection, 

whereas no mice were dead in those infected with the wild-type (Fig. 6.8 a). After 55 

days post infection in the acute model only 10 % of wild-type challenged C56BL/6 mice 

were alive, compared to 50 % in those challenged with the ΔnarG mutant (Fig. 6.8 b). 

Unfortunately the effective dose administered to the mice in both the chronic (Fig. 6.8 

a) and acute (Fig. 6.8 b) infection models for the wild-type B. pseudomallei (K96243) 

and ΔnarG are far too different to draw any real conclusion from the dataset (see tables 

in Fig. 6.8). For example, the reduction in virulence seen for ΔnarG in the acute 

infection model may simply be due to the fact that the challenge dose for the ΔnarG 

mutant (2,600 CFU) was almost half that of the wild-type (4,700 CFU). This makes it 

very difficult to say whether or not deletion of narG (BPSL2309) affects the B. 

pseudomallei virulence in a murine infection model. The experiments are currently still 

on going.  

 

6.2.6 No difference is seen between the wild-type and mutant in susceptibility to 

antimicrobials 

 To determine whether or not deletion of BPSL2309 would alter B. pseudomallei 

K96243 susceptibility to antibiotics a minimal inhibitory concentration (MIC) 

experiment was performed on wild-type B. pseudomallei and ΔnarG mutant cultures. 

Wild-type and mutant cultures were standardised and exposed to a number of 

antibiotics (chloramphenicol, ceftazidime, trimethoprim, and ciprofloxacin) at a range 

of different concentrations. The MIC was performed statically in L-broth in a 96 well 

plate incubated aerobically overnight at 37 oC. Nitrate was added to both wild-type and 

mutant cultures to determine whether or not it would have an effect on antibiotic 

efficiency. No difference was seen between wild-type B. pseudomallei or the ΔnarG   
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   Figure 6.8 – Preliminary study of the survival of C56BL/6 mice after challenge 

with wild-type B. pseudomallei K96243 or the ΔnarG mutant. a.) Chronic 

infection model. C56BL/6 mice were challenged with an intended dose of 200 CFU, 

or either wild-type B. pseudomallei K96243 (circles) or the ΔnarG mutant (squares). 

b.) Acute infection model. C56BL/6 mice were challenged with an intended 

infectious dose of 4,000 CFU, or either wild-type B. pseudomallei (circles) or the 

ΔnarG mutant (squares). Intended CFU dose and the actual effective dose varied 

dramatically between the wild-type and mutant (see tables on the right side of the 

figure) for both acute and chronic infections. The number of mice used in this 

preliminary study are also indicated in each table. Work conducted by Dr. Gregory 

Bancroft’s research group with the London School of Hygiene & Tropical Medicine 

(results obtained from Felipe Cia).  

a.) 

b.) 
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mutant in their susceptibility to any of the antibiotics tested, in either L-broth or L-broth 

supplemented with nitrate (Table 6.1). As of note, the MIC for ceftazidime for the wild-

type B. pseudomallei K96243 used in this study is much higher to that previously 

published (Hamad et al., 2011). This higher MIC for ceftazidime may contribute to the 

high percentage of persister cells seen in Fig. 6.9 (see next section).  

 

6.2.7 Persister cell transcriptome highlights the importance of anaerobic respiration in 

persister cell formation 

 A study on B. thailandensis E264 was conducted by Dr. Claudia Hemsley in order 

to identify genes that are differentially regulated in persister cells. In this study mRNA 

was extracted from B. thailandensis cultures grown to mid-log phase, stationary phase 

and ceftazidime persister cells (Hemsley et al., unpublished work). To generate 

persisters B. thailandensis cultures were treated with 100 x MIC ceftazidime (400 

µg/mL) for 24 hours. All genes required for anaerobic respiration, including both nitrate 

reductases, showed a degree of upregulation when comparing mRNA extracted from 

mid-log phase and ceftazidime persister cells. On the other hand, when comparing 

RNA extracted from stationary phase cultures and ceftazidime persisters, the cryptic 

nitrate reductase (narZYWV), second putative Cu-Nir (BTH_II0944) and BTH_II0945 

were down-regulated, whereas all other genes for the main anaerobic respiratory 

pathway still showed a degree of upregulation. Those genes required for aerobic 

respiration, such as NADH dehydrogenase and some cytochrome c oxidases were 

shown to exhibit a degree of down-regulation in this same study. This study highlighted 

the potential importance for NarGHI and anaerobic respiration in persister cell 

formation, pointing towards a switch to anaerobic metabolism in Burkholderia persister 

cells on treatment with ceftazidime.  
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Table 6.1 – B. pseudomallei and ΔnarG mutant antibiotic MIC 

 

 

 

 

 Wild-type K96243 ΔnarG 

Ceftazidime 128 µg/mL 128 µg/mL 

Ciprofloxacin < 1 µg/mL < 1 µg/mL 

Trimethoprim 32 µg/mL 32 µg/mL 

Chloramphenicol 8 µg/mL 8 µg/mL 

Addition of nitrate does not affect MIC for either the wild-type or ΔnarG mutant 

Results are the average of two independent biological replicates.  

Experiment was performed statically in a 96 well plate using L-broth and a 1 in 100 dilution 

of OD 0.1 (absorbance 600 nm) standardised bacterial cultures 
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 Table 6.2 – B. thailandensis persister cell transcriptome dataset relating to those 

genes required for denitrification 

  

Gene ID Gene name  Ratio 

persisters/LBML 

Ratio 

persisters/LBS 

Nitrate reductase    

BTH_I1851-1854 narGHJI Up (5.45 – 12.89) Up (6.51 - 16.63) 

BTH_I1849-1850 narXL Up (7.62 – 11.69) Up (16.27 – 20.65) 

BTH_I1855-1856 narK1K2 Up (1.83 – 4.78) Up (1.97 – 2.14) 

BTH_II1249-1252 narZYWV Up (2.29 – 3.41) Down (0.09 – 0.11) 

BTH_II1254 narK Up (1.21) Down (0.5) 

    

Nitrite reductase    

BTH_II0881 aniA Up (2.37) Up (3.28) 

BTH_II0944 cu-nir2 Up (3.09) Down (0.03) 

    

Nitric oxide reductase    

BTH_I1813 norZ Up (8.61) Up (3.65) 

BTH_I0945 norZ Up (1.83) Down (0.03) 

    

Nitrous oxide reductase    

BTH_I2325 nosZ Up (22.37) Up (4.25) 

    

Data obtained and presented, with permission, from work by Dr. Claudia Hemsley 

(unpublished dataset) 

Numbers represent fold change in expression of the respective gene or gene cluster (p-

value < 0.001) 

Genes that were upregulated in ceftazidime persisters are highlighted in green and those 

that were down-regulated in red.  
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6.2.8 Addition of nitrate to B. pseudomallei K96243 persister cells increases 

susceptibility to ceftazidime 

 To test whether anaerobic respiration plays a role in persister cell formation both 

wild-type B. pseudomallei and the ΔnarG mutant were treated with 400 µg/mL 

ceftazidime for 24 hours. The persister cell experiment was performed aerobically 

using L-broth supplemented with or without 20 mM sodium nitrate (Fig. 6.9 a). Initial 

persister cell studies were conducted on late exponential/stationary phase bacterial 

cultures grown overnight in L-broth. The persister assay was performed statically in a 

24 well plate, in order to mimic slow growing and oxygen limiting conditions seen in 

vivo (Hemsley et al. unpublished data).  The cultures were standardised to give 2 x 

108 CFU/mL and diluted 1:1 in a 24 well plate with L-broth containing 800 µg/mL 

ceftazidime. This gave a final antibiotic concentration of 400 µg/mL ceftazidime and 

cell density of 1 x 108 CFU/mL. The 24 well plate was then incubated overnight at 37 

oC in a static incubator and input and output cell counts were conducted using a 10-

fold dilution series with the cells enumerated on LB agar plates. In L-broth alone no 

difference was seen in persister cell formation for stationary phase B. pseudomallei 

wild-type or ΔnarG mutant, with around 10 % of the population entering a persistent 

state after 24 hours. However a significant difference was seen when incubated with 

nitrate, with the wild-type exhibiting a decline in the persister frequency, with only 1 % 

of the population surviving ceftazidime treatment. By contrast the ΔnarG mutant 

displayed the same level of percentage survival (around 10 % persisters) as those 

persisters cells incubated in L-broth alone (Fig. 6.9 b). This indicated that nitrate 

reductase activity played a role in B. pseudomallei susceptibility to ceftazidime. 

 Considering wild-type B. pseudomallei exhibits NAR activity after 8 hours aerobic 

growth (Chapter 5 – Fig. 5.6) it was hypothesised that part of the overnight culture had 

entered an anaerobic metabolic state, inducing genes required for anaerobic 

respiration. To determine whether log phase persister cells, exhibit the same 

susceptibility to ceftazidime, when incubated with nitrate, B. pseudomallei cultures 

grown overnight and sub-cultured into fresh L-broth and incubation for 6 hours 

aerobically. After 6 hours growth the log phase bacterial cultures were standardised 

and treated with ceftazidime in L-broth supplemented with and without nitrate. In 

comparison to those stationary phase cultures treated with ceftazidime, only around 2  
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Figure 6.9 - Addition of nitrate significantly increases wild-type, but not the 

ΔnarG mutants, susceptibility to ceftazidime. Wild-type B. pseudomallei 

K96243 and ΔnarG were grown to late exponential/stationary phase (16 to 18 

hours) or log phase (6 hours) in L-broth medium, prior to treatment with 400 µg/mL 

ceftazidime. The persister assay was performed using LB medium supplemented 

with or without 20 mM sodium nitrate. a.) Persister cell assay protocol. See Chapter 

2 section 2.5.6 Persister cell assay for more details. Wild-type B. pseudomallei 

(blue) and ΔnarG mutant (red) persister cell frequency was determined for either 

b.) Late exponential/stationary phase (16 to 18 hours) or c.) Log phase (6 hours) 

bacterial cultures. Three independent biological replicates were used each with 

three technical replicates. Error bars ± SD. Asterisks (**) denote significant 

differences between WT (blue) and ΔnarG (red) (T-test, p-value < 0.01). 

 

a.) 

b.) c.) 
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to 4 % of both wild-type B. pseudomallei and ΔnarG mutant formed persister cells in 

L-broth (Fig. 6.9 c).  Again the addition of nitrate significantly increased wild-type 

persister cells susceptibility to ceftazidime, not seen in the ΔnarG deletion mutant. 

 To confirm that the B. pseudomallei had formed persister cells, exhibiting 

tolerance but not resistance to antibiotic treatment, those cells forming colonies on the 

LB agar plates after 24 hour treatment were streaked out onto LB agar plates and LB 

agar plates supplemented with 400 μg/mL ceftazidime. Subculture of the persister 

cells on to LB agar plates supplemented with ceftazidime resulted in a reversion of B. 

pseudomallei persisters to an antibiotic susceptible phenotype. Growth of B. 

pseudomallei persister cells was only seen in the absence of ceftazidime, confirming 

the formation of persister cells exhibiting tolerance but not resistance to antibiotic 

action. This was the same as what was seen for B. pseudomallei prior to treatment 

with ceftazidime.  

 

6.2.9 Biphasic kill curve of wild-type B. pseudomallei K96243 in the presence or 

absence of nitrate   

 To determine the point at which nitrate addition increased susceptibility of wild-

type B. pseudomallei to ceftazidime the persister cell assay was repeated with cell 

counts taken every few hours (0, 2, 4, 6, 8, 10, 24 and 30 hours). As previously seen 

(Butt et al., 2014) treatment of B. pseudomallei with ceftazidime results in biphasic 

killing, with initial killing seen after the first two hours of treatment. This was followed 

by a plateau and further killing after 10 hours incubation with the antibiotic, with a 

greater killing seen in the presence of nitrate (Fig. 6.10). A slight increase in CFU/mL 

was seen after 6 hours incubation indicating a potential resumption of 

growth/replication after initial killing. After 10 hours a further killing was seen for both 

B. pseudomallei persister cells cultured in either L-broth or L-broth supplemented with 

nitrate, with a plateau seen after 24 hours treatment. A greater degree of killing was 

seen for the wild-type after 10 to 24 hours ceftazidime treatment when cultured with 

nitrate, likely due to NarGHI activity resulting in increased antibiotic susceptibility.  
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  Figure 6.10 – Addition of nitrate to B. pseudomallei K96243 persister cells 

enhances killing after 24 hours incubation with ceftazidime. Wild-type B. 

pseudomallei cultures were grown to stationary phase overnight prior to treatment 

with 400 μg/mL ceftazidime. Antibiotic killing was monitored every few hours, with 

the number of surviving CFU/mL determined after washing in fresh L-broth.  The 

persister assay was performed using LB medium supplemented with (filled circles) 

or without (filled squares) 20 mM sodium nitrate. Two independent biological 

replicates were used each with two technical replicates. Error bars ± SD.  
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6.3 Discussion 

 The role of respiratory proteins in survival and persistence of bacterial pathogens 

has recently become more of interest. Building on work previously conducted on B. 

thailandensis, the role of NarGHI in B. pseudomallei K96243 in virulence and 

persistence was characterised using a ΔnarG deletion mutant.  

 Respiratory proteins in C. jejuni, a pathogenic bacteria and causative agent of 

food-born gastroenteritis, have recently been demonstrated to be play a role in motility, 

response to H2O2 stress and biofilm formation (Kassem et al., 2012). In relation to 

anaerobic respiration the periplasmic nitrate reductase, NapA, was shown to play a 

role in tolerance to H2O2, thought to be due to its role in cellular homeostasis. In 

comparison, and unsurprisingly, the B. pseudomallei ΔnarG mutant did not display any 

difference in susceptibility to H2O2 stress when compared to the wild-type. The 

differences in role of the different types of nitrate reductases in response to oxidative 

stress is likely to be partially due to the differences in their cellular location. NapA is 

found within the periplasm which may allow it to play a more direct role in redox 

balancing, whereas NarGHI is bound to the inner-membrane with its catalytic subunit 

cytoplasmically orientated and is generally only required for the generation of PMF 

(Bertero et al., 2003; Gonzalez et al., 2006).  

 Nitrate respiration has been shown to play a role in protection against acid and 

acidified nitrite stress, both of which are experienced in vivo by M. tuberculosis (Tan 

et al., 2010). When cultured microaerobically or anaerobically in the absence of nitrate, 

M. tuberculosis was shown to be sensitive to acid and acidified nitrite stress, attributed 

to the breakdown of PMF and lack of ATP generation. In comparison, the addition of 

nitrate allowed anaerobic M. tuberculosis cells to resist acid-mediated killing, due to 

the renewed ability for the cells to generate a PMF and maintain a good redox balance 

(Tan et al., 2010). This ability to resist acid mediated killing was shown to be due to 

NarGHI activity. To determine whether this was true for B. pseudomallei NarGHI, both 

the wild-type and ΔnarG mutant were subjected to different concentrations of nitrite in 

acidified L-broth under aerobic conditions. No difference was seen between B. 

pseudomallei and ΔnarG when subjected to acidified (pH 5) nitrite stress (Fig. 6.2), 

after either 6 or 24 hours incubation. An increase in growth was seen after 24 hours 

treatment with acidified (pH 5) nitrite, for both the wild-type and mutant indicating that 

there may have been an induction of detoxification mechanisms or change in pH of 
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the culture medium. Whether or not anaerobic nitrate respiration protects against 

acidified nitrite stress for B. pseudomallei under anaerobic conditions remains to be 

determined.  

 Disruption of the molybdopterin biosynthetic pathway in B. thailandensis caused 

a reduction in motility, thought to be partly due to a reduction in NAR activity (Chapter 

4). The B. pseudomallei ΔnarG mutant displayed a significant reduction in motility, in 

rich but not minimal media. TEM microscopy confirmed the presence of flagella in both 

the wild-type and mutant, indicating the motility defect seen in the ΔnarG mutant was 

due to alternative mechanism, other than the absence of flagella (Fig. 6.5). The 

difference in motility displayed by the mutant in rich or minimal media could potentially 

be due to differences in gene regulation.  Flagella and chemotaxis proteins in E. coli 

have been shown to be down-regulated in an rpoS mutant in minimal media, 

corresponding with a decrease in motility seen in the mutant (Dong & Schellhorn, 

2009). B. pseudomallei genes required for motility and chemotaxis have been shown 

to be upregulated after 4 hours hypoxia in L-broth supplemented glucose (Hamad et 

al., 2011). It is possible, in rich media, the lack of NarG causes a reduction in motility 

due to decrease in energy generation, altered gene transcription or change in 

bioenergetics. It is likely that the expression of genes associated with motility varies 

depending on the surrounding environmental conditions. In minimal media one could 

speculate that alternative regulatory mechanisms are induced to ensure the bacteria 

can disseminate to environments more nutrient rich. An induction of different 

mechanism to ensure flagella function in minimal media would therefore compensate 

for the loss of a functional NarGHI, as seen with comparable wild-type B. pseudomallei 

and ΔnarG mutant motility in M9 minimal media solidified with 0.3 % bacteriological 

agar. 

 It was initially assumed that the addition of nitrate to the motility medium would 

result in increase in motility, due to an increase in NarGHI activity, as seen in P. 

aeruginosa (Van Alst et al., 2007). However this was not the case, and the addition of 

either nitrate or nitrite caused a reduction in wild-type in all media tested. 

 S. typhimurium and E. coli are known to exhibit electron acceptor taxis, in 

response to the presence of alternative terminal electron acceptors (Taylor et al., 

1979). Electron acceptor taxis requires the presence of a functioning electron transport 
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chain and allows bacteria to sense changes in the external environment and PMF to 

alter their motility, in response to oxygen, nitrate, or nitrite (Taylor et al., 1979). 

Anaerobically grown S. typhimurium, lacking a functional nitrate reductase, exhibited 

altered motility in response to nitrate, highlighting the importance of NAR in the 

chemotaxis (Taylor et al., 1979). Electron acceptor chemotaxis in Shewanella 

putrefacians, in comparison to both E. coli and S. typhimurium, does not appear to 

require the presence of a functional electron transport system and PMF, with mutants 

incapable of nitrate or nitrite reduction still showing normal tactic responses towards 

nitrate and nitrite (Nealson et al., 1995). 

 It is tempting to speculate that the reduction in motility seen for the wild-type B. 

pseudomallei K96243 in the presence of nitrate and nitrite (Figs. 6.3, 6.4 and 6.5) is 

due to a change in chemotactic behaviour, and more specifically electron acceptor 

taxis. It is possible, in wild-type B. pseudomallei, the presence of either nitrate or nitrite 

allowed for the generation of a PMF via the denitrification pathway, decreasing the 

need for the bacteria to seek out alternative forms of energy, resulting in a reduced 

movement through the semi-solid (0.3 %) agar. In M9 minimal media the ΔnarG 

mutant exhibited similar motility levels as seen for the wild-type when in the absence 

of either nitrate or nitrite. However, in comparison to the wild-type, addition of nitrate 

did not affect the ΔnarG mutant’s motility. This lack of a response to nitrate may be 

due to the lack of a functional NarGHI, required for the reduction of nitrate to nitrite. 

The reduction in motility in the presence of nitrite, seen for both the wild-type and 

mutant (in M9 minimal media), indicates nitrite, and not nitrate, is responsible for the 

reduction/inhibition of motility seen for B. pseudomallei. On the other hand, although 

less likely, the presence of nitrite could potentially allow the bacteria to generate a 

PMF via the reduction of nitrite (e.g. by AniA), reducing the need to seek out alternative 

energy sources. This is all purely speculative and further work to determine the 

chemotactic response of B. pseudomallei to various electron acceptors will be required 

to determine whether this prediction is correct.  

 An alternative explanation is that nitrate and nitrite may be acting as 

chemorepellents. The gene operon encoding narGHJI also encodes a two component 

system NarXL known to play a role in the regulation of E. coli NarGHI, anaerobically 

in the presence of nitrate (Stewart, 2003). An E. coli NarX-Tar chimera, joining the 
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NarX sensor kinase transmembrane and linker domains to the signalling and 

adaptation domains of the Tar chemoreceptor, has been shown to mediate repellent 

responses to both nitrate and nitrite (Ward et al., 2002). It is possible that B. 

pseudomallei NarXL is partially responsible for the wild-type motility response to the 

presence of nitrate or nitrite within the motility media, resulting in a transcriptional 

response and finally reduction in motility. This however does not explain the phenotype 

exhibited by the mutant.  

 The ability to survive intracellularly, in some bacterial species, has been shown 

to require a functional anaerobic respiratory pathway. Nitrate reductase has been 

shown to be required for intracellular survival of both M. tuberculosis (Jung et al., 2013) 

and B. suis (Kohler et al., 2002), with mutations in narG causing an attenuation of 

intracellular growth, but not persistence within macrophages. A recent study on the 

role of M. tuberculosis NarG in intracellular survival has been conducted using a narG 

mutant that displayed similar virulence levels to a wild-type strain (Aly et al., 2006; 

Cunningham-Bussel et al., 2013). This study added nitrate to the media that had been 

omitted from previous studies, and performed the assay under non-toxic hypoxic 

conditions. M. tuberculosis is expected to encounter hypoxia in vivo, for example within 

a granuloma, so the convention of performing cell culture experiments under 

laboratory conditions aerobically in the absence of nitrate was brought into question. 

This study revealed that the intracellular accumulation of nitrite (25 µM) was due to M. 

tuberculosis nitrate respiration, rather than nitrite production by iNOS activation 

(Cunningham-Bussel et al., 2013). Similarly narG-dependent accumulation of nitrite 

was seen when the same experiment was performed using 21 % oxygen when 

culturing infected macrophages (Cunningham-Bussel et al., 2013). This study pointed 

towards a role for M. tuberculosis narG in intracellular growth and survival.  

 B. pseudomallei infected macrophages accumulate significantly higher levels of 

nitrite (200 to 250 µM), attributed to the activation of iNOS by IFN-γ (Miyagi et al., 

1997). In comparison, in the absence of IFN-γ stimulation, only low levels of nitrite (20 

– 25 µM) are produced when infected with B. pseudomallei. This low level of nitrite 

production may be due to B. pseudomallei NarGHI activity, as seen in M. tuberculosis. 

Further studies are required to determine whether NarGHI is active within 
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macrophages if the experiment is performed in a similar manner to that used for M. 

tuberculosis in Cunnington-Bussel et al. (2013). 

 A study into the transcriptional changes of B. pseudomallei when internalised into 

macrophages revealed that 22 % of the genome shows significant transcriptional 

adaptation (Chieng et al., 2012). B. pseudomallei once internalised downregulated 

many different genes including those required for motility, metabolism, amino acid and 

ion transport. In comparison those genes required for anaerobic metabolism showed 

a degree of upregulation (Chieng et al., 2012). However, none of the anaerobic 

respiratory genes showed a difference in expression intracellularly, with only 

BPSL2311 (narJ) and BPSL2312 (narI) showing a degree of upregulation. The lack of 

expression of the denitrification pathway, along with the fact that the ΔnarG mutant 

displayed the same level of intracellular replication as wild-type B. pseudomallei (Fig. 

6.7) indicates that the ability to respire anaerobically is not required for intracellular 

survival.  

 Ceftazidime, a third generation cephalosporin and β-lactam antibiotic (inhibiting 

cell wall biosynthesis), is the frontline treatment for melioidosis. Poor adherence to 

antimicrobial therapy in patients with melioidosis has been linked to an increase rate 

of relapse (see Chapter 1 – sections 1.1.4 Recurrent melioidosis and 1.1.5 Treatment 

and antibiotic resistance). B. pseudomallei has been shown to form persister cells in 

the presence of ceftazidime under in vitro experimental conditions (Fig. 6.9) (Butt et 

al., 2014). This study tested the effect of nitrate respiration on persister cell formation 

in the presence of 400 µg/mL ceftazidime, using both log and stationary phase B. 

pseudomallei cultures.  

 Persister cell formation is thought to be a hedge-betting strategy, generating 

phenotypic heterogeneity in order to cope with changes within the surrounding 

environment (Lewis, 2010; Luidalepp et al., 2011).  Persister frequency is known to be 

highly dependent on the age of the inoculum, with cells in the later stages of the growth 

cycle, e.g. stationary phase, exhibiting an increased number of cells entering a 

dormant/persistent state (Luidalepp et al., 2011). This was seen with B. pseudomallei 

with a lower number of persister cells seen when using a log phase culture (around 2 

to 4 % - Fig. 6.9 c) when compared to a late exponential/stationary phase culture 

(around 10 % - Fig. 6.9 b). Stationary phase cultures are likely to already have a 
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proportion of their population that have entered a low metabolic/dormant state, and so 

contain a greater number of cells that are likely to become persister cells. On re-

culturing B. pseudomallei persister cells revert to an antibiotic susceptible form, 

confirming the survival seen after ceftazidime treatment is due to increase in tolerance 

rather than the acquisition of resistance mechanisms.  

  Antibiotic killing, for example with ciprofloxacin or ceftazidime, of B. thailandensis 

and B. pseudomallei is known to exhibit a biphasic pattern, with the greatest killing in 

the first few hours of treatment (Hemsley et al. unpublished data, (Butt et al., 2014) 

and Fig. 6.10). E. coli cells treated with antibiotics targeting protein synthesis (e.g. 

amikacin), results in a rapid decline in the number of culturable cells within the first few 

hours. In comparison, those antibiotics that target cell wall synthesis (β-lactams; e.g. 

ampicillin or norfloxacin) display a much smaller decline in number of culturable cells, 

as seen with a shallower biphasic kill curve (Luidalepp et al., 2011). E. coli treated with 

antibiotics exhibiting a shallow kill curve were shown to cause the formation of 

persister cells that was dependent on the age of inoculum, not seen when treated with 

amikacin (Luidalepp et al., 2011). Treatment of B. pseudomallei with ceftazidime 

results in a shallow kill curve, with a one or two log drop in CFU/mL seen in the first 

two hours of treatment (Fig. 6.10), similar to that exhibited by E. coli treated with 

ampicillin (Luidalepp et al., 2011). This slower kill rate of bacterial cells on treatment 

with antibiotics that target cell wall synthesis (such as ceftazidime or ampicillin), may 

allow for a greater proportion of the bacterial cells to enter a dormant/persistent state, 

and thus become more tolerant to antimicrobial treatment. A slight increase in B. 

pseudomallei CFU/mL was seen after 6 hours treatment with ceftazidime, indicating a 

potential resumption of growth/replication. This slight resumption of growth may have 

allowed for an increase in ceftazidime killing seen after 10 hours treatment. 

Ceftazidime killing treatment was further increased in the presence of nitrate, 

potentially due to an increase in PMF generation (Fig. 6.10). 

 Persister cells are thought to be a subpopulation of a bacterial population 

exhibiting a low level of metabolic activity, translation and protein turn-over (Allison et 

al., 2011; Shah et al., 2006). A recent study has demonstrated that the addition of 

metabolites, such as glucose, fructose and mannitol, have a synergistic effect on 

aminoglycoside antibiotic activity (Allison et al., 2011). The addition of these metabo-
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 Figure 6.11 – Illustration highlighting the predicted role of nitrate reductase in 

persister cell formation, on the addition of nitrate. a.) Function of nitrate reductase 

in wild-type persister cells. NarGHI reduces nitrate to nitrite generating a proton 

motive force, releasing protons (H+) into the periplasmic compartment (shown on the 

left). Both log phase and stationary phase cultures are predicted to contain a 

proportion of cells that have induced genes required for anaerobic respiration (shown 

in red), allowing for generation of a PMF in the presence of nitrate. In the absence of 

nitrate those cells that have entered a persistent state prior to ceftazidime treatment 

remain dormant, tolerating high levels of antibiotic. In the presence of nitrate those 

cells that have induced genes required for anaerobic respiration (red) become 

metabolically active (due to NarGHI activity) and therefore become more susceptible 

to ceftazidime treatment. Only those cells that are truly dormant (yellow) remain in a 

dormant/persistent state. b.) The ΔnarG mutant does not have a functioning NarGHI 

so cannot generate a PMF to the same extent as the wild-type in the presence of 

nitrate. It is known that narGHJI is not expressed in the mutant. Therefore the addition 

of nitrate to the persister assay does not affect the persister cell formation, with all 

cells in the ΔnarG culture remaining in a dormant and persistent state. Cells 

represented in red – NarGHI active; in yellow – dormant/persistent. Diagram on the 

previous page. See text for more details. 
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lites potentiated aminoglycoside activity due to their action, via the glycolytic pathway, 

increasing PMF generation when in the presence of glucose, mannitol and fructose 

(Allison et al., 2011). In relation to this study the addition of nitrate to B. pseudomallei 

persister cells resulted in an increase susceptibility of wild-type to ceftazidime, for both 

log and stationary phase cultures, not seen in the ΔnarG mutant (Fig. 6.9). The 

frequency of persister cell formation in E. coli, has been demonstrated to reflect 

differences in wake up kinetics, with those cells in the culture that are rapidly growing 

exhibiting increased susceptibility to antibiotic treatment (Joers et al., 2010).  

 It is thought that a proportion of the B. pseudomallei population (prior to 

ceftazidime treatment), entered a dormant/persistent state in both stationary and log 

phase cultures, with this subpopulation being revealed on the addition of high 

concentration of ceftazidime. Increase susceptibility of the wild-type to ceftazidime in 

the presence of nitrate is thought to be due to the generation of a PMF by NarGHI, 

increasing metabolic activity and resulting in increased killing by ceftazidime and likely 

reawakening from dormancy (Fig. 6.11). In the absence of nitrate or a functional 

NarGHI, in the ΔnarG mutant, B. pseudomallei is thought to remain in a 

persistent/dormant state, more tolerant to antibiotic treatment due to a reduction in 

metabolic activity. Considering nitrate was only added to the persister cell assay 

(added the same time as the addition of 400 µg/mL ceftazidime), it is likely that the 

increase in susceptibility of wild-type persister cells is due to an altered metabolic state 

of the drug tolerant/persister cells, due to NarGHI, rather than nitrate reducing 

persister cell numbers. These results indicate that B. pseudomallei NarGHI plays a 

role in antibiotic resistance when in the presence of nitrate.  

 To support the argument that NarGHI plays a role in antibiotic tolerance, due to 

its role in the generation of a PMF, the addition of nitrate has been shown to increase 

susceptibility of both E. coli and P. aeruginosa biofilms to antimicrobial action (Allison 

et al., 2011; Borriello et al., 2006). Along with this a recent ceftazidime B. thailandensis 

persister cell transcriptome analysis has revealed an upregulation of those genes 

required for anaerobic respiration (Table 6.2 – Hemsley et al. unpublished data). More 

recently a low abundance of E. coli NarGH has been linked to resistance of multiple 

different aminoglycosides and cephalosporins including ceftazidime (CAZ), tetracyclin 

(TET), gentamycin (GEN), and streptomycin (SM) (Ma et al., 2013). In this study narG 

and narH mutants were shown to exhibit increased resistance to CAZ, GEN and SM. 
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Authors speculated that the low abundance of NarGHI resulted in a lower PMF limiting 

aminoglycoside uptake resulting in an increased antibiotic resistance (Ma et al., 2013) 

as seen in Allison and colleagues (2011) with metabolite enable potentiation of 

aminoglycoside activity. Unlike aminoglycosides, ceftazidime acts to inhibit cell wall 

biosynthesis, so its antibiotic action is unlikely to require increased antibiotic uptake. 

It is currently unknown why the addition of nitrate increases susceptibility of B. 

pseudomallei to ceftazidime. However it is thought to be due to an increase in PMF 

generation due to NarGHI activity, considering nitrate addition did not affect the 

persister frequency in the ΔnarG mutant. 

 

6.4 Conclusion 

 This chapter has highlighted a role for NarGHI in pathogenesis of melioidosis. 

Deletion of narG (BPSL2309) resulted in a reduction in motility seen when using rich 

but not minimal media and caused a significant difference in persister cell susceptibility 

to ceftazidime when in the presence of nitrate. No difference in virulence or 

intracellular survival was observed between the ΔnarG mutant and wild-type B. 

pseudomallei when using G. mellonella and J7441.A murine macrophages, indicating 

anaerobic respiration is not required for survival within these model systems. Work 

into determine the role of NarGHI in virulence in a murine infection model is still on 

going.  
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Chapter 7 – Final discussion and future work 
 
 

7.1 B. thailandensis E264 and B. pseudomallei K96243 encode a wide range of 

proteins required for aerobic and anaerobic respiration 

 The ability to utilise a range of electron acceptors such as oxygen, nitrate, nitrite 

and DMSO/TMAO provides facultative anaerobes with a distinct advantage. 

Bioinformatic analysis identified a range of primary dehydrogenases and terminal 

oxidases required for aerobic and anaerobic respiration and genes required for 

molybdopterin biosynthesis in B. pseudomallei K96243, B. thailandensis E264 and B. 

mallei ATCC 23344 (Table 3.1, 3.2 and 3.3).  Differences in the variety and number of 

aerobic and anaerobic respiratory genes seen between B. thailandensis, B. 

pseudomallei and B. mallei is thought to reflect differences the ability for the species 

to survive within the environment and/or within the host.  

 B. thailandensis E264, B. pseudomallei K96243 and B. mallei ATCC 23344 

encode a full denitrification pathway, required for utilisation of nitrate or nitrite as 

alternative terminal electron acceptors. Unlike B. thailandensis, both B. pseudomallei 

and B. mallei encode a putative DMSO reductase, upregulated during anaerobic 

growth and within a murine infection model (Kim et al., 2005; Ooi et al., 2013). 

Preliminary growth analysis indicated B. pseudomallei K96243 to respire using DMSO 

as an electron acceptor and glycerol as an electron donor (Table 5.2). This supports 

the idea that BPSS2299-2301 encodes a putative DMSO reductase, not found in B. 

thailandensis. Further work in to the characterisation of this gene cluster and 

determination of its role in virulence could be used to expand what is currently known 

about respiratory flexibility in B. pseudomallei K96243. 

 Creation of a B. thailandensis transposon mutant library identified moeA1 

(BTH_I1704) to be required for anaerobic respiration, NAR activity, biofilm formation, 

and motility (Andreae et al., 2014). Bioinformatic analysis identified two putative moeA 

gene encoded in both B. thailandensis E264 and B. pseudomallei K96243 (moeA1 - 

BTH_I1704/BPSL2455 and moeA2 – BTH_I2200/BPSL1479). Only B. thailandensis 

moeA1 (BTH_I1704) was expressed under both aerobic and anaerobic conditions 

(Fig. 4.9).  This indicated that moeA1 is required for ligation of Mo to MPT, whereas 

moeA2 is likely to be either redundant in function or expressed under other conditions 

not tested in this study. 
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 The expression of E. coli moeA is molybdate independent and exhibits a low level 

of transcription under aerobic conditions (Hasona et al., 2001). Expression of moeA is 

enhanced under hypoxic conditions in the presence of nitrate, DMSO and TMAO, 

linking in with an increased demand for the production of molybdoenzymes required 

for anaerobic respiration (Hasona et al., 2001). Like narGHJI, the expression of E. coli 

moeA is regulated by NarXL in response to nitrate, and Arc and FNR which acts as 

negative regulators to maintain a basal level of moeA expression (Hasona et al., 

2001). This pointed towards an intimate link between the expression of moeA and 

NAR, considering both NarXL and FNR are also responsible for controlling the switch 

from aerobic to anaerobic respiration (Bouchal et al., 2010; Egan & Stewart, 1990; 

Fink et al., 2007; Stewart, 1993). The transcription of narGHJI and hyc (formate 

hydrogenlyase) has also been shown to be dependent on the ModE-molybdate (a 

repressor of modABCD) and MoeA, with a E. coli moeA modE double mutant failing 

to produce either NarGHI or formate hydrogenlyase proteins (Hasona et al., 1998b).  

 B. thailandensis E264 and B. pseudomallei K96243 encode both the NarXL and 

FNR likely to be required for the regulation of anaerobic respiratory genes. Work into 

determining the regulatory network required for the expression of B. thailandensis and 

B. pseudomallei anaerobic respiratory genes, and potential links between the 

expression of moeA and narGHJI could provide interesting avenues of research.  

 B. thailandensis E264 and B. pseudomallei K96243 encode two membrane-

bound nitrate reductases; narGHJI and narZYWV. Deletion of B. pseudomallei narG 

(BPSL2309) prevented anaerobic growth and significantly reduced NAR activity. This 

confirmed the prediction that narGHJI encodes the main NAR required for 

denitrification (Fig. 5.5 and 5.6), with the second cryptic narZYWV likely to play an 

accessory function similar to that seen in E. coli and Salmonella (Fig. 3.11).  

 Different Mycobacterium species are known to display varying levels of NAR 

activity. M. tuberculosis is the most efficient denitrifier exhibiting the highest levels of 

NAR activity, when compared to other Mycobacterium species, such as M. bovis BCG 

which displays reduced NAR activity due to a single nucleotide polymorphism within 

the narGHJI gene cluster (Khan & Sarkar, 2012). In relation to this study the 

accumulation of nitrite was significantly higher in B. pseudomallei K96243 cultures 

(accumulating up to 256 µM NO2
-) (Fig. 5.6) when compared to B. thailandensis E264, 

which accumulated around 21 µM NO2
- (Fig. 4.7) (Andreae et al., 2014) after 24 hours 

aerobic growth. This potentially indicates that B. pseudomallei is a more efficient 
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denitrifier compared to B. thailandensis. However, even though the experiments were 

performed using the same media and time points, B. pseudomallei and B. 

thailandensis were cultured slightly differently. For example B. thailandensis cultures 

were grown in 30 mL medium in 250 mL volumetric flasks, and B. pseudomallei 

cultures being grown in 4 mL medium in 25 mL universal tubes. Because of the way 

each species were cultured it is possible that the B. thailandensis cultures were better 

aerated compared to B. pseudomallei cultures, potentially resulting in a reduced 

expression/activity of narGHJI. To determine whether or not the differences in nitrite 

accumulation seen during aerobic growth are not simply due to the degree of 

oxygenation of the cultures it would be worth repeating the experiment for both wild-

type B. thailandensis and B. pseudomallei, using the same culture conditions. Further 

studies using real time PCR could also be used to determine when and to what extent 

narGHJI and narZYWV are expressed during aerobic and anaerobic growth.  

 B. thailandensis E264 and B. pseudomallei K96243 are thought to encode two 

putative copper nitrite reductases, annotated as multicopper oxidase containing 

proteins. BTH_II0881 and BPSS1487 display structural homology to the Neisseria 

AniA, possessing all key residues for binding to both type I and type II copper ligands 

and transmembrane helices potentially allowing for it to be bound to the outer-

membrane (Fig. 3.4, 3.6 a and 3.7). In comparison the second putative Cu-Nir 

(BTH_II0944 and BPSS1452) displayed little homology to any published nitrite 

reductases and several B. pseudomallei and B. mallei strains possessed an amino 

acid replacement in a key residue required for copper binding, indicating it might not 

function as a NIR (Fig. 3.5). Future work into determining whether or not the 

replacement of the key His residue, predicted to be required for copper binding (seen 

in B. pseudomallei BPSS1452, but not B. thailandensis BTH_II0944), alters NIR 

activity is required to determine the function of BPSS1452. Preliminary work has been 

conducted by project students under my supervision on the cloning and 

overexpression of BTH_II0944 and BPSS1452, using a His-tagged protein lacking its 

signal peptide. This unfortunately has been unsuccessful and only yielded protein in 

the insoluble fraction (data not shown).  
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7.2 The Burkholderia molybdopterin biosynthetic pathway and nitrate reductase plays 

a role in motility and biofilm formation  

 Chronic bacterial infections are often characterised by the formation of biofilms 

(Costerton et al., 1999), and are known to play a role in virulence in N. gonorrhoeae 

and P. aeruginosa (Falsetta et al., 2010; Hassett et al., 2002; Hill et al., 2005). In 

comparison, the formation of biofilms by B. pseudomallei is not associated with 

infection in BALB/c mice (Taweechaisupapong et al., 2005). Nevertheless the 

formation of biofilms in B. pseudomallei has been implicated in the survival of B. 

pseudomallei within the host. It has been proposed that relapse may be due to a 

reactivation of B. pseudomallei ability to form biofilms, considering it provides the 

bacteria with a mechanism to resist to antimicrobials (Sawasdidoln et al., 2010). 

Recent evidence has revealed that the formation of biofilms in vitro by primary infecting 

isolates is associated with patients presenting with relapse of melioidosis 

(Limmathurotsakul et al., 2014a). The association of biofilm formation with relapse was 

independent of any other risk factor including choice and length of oral antimicrobial 

therapy (Limmathurotsakul et al., 2014a).   

 Biofilms are highly organised structures known to be relatively oxygen and 

nutrient limiting, and often display increased antibiotic resistance due to low antibiotic 

penetration or a reduced metabolism (Costerton et al., 1999). Biofilms exhibit a steep 

oxygen gradient with the substratum being relatively anaerobic, requiring anaerobic 

respiration, via narG or aniA, for survival and maintenance of the mature structure 

(Falsetta et al., 2010; Van Alst et al., 2007). Disruption of the molybdopterin 

biosynthesis pathway in B. thailandensis (CA01) resulted in a reduction in biofilm 

formation, restored on complementation with pDA-17::BTH_I1704 (Andreae et al., 

2014) (Fig. 4.11 and Fig. 4.16). In P. aeruginosa disruption of narGH resulted in a 

thinner biofilm structure to the wild-type, attributed by the inability for the mutant to 

dissimilate nitrate (Van Alst et al., 2007).  It is tempting to speculate that due to the 

inability of B. thailandensis CA01 to reduce nitrate, the reduction in biofilm formation 

was due to the lack of NAR activity. To test this the biofilm assay was carried out on 

wild-type B. pseudomallei and the ΔnarG mutant, using a similar assay to that used 

with B. thailandensis, modified only by use of a peg plate rather than a 96 well micro-

titre plate. Unfortunately, no biofilm was detected on the pegs after a three day 

incubation period (data not shown). It is possible that the biofilms ‘fell off’ the pegs 
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during incubation at 37 oC. Shorter incubation periods and further optimisation of the 

biofilm assay under containment level three conditions will be required to determine 

whether or not B. pseudomallei NarGHI plays a role in biofilm formation.  

 The formation of biofilms is dependent on bacterial motility, requiring flagella and 

type IV pili for initial attachment and dispersal (Pratt & Kolter, 1998). Flagella are 

required for virulence, adhesion, virulence factor secretion and modulation of the host 

immune response (Adler et al., 2009; Chua et al., 2003; Duan et al., 2012a; Inglis et 

al., 2003). Recently it has been shown that B. thailandensis (strain CDC2721121) 

alters the transcription of flagella and chemotactic genes in response to temperature 

and oxygen status, with a down-regulation seen in response to 37 oC and anoxia 

(Peano et al., 2014). It was reasoned that because B. thailandensis CA01 displayed a 

biofilm defect it was possible that the reduction in biofilm formation was due to a 

reduction in motility as well as an inability to respire anaerobically.  This prediction 

was confirmed using a B. pseudomallei ΔnarG deletion mutant, which displayed a 

significant reduction in motility when using rich media (NB or L-broth), but not minimal 

media (Fig. 6.3 and 6.4). Unfortunately complementation of ΔnarG with pBH01 could 

not restore the motility defect seen when using LB medium solidified with 0.3 % 

bacteriological agar (see Chapter 8 - Appendix Fig. 8.3).  

 Addition of nitrate or nitrite caused a significant decrease in motility for wild-type 

B. pseudomallei K96243 but did not affect the motility defect seen for the ΔnarG 

mutant in rich media (LB or nutrient broth) (Fig 6.3 and 6.4 a). In comparison, in M9 

minimal media the ΔnarG mutant displayed comparable wild-type motility levels, and 

only the addition of nitrite caused reduction in the mutant’s motility (Fig. 6.4 b). The 

lack of a response to nitrate addition in the B. pseudomallei ΔnarG mutant in M9 

minimal media indicates the potential need for a functioning NarGHI and anaerobic 

electron transport chain in the aerotaxic/chemotaxic response to nitrate. It is likely that 

the presence of nitrite, either due to direct addition to the motility media or its reduction 

from nitrate by NarGHI, is the cause of the decrease in motility seen for B. 

pseudomallei. Further work into determining whether nitrate or nitrite affect B. 

pseudomallei chemotaxis/aerotaxis or act as chemorepellents are required to confirm 

whether the predicted hypotheses are correct. The use of B. pseudomallei flagella and 

chemotaxis mutants and mutant complementation would help to further explain the 

results seen in these studies. 
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 In comparison to what was seen for B. pseudomallei the addition of nitrate to B. 

thailandensis motility media did not significantly affect either wild-type of CA01 motility 

(Chapter 8 – Appendix Fig. 8.2).  Of note the motility defect seen with CA01 was not 

as severe as that seen with B. pseudomallei ΔnarG when using rich media. These 

differences could be due to species differences or potentially differences in NAR 

activity exhibited by B. thailandensis and B. pseudomallei.  

 Initial anaerobic studies using LB agar plates pointed towards a successful 

restoration of anaerobic growth for ΔnarG complemented with the BPSL2309-2312 

operon containing its native promoter. However further studies did not show an 

anaerobic growth restoration when using M9 minimal media supplemented with nitrate 

(Fig. 5.13). Further work complementation of ΔnarG and repetition of the motility 

assays will be required in order to confirm that the significant reduction in motility seen 

for the ΔnarG mutant is due to the lack of a functional NarGHI. 

 

7.3 B. thailandensis and B. pseudomallei can enter a dormant/non-replicating 

persistent state, affecting antibiotic treatment and persister cell formation 

Understanding the mechanisms of bacterial persistence has been the subject 

of much discussion, due to the implications it has on the treatment of chronic and latent 

infections. B. pseudomallei, like M. tuberculosis, is known to cause latent infections, 

with both bacterial species surviving within the host for extended periods of time. 

B. pseudomallei genome is known to remain relatively stable during infection, 

and a relapse of infection is often due to the same strain rather than reinfection (Currie 

et al., 2000a; Maharjan et al., 2005; Vadivelu et al., 1998). However, a recent within-

host evolution analysis of B. pseudomallei 12 year chronic carriage has revealed a 

substantial genome wide reduction and positive selection on genes required for 

antibiotic resistance and evasion of the immune response  (Price et al., 2013). B. 

pseudomallei within-host reductive evolution resulted a loss of non-essential genes, 

not required for persistence within the host. A number of B. pseudomallei genes lost 

during the 12 year chronic carriage have also been lost during the evolution of B. 

mallei, including the narZYWV operon, type III secretion system and a number of 

others encoded on chromosome 2 (Price et al., 2013). The deleted genes are mainly 
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thought to be required for secondary metabolite pathways, pathogenesis and those 

required for environmental survival. 

 Both tuberculosis and melioidosis infections are known to present with 

granulomas, likely to be limiting in oxygen. M. tuberculosis forms granulomas within 

the lungs (Saunders & Britton, 2007), whereas B. pseudomallei forms granulomas 

within various organs, including the lungs, during both mice and human infections 

(Conejero et al., 2011; Currie et al., 2010a; Limmathurotsakul & Peacock, 2011). 

Currently little is known about the mechanisms in which B. pseudomallei enters this 

persistent state, however much work has been done to understand non-replicating 

persistence in Mycobacterium species. Due to the similarities in disease progression 

of both chronic melioidosis and tuberculosis it is likely that the mechanisms of 

persistence used by M. tuberculosis are similar to what may be used by B. 

pseudomallei. 

Entry into a non-replicating persistent (NRP) state is thought to have 

implications in treatment of chronic or latent infections. M. tuberculosis has multiple 

mechanisms to ensure its survival and persistence within the host. These include 

pcaA, which aids in resistance to RNIs and ROS (Honer zu Bentrup & Russell, 2001), 

isocitrate lyase (McKinney et al., 2000), stress related proteins, metabolic enzymes 

(Honer zu Bentrup & Russell, 2001), and genes involved in the enduring hypoxic 

response (Rustad et al., 2008).    

Isocitrate lyase is an enzyme in the glyoxylate shunt pathway, and has been 

shown to be required for persistence, and virulence in various intracellular pathogenic 

bacteria, such as M, tuberculosis, Salmonella, P. aeruginosa and B. pseudomallei 

(Fang et al., 2005; Lindsey et al., 2008; van Schaik et al., 2009). Isocitrate lyase is 

required for intracellular survival and persistence, with the majority of bacteria entering 

a vegetative state, not undergoing replication (Honer zu Bentrup & Russell, 2001). 

Along with isocitrate lyase, NAR and the nitrate-nitrite exclusion protein (NarK) have 

been implicated in persistence and virulence of Mycobacterium species (Boshoff & 

Barry, 2005; Honer zu Bentrup & Russell, 2001; Munoz-Elias & McKinney, 2005; 

Weber et al., 2000).  

The ability to utilise various carbon sources, via the gluconeogenesis pathway, 

glycolysis, fermentation, TCA cycle and the glyoxylate shunt are important for 
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intracellular survival and virulence (Eisenreich et al., 2010). Genes for β-oxidation 

pathway and those for alternative respiratory pathways, including fumarate reductase 

and nitrate reductase, are induced in M. tuberculosis surviving within macrophages. 

During microaerophilic growth, it is speculated that nitrate reductase is required to 

restore redox balance intracellularly during growth on fatty acids (Boshoff & Barry, 

2005). 

Exposure to low oxygen conditions and nitric oxide signals the induction of the 

dormancy regulon, causing M. tuberculosis to enter a NRP and latent state (Boshoff 

& Barry, 2005; Voskuil et al., 2003). The dormancy regulon is known to involve the 

induction of 48 genes, expressing similar genes to that seen during NRP-1, such as 

the narK2-narX operon and the cytochrome bd oxidase (Boshoff & Barry, 2005). A 

study has shown a proportion of internalised S. typhimurium cells to enter a non-

replicating but viable state within macrophages, highlighting the importance of 

bacterial dormancy in intracellular survival as a potential reservoir for persistent 

bacteria (Helaine et al., 2010). This hypothesis has recently been proven with non-

replicating persisters seen in mouse organs following infection and internalised within 

macrophages (Helaine et al., 2014). Internalisation was the only prerequisite for 

macrophage induced persister cell formation, with macrophage-induced persisters 

exhibiting tolerance to a range of antibiotics (Helaine et al., 2014). 

  Development of the Wayne’s model enabled much study to be done on latency 

and persistence in vitro. The Wayne’s model of hypoxic shift down allows for the 

gradual acclimatisation to anaerobic environment; characterised by two stages NRP; 

NRP-1 and NRP-2 (Wayne & Hayes, 1996). A reduction in oxygen concentration and 

exposure to non-toxic concentrations of nitric oxide are known to trigger entry into 

dormancy/NRP, resulting in the induction of the dormancy regulon (DosR/DosS) (Dick 

et al., 1998; Voskuil et al., 2003). Cells that have entered NRP/dormancy can be 

reawakened on exposure to oxygen rich medium, triggering cell division and 

replication. M. tuberculosis DosR is essential for long term survival during anaerobic 

dormancy and is known to be required for the shift away from aerobic respiration and 

the maintenance of a redox balance and energy levels (Leistikow et al., 2010). 

 The Wayne’s model was used to study anaerobic adaptation and antibiotic 

tolerance in B. pseudomallei (Hamad et al., 2011). Initial growth of B. pseudomallei 
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seen in this model was likely due to the presence of dissolved oxygen in the culture 

medium, the gradual depletion of which resulted in a cessation of growth and likely 

entry in to NRP-2 (Hamad et al., 2011), as seen with M. tuberculosis. B. pseudomallei 

was shown to enter a NRP surviving for up to one year under anaerobic conditions, 

with no change in survival kinetics seen after one month (Hamad et al., 2011). Like B. 

pseudomallei, a subpopulation of B. thailandensis E264 was able to enter a NRP state, 

when grown anaerobically in the presence or absence of an alternative terminal 

electron acceptor (Fig. 4.10). This subpopulation of B. thailandensis anaerobic 

dormant cells could be reawakened on transfer to fresh media and growth aerobically 

or anaerobically in the presence of nitrate. Results of this study and Hamad et al. 

(2011) indicate that Burkholderia is likely to enter a dormant/NRP state due to the 

presence of an oxygen limiting environment, which is not affected by the ability to 

respire anaerobically. B. pseudomallei and B. thailandensis, like M. tuberculosis, may 

encode a yet unidentified dormancy regulon that may aid in adaptation and 

maintenance of a NRP state within an anaerobic environment.  

The transcriptional response of B. pseudomallei to hypoxic conditions (grown 

for 4 hours in the shaking Wayne’s model) has been determined and shown an 

induction of genes for arginine and pyruvate fermentation (arginine deiminase 

pathway), electron transport (cytochrome bd oxidase, ubiquinol oxidase and various 

c-type cytochromes and narZ), ATP synthase, motility and chemotaxis proteins, and 

those genes required for stress-related functions (Hamad et al., 2011). Genes required 

for molybdopterin biosynthesis were also induced under hypoxic conditions. No 

induction of genes required for denitrification were seen in this study, which is 

unsurprising considering B. pseudomallei was not respiring via nitrate respiration 

under the conditions tested.  

 Entry of B. pseudomallei into a NRP state, after one-months incubation under 

anaerobic conditions, resulted in an increased tolerance to multiple different 

antimicrobials, such as ceftazidime (targeting cell wall synthesis), trimethoprim-

sulfamethoxazole (targets DNA synthesis), chloramphenicol (targeting protein 

synthesis) and metronidazole which acts specifically on anaerobic bacteria (Hamad et 

al., 2011). It is possible that this increased tolerance to antibiotic action is due to a lack 

of respiratory action and lowered metabolic activity leading to the formation of persister 

cells.  
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 Persister cells are a sub-population that exhibit a lowered metabolic activity and 

increased tolerance but not resistance to antibiotics, later switching back to a 

susceptible form on transfer to fresh media (Lewis, 2010). The formation of persister 

cells is thought to be part of a bacterial population’s heterogeneity, aiding survival in a 

changing environment (Balaban et al., 2004).  Persister cells are thought to be 

dormant cells, exhibiting a distinct physiological state to the rest of a bacterial culture 

with a significant reduction in protein and ATP synthesis (Kwan et al., 2013; Lewis, 

2010; Shah et al., 2006). Although cells exhibiting a reduced replication rate and low 

metabolic activity (considered to be metabolically dormant) are more likely to form 

persisters, a proportion displaying high reductase activity (more metabolically active) 

can still form persisters. This indicated that dormancy is not necessary or sufficient for 

persister cell formation (Orman & Brynildsen, 2013). 

 A recent Burkholderia persister cell transcriptome, revealed some similarities 

between those genes induced during hypoxia and in persister cells, both showing an 

induction of genes for the arginine deiminase pathway and stress response and a 

decrease in expression of genes required for cell division and DNA replication 

(Hemsley et al. unpublished results). In comparison to the genes induced during 

hypoxia Burkholderia ceftazidime persisters showed an upregulation of genes 

required for denitrification (narGHJI, aniA, nos and nor) (Table 6.2). Similar to the 

Burkholderia persister transcriptome, Mycobacteria persister cells exhibit a down-

regulation of genes required for energy metabolism (e.g. genes require for glycolysis, 

respiration and electron transport) and biosynthesis pathways, consistent with entry 

into dormancy, and the induction of several toxin-antitoxin systems (Keren et al., 

2011).   

 The induction of genes required for denitrification in Burkholderia persister cells 

(Hemsley et al. unpublished data), implicated anaerobic respiration, and NarGHI in 

persister cell formation. Because of this it was postulated that deletion of narG in B. 

pseudomallei would affect persister cell formation. To test this both wild-type B. 

pseudomallei and ΔnarG mutant log and stationary phase cultures were treated with 

400 µg/mL ceftazidime, in L-broth supplemented with or without nitrate. The persister 

assay was performed under conditions thought to mimic oxygen limiting conditions 

seen in vivo. Addition of nitrate to wild-type B. pseudomallei persister cells resulted in 

an increased susceptibility to ceftazidime for both log and stationary phase cultures 



263 
 

(Fig. 6.9). The increased susceptibility of wild-type B. pseudomallei cells to ceftazidime 

on nitrate addition was not seen in the ΔnarG mutant. A similar result was seen in a 

preliminary study with wild-type B. thailandensis and CA01 persister cells, where 

nitrate addition resulted in a decrease in persister frequency for wild-type but not 

CA01. In comparison the addition of nitrite to either B. thailandensis or CA01 persister 

cells did not significantly affect persister frequency, with the same number forming 

persister cells when incubated with nitrite as that seen when in L-broth alone (see 

Chapter 8 Appendix - Fig. 8.4).  

 It is thought that the increase in susceptibility on the addition of nitrate is due to 

the generation of a PMF by NarGHI, resulting in an increase in metabolic activity and 

sensitivity to ceftazidime. Previous studies have implicated the generation of PMF, by 

addition of metabolites such as nitrate, in alteration of persister frequencies and 

antibiotic susceptibility (Allison et al., 2011; Borriello et al., 2006). Recently a low 

abundance of NarGH in E. coli has been linked to aminoglycoside and cephalosporin 

(including ceftazidime) resistance, thought to be due to a lowered PMF (Ma et al., 

2013). In support of the argument that an increase in susceptibility of persister cells to 

ceftazidime is due to the generation of a PMF, increased aeration during the persister 

assay resulted in a decrease B. thailandensis in persister frequency (Hemsley et al., 

unpublished data). The results together suggest that activation of an electron 

transport, either via denitrification or oxidative phosphorylation, renders Burkholderia 

susceptible to ceftazidime action. Therefore one could argue that the absence of a 

functioning respiratory system (e.g. in the ΔnarG mutant), is advantageous for the 

maintenance (but not generation) of persister cells, as it allows them to remain in a 

dormant state and thus remain tolerant to ceftazidime action. The increase in 

susceptibility of Burkholderia persister cells seen in when in the presence of oxygen 

or nitrate could have implications on treatment of chronic melioidosis infections, 

through the elevation of respiratory activity (Hemsley et al. unpublished work). Further 

work into characterisation of the role of nitrate and B. pseudomallei NarGHI in persister 

cell formation in response to other antibiotics (e.g. metronidazole and ciprofloxacin) 

would help aid in the understanding of the role of anaerobic respiration in persister 

cells.  

 A screening system based on determining nitrate reductase activity (using the 

Griess reaction) has been used to identify dormant and latent bacilli of tuberculosis 
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infected patients, considering NarGHI is induced during dormancy in Mycobacterium 

(Khan & Sarkar, 2008). Detection of NAR activity has been shown to be a robust and 

inexpensive assay to determine Mycobacterium sensitivity to antibiotics (Coban et al., 

2014). For example those Mycobacterium strains exhibiting NAR activity were 

associated with resistance to rifampicin and isoniazid, with susceptible strains losing 

the capacity to reduce nitrate (Martin et al., 2008). Whether or not the NarGHI in B. 

pseudomallei is induced during dormancy or whether it could be used as an assay for 

antibiotic resistance remains to be determined. Further work into determining whether 

NarGHI or NarK is expressed during dormancy could provide interesting avenues for 

treatment of melioidosis. 

 

7.4 Role of nitrate reductase and anaerobic adaptation in pathogenesis 

 Use of G. mellonella larvae infection model has shown no role for the 

molybdopterin biosynthetic pathway or nitrate reductase in virulence of either B. 

thailandensis (Andreae et al., 2014) or B. pseudomallei. This may be due to the fact 

that G. mellonella is not an appropriate model for determination of the role of anaerobic 

respiration in virulence considering it is quite likely that the larvae are not limiting in 

oxygen due to their size. Use of a different infection model, e.g. a murine infection 

model, may help better determine a role for NarGHI in pathogenesis of melioidosis.  

 A mouse infection with tuberculosis never truly gives a latent stage of infection as 

bacilli have been shown to be continuously replicating, and granulomas have been 

shown, in comparison to other mammalian and non-human primate models, not to be 

hypoxic (Aly et al., 2006; Rustad et al., 2009; Tsai et al., 2006). Induction of genes 

required for the enduring hypoxic response along with the DosR regulon are likely to 

be required during latent and chronic infections, ensuring the maintenance of viable 

cells in NRP, and survival during respiratory, nitrosative or redox stress (Rustad et al., 

2009). Whether or not similar mechanisms exist in B. pseudomallei is currently not 

known but research into this may provide a better understanding of how B. 

pseudomallei remains latent within the body prior to causing a relapse of infection.  

 Change in the oxygen status of tuberculosis infected organs is thought to play a 

role in relapse of infection (Rustad et al., 2009). This change in oxygen status of 

infected organs, in tuberculosis patients, may implicate the induction of respiratory 
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pathways in relapse of infection. Relapse cases of melioidosis normally present with 

pneumonia, liver and splenic abscesses (Limmathurotsakul et al., 2009). The idea that 

a change in oxygen status of infected organs prior to relapse in tuberculosis potentially 

could be applied to relapse cases of melioidosis. Perhaps this idea also correlates with 

the observation that increased aeration or nitrate addition to Burkholderia persister 

cells caused an increased susceptibility to antibiotic action, thought to be due to the 

induction or respiration/electron transport pathway.  

 The B. thailandensis clinical isolate CDC2721121, encoding a B. pseudomallei 

CPS-like cluster (Deshazer, 2007), has recently been shown to produce 

exopolysaccharides (EPS) and lipopolysaccharides (LPS) in response to oxygen 

limitation (Peano et al., 2014). The production of EPS/LPS in response to anaerobic 

conditions is thought to have implications on virulence of B. thailandensis 

CDC2772112. Growth under oxygen limiting conditions resulted in increased 

resistance to phagocytosis and a strong induction of an inflammatory cytokine 

response by murine macrophages (Peano et al., 2014). 

 The role of nitrate reductase in virulence has been well described for 

Mycobacterium species, seeming to vary depending on tissue specificity, infection 

model used, level of oxygen in the lungs and immune status of the host (Aly et al., 

2006; Fritz et al., 2002; Weber et al., 2000). Preliminary infection studies comparing 

wild-type B. pseudomallei (K96243) and the ΔnarG, performed in collaboration with 

the London School of Hygiene & Tropical Medicine, have been conducted using 

C56BL/6 mice. Unfortunately, due to differences in cell counts for both the acute and 

chronic infection model, no conclusions can currently be drawn from the current set so 

the role of B. pseudomallei in NarGHI in virulence in this model is currently unknown 

(Fig. 6.8). However, disruption of the molybdopterin pathway in B. pseudomallei (strain 

E8) has been shown to cause a reduction in NAR activity, anaerobic growth, motility, 

and cause a significant reduction in virulence in chronic murine infection model 

(C56BL/6) (personal communication with Professor Ivo Steinmetz’s group; 

unpublished results). Disruption of the molybdopterin biosynthetic pathway although 

affecting virulence but did not cause a reduction in cellular invasion or intracellular 

survival (personal communication with Professor Ivo Steinmetz). The results obtained 

by Professor Ivo Steinmetz group correspond with the phenotype exhibited by my B. 
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pseudomallei ΔnarG mutant and highlight a potential role for molybdoproteins and 

nitrate reductase in virulence. 

 It is currently unclear where B. pseudomallei resides during chronic infection. 

However, a recent study has shown the GI tract to be the primary site of colonisation 

during a persistent infection (Goodyear et al., 2012). The GI tract is known to be 

primarily colonised by anaerobic bacteria and both nitrate reductase and fumarate 

reductase have been shown to provide E. coli with a distinct colonisation advantage 

(Jones et al., 2011). Considering the GI tract is likely to be limiting in oxygen it is 

possible that the ability for B. pseudomallei to survive and replicate under anaerobic 

conditions will provide it with a survival advantage enabling colonisation and survival 

within the GI tract.  

 

7.5 Concluding comments 

 Before completion of my thesis little was known about the respiratory flexibility 

exhibited by B. thailandensis and B. pseudomallei, and nothing was known about the 

role anaerobic respiratory proteins would play in the pathogenesis of melioidosis. This 

study has highlighted the importance of NarGHI in anaerobic respiration, motility, 

biofilm formation and persister cell formation. Further work into characterisation of 

other anaerobic respiratory proteins involvement in survival and virulence would be 

advantageous to further understand their implications in the pathogenesis of 

melioidosis. 
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Chapter 8 – Appendix  
 

 

8.1 - Figures 

 

  

Figure 8.1 - Aerobic growth of B. thailandensis E264 in the presence of 

sodium tungstate.  Aerobic growth of B. thailandensis in M9 minimal media 

supplemented with 20 mM sodium succinate and 20 mM sodium nitrate and varying 

concentrations of sodium tungstate (Na2WO4) - 0 mM (squares), 1 mM (circles), 5 

mM (triangles) 10 mM (inverted pyramid). Addition of sodium tungstate did not 

affect aerobic growth of B. thailandensis. Results are of one biological replicate.   
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Figure 8.2 - B. thailandensis and CA01 motility is not significantly altered by 

the addition of nitrate. Motility assays carried out on 0.3 % nutrient broth agar 

plates, supplemented with 0.5 % glucose, in the presence or absence of 20 mM 

sodium nitrate. Addition of nitrate has no significant effect on the degree of swimming 

motility for either B. thailandensis (blue) or CA01 (red) after 24 hour incubation at 37 

oC. The mutant still shows a reduction in motility when compared to the wild-type. 

Asterisk indicate significant p-value of ≥ 0.01 (T-test assuming; equal variance). 

Three independent biological replicates each with three technical replicates. Error 

bars ± SD.  

* * 
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Figure 8.3 – Preliminary motility studies with B. pseudomallei ΔnarG::pBHO1. 

Wild-type B. pseudomallei (blue), the ΔnarG mutant (red) and mutant complement 

ΔnarG::pBH01 (green) cultures were grown overnight in L-broth prior to 

standardisation and inoculation into LB agar plates solidified with 0.3 % 

bacteriological agar. Chloramphenicol (50 µg/mL) was added to both the 

complement overnight cultures and the motility agar plates in the hopes of 

maintaining selection of pBH01. Results are the average of two biological 

replicates, each with three technical replicates. Error bars ± SD.  
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Figure 8.4 – Addition of nitrate, but not nitrite, significantly increases B. 

thailandensis E264 persister cell susceptibility to ceftazidime. Data is the result 

of a preliminary persister cell assay performed on wild-type B. thailandensis (blue) 

and the molybdopterin biosynthesis mutant (CA01 - red). Wild-type B. thailandensis 

and CA01 (moeA1 - transposon mutant) were grown aerobically overnight prior to 

standardisation and treatment with 400 µg/mL ceftazidime. The persister cell assay 

was performed statically in L-broth supplemented with either 20 mM sodium nitrate 

or 5 mM sodium nitrite. Results are the average of two biological replicates, each 

with three technical replicates. Error bars ± SD.  

Persister frequency seen here correlates with what has been seen with B. 

pseudomallei (see Chapter 6), but is significantly higher (10 % rather than 1 %) then 

what has been seen in other studies (data not shown). Addition of nitrate 

significantly reduced persister frequency in the wild-type but not the mutant, which 

is unable to utilise nitrate as an alternative terminal electron acceptor. Addition of 

nitrite to the persister cell study did not affect the persister cell frequencies for either 

the wild-type or the mutant, likely because nitrite is not as efficient as nitrate at 

generating a PMF under oxygen limiting conditions. Results correlate with what was 

seen for B. pseudomallei.  
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Table 8.1 – Preliminary bioinformatic analysis on the identification of putative c-type 

cytochromes and cytochrome c family proteins predicted to be required for electron 

transport in B. thailandensis and B. pseudomallei 

Annotationa Gene ID 

B. thailandensis (E264) B. pseudomallei (K96243) 

Chromosome 1 

Cytochrome b561 BTH_I0073 

BTH_I1271 

BPSL0072 

BPSL2876 

Cytochrome c family protein BTH_I0608 

BTH_I0826 

BTH_I0967 

BTH_I2318 

BTH_I2873 

BTH_I2877 

BTH_I3145 

BPSL0696 

BPSL0968 

BPSL1100 

BPSL1600 

BPSL1261 

BPSL1257 

BPSL3271 

Putative cytochrome c4 BTH_I0609 

BTH_I2878 

BPSL0697 

BPSL1256 

Putative cytochrome c5 BTH_I3261 BPSL3354 

Cytochrome c BTH_I0966 BPSL1099 

BPSL3181 

   

Chromosome 2 

Cytochrome b561, putative BTH_II0636 

BTH_I1084 

BPSS1744 

BPSS1340 

Cytochrome c family protein BTH_II0457 

BTH_II0652 

BTH_II1414 

BTH_II1779 

-b 

BPSS1729 

BPSS0977 

- 

Cytochrome c BTH_II0653 

BTH_II1778 

BPSS1729 

- 

Table shows results of a preliminary bioinformatic analysis identifying putative c-type 

cytochromes and cytochrome family proteins predicted to be required for electron transport 

in B. thailandensis (E264) and the gene orthologs in B. pseudomallei (K96243). 

a Correspond to the B. thailandensis gene annotation 

b Ortholog not identified  

Information from genome search only using NCBI and K.E.G.G. 
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8.2 – Growth medium and Buffers  

LB media  

10 g/L - Bacto-Tryptone 

5 g/L - Bacto-Yeast extract  

5 g/L – Sodium chloride (NaCl) 

 

Add 1.5 % Bacteriological Agar No. 2 when required 

Autoclave at 121 oC for 20 minutes 

 

SOB media 

20 g/L - Bacto-Tryptone 

5 g/L - Bacto-Yeast extract  

0.58 g/L - NaCl (anhydrous) 

0.1875 g/L – Potassium chloride (KCl) (anhydrous) 

2 g/L – Magnesium chloride hexahydrate (MgCl2.6H20) 

2.5 g/L – Magnesium sulfate heptahydrate (MgSO4.7H20) 

 

Autoclave at 121 oC for 20 minutes 

 

Nutrient broth 

1 g/L – D-glucose 

15 g/L – Peptone 

6 g/L – NaCl 

3 g/L – Yeast extract 

 

M9 5x Salts 

85.5 g/L – Disodium phosphate anhydrous (Na2HPO4.12H2O) 

15 g/L – Potassium phosphate monobasic (KH2PO4) 

2.5 g/L - NaCl 

5 g/L – Ammonium chloride (NH4Cl) 
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Make up to 1 L using ddH2O (distilled water) and autoclave at 121 oC for 20 minutes 

 

TFB1 per 100mL 

0.25 g - Sodium acetate (C2H3O2Na) 

0.14 g – Calcium chloride (CaCl2) 

0.99 g – Manganese chloride (MnCl2) 

1.21 g – Rubidium chloride (RbCl2) 

15 mL - Glycerol  

 

pH to 5.8 using 1 M acetic acid and autoclave 

Store at 4 oC 

 

M9 minimal media 

390 mL – Distilled water (ddH2O) 

100 mL – 5 x M9 Salts  

 

Autoclave at 121 oC for 20 minutes, then add; 

1 mL – 1 M Magnesium sulfate (MgSO4) to give a 2 mM final concentration  

50 µL – 1 M CaCl2 to give a 0.1 mM final concentration 

 

TFB2 per 100 mL 

1 mL – MOPs (1 M stock) 

1.07 g – CaCl2 

0.12 g – RbCl2 

15 mL - Glycerol  

-pH to 6.5 using 1 M KOH and autoclave 

-Stored at 4 oC 

 

Phosphate buffer –pH 7.5 (200mL) 

A = 0.2 M KH2PO4 
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B = 0.2 M K2HPO4 

Mix A (16 mL) and B (84 mL) together in the appropriate volumes and dilute to 200 

mL with ddH2O, adjust pH to 7.5 and autoclave at 121 oC for 20 minutes. 

  

Motility media 

NBA 0.3 % 

400 mL - Nutrient broth 

0.5 % (w/v) – Glucose 

0.3 % - Bacteriological Agar 

 

LB agar 0.3 % 

400 mL – Luria Bertani broth 

0.3 % - Bacteriological agar No. 2 

 

M9 minimal media 0.3 % 

390 mL – ddH2O 

100 mL – 5x M9 Salts  

20 mM – Sodium succinate 

0.3 % - Bacteriological agar No. 2 

 

Motility agar media autoclaved at 121 oC for 20 minutes 

20 mL 0.3 % agar used per plate 

Ensure plates are dry before use.  

 

Antibiotic stocks 

100 mg/mL – Ampicillin – dissolved in water 

100 mg/mL – Gentamicin sulfate – dissolved in water 

50 mg/mL – Chloramphenicol – dissolved in 70 % ethanol 

50 mg/mL – Tetracyclin – dissolved in 70 % ethanol 

50 mg/mL – Kanamycin sulfate – dissolved in water 
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50 mg/mL – Trimethoprim – dissolved in 50 % DMSO 

10 mg/mL – Ceftazidime hydrate – dissolved in 0.1 M NaOH 

10 mg/mL – Ciprofloxacin – dissolved in 0.1 M NaOH 
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