567 research outputs found

    A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars

    Full text link
    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σω\sigma - \omega mean field model for the nucleons and their interactions. In this context there are two notions of ``relativistic'': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly-rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR

    Kerr black hole quasinormal frequencies

    Full text link
    Black-hole quasinormal modes (QNM) have been the subject of much recent attention, with the hope that these oscillation frequencies may shed some light on the elusive theory of quantum gravity. We compare numerical results for the QNM spectrum of the (rotating) Kerr black hole with an {\it exact} formula ReωTBHln3+Ωm\omega \to T_{BH}\ln 3+\Omega m, which is based on Bohr's correspondence principle. We find a close agreement between the two. Possible implications of this result to the area spectrum of quantum black holes are discussed.Comment: 3 pages, 2 figure

    Vacuum creation of quarks at the time scale of QGP thermalization and strangeness enhancement in heavy-ion collisions

    Get PDF
    The vacuum parton creation in quickly varying external fields is studied at the time scale of order 1 fm/cc typical for the quark-gluon plasma formation and thermalization. To describe the pre-equilibrium evolution of the system the transport kinetic equation is employed. It is shown that the dynamics of production process at times comparable with particle inverse masses can deviate considerably from that based on classical Schwinger-like estimates for homogeneous and constant fields. One of the effects caused by non-stationary chromoelectric fields is the enhancement of the yield of ssˉs\bar{s} quark pairs. Dependence of this effect on the shape and duration of the field pulse is studied together with the influence of string fusion and reduction of quark masses.Comment: REVTEX, 11pp. incl. 4 figures, to be published in Phys. Lett.

    Reaction dynamics in Pb+Pb at the CERN/SPS: from partonic degrees of freedom to freeze-out

    Get PDF
    We analyze the reaction dynamics of central Pb+Pb collisions at 160 GeV/nucleon. First we estimate the energy density pile-up at mid-rapidity and calculate its excitation function: The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for E > 30 GeV/nucleon. The energy density reaches up to 4 GeV/fm^3, 95% of which are contained in partonic degrees of freedom. It is shown that cells of hadronic matter, after the early reaction phase, can be viewed as nearly chemically equilibrated. This matter never exceeds energy densities of 0.4 GeV/fm^3, i.e. a density above which the notion of separated hadrons loses its meaning. The final reaction stage is analyzed in terms of hadron ratios, freeze-out distributions and a source analysis for final state pions.Comment: 10 pages, 7 figures, Proceedings of the Erice School on Nuclear Physics in Erice, Sicily, Italy, September 17 -25 1998; to be published in Progress in Particle and Nuclear Physics Vol. 4

    Gravitational signals emitted by a point mass orbiting a neutron star: effects of stellar structure

    Get PDF
    The effects that the structure of a neutron star would have on the gravitational emission of a binary system are studied in a perturbative regime, and in the frequency domain. Assuming that a neutron star is perturbed by a point mass moving on a close, circular orbit, we solve the equations of stellar perturbations in general relativity to evaluate the energy lost by the system in gravitational waves. We compare the energy output obtained for different stellar models with that found by assuming that the perturbed object is a black hole with the same mass, and we discuss the role played by the excitation of the stellar modes. Ouresults indicate that the stellar structure begins to affect the emitted power when the orbital velocity is v >0.2c (about 185 Hz for a binary system composed of two canonical neutron stars). We show that the differences between different stellar models and a black hole are due mainly to the excitation of the quasinormal modes of the star. Finally, we discuss to what extent and up to which distance the perturbative approach can be used to describe the interaction of a star and a pointlike massive body.Comment: 22 pages, 6 figures, to appear in Phys. Rev. D. Revised version, added one table and extended discussio

    Excitation Function of Energy Density and Partonic Degrees of Freedom in Relativistic Heavy Ion Collisions

    Get PDF
    We estimate the energy density pile-up at mid-rapidity in central Pb+Pb collisions from 2 - 200 GeV/nucleon. The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for lab-energies > 30 GeV/nucleon. In Pb+Pb collisions at 160 GeV/nucleon the energy density reaches up to 4 GeV/fm^3, 95% of which are contained in partonic degrees of freedom.Comment: 10 pages, 4 figure

    Effects of different needles and substrates on CuInS2 deposited by electrostatic spray deposition

    Get PDF
    Copper indium disulphide (CuInS2) thin films were deposited using the electrostatic spray deposition method. The effects of applied voltage and solution flow rate on the aerosol cone shape, film composition, surface morphology and current conversion were investigated. The effect of aluminium substrates and transparent fluorine doped tin oxide (SnO2:F) coated glass substrates on the properties of as-deposited CuInS2 films were analysed. An oxidation process occurs during the deposition onto the metallic substrates which forms an insulating layer between the photoactive film and substrate. The effects of two different spray needles on the properties of the as-deposited films were also studied. The results reveal that the use of a stainless steel needle results in contamination of the film due to the transfer of metal impurities through the spray whilst this is not seen for the glass needle. The films were characterised using a number of different analytical techniques such as X-ray diffraction, scanning electron microscopy, Rutherford back-scattering and secondary ion mass spectroscopy and opto-electronic measurements

    Partonic effects on the elliptic flow at relativistic heavy ion collisions

    Get PDF
    The elliptic flow in heavy ion collisions at RHIC is studied in a multiphase transport model. By converting the strings in the high energy density regions into partons, we find that the final elliptic flow is sensitive to the parton scattering cross section. To reproduce the large elliptic flow observed in Au+Au collisions at s=130A\sqrt s=130A GeV requires a parton scattering cross section of about 6 mb. We also study the dependence of the elliptic flow on the particle multiplicity, transverse momentum, and particle mass.Comment: 7 pages, 7 figures, revtex, text added to detail the procedure for conversions between hadrons and parton

    A Multi-Phase Transport model for nuclear collisions at RHIC

    Get PDF
    To study heavy ion collisions at energies available from the Relativistic Heavy Ion Collider, we have developed a multi-phase transport model that includes both initial partonic and final hadronic interactions. Specifically, the parton cascade model ZPC, which uses as input the parton distribution from the HIJING model, is extended to include the quark-gluon to hadronic matter transition and also final-state hadronic interactions based on the ART model. Predictions of the model for central Au on Au collisions at RHIC are reported.Comment: 7 pages, 4 figure
    corecore