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Abstract 

Copper indium disulphide (CuInS2) thin films were deposited using the 

electrostatic spray deposition method. The effects of applied voltage and solution 

flow rate on the aerosol cone shape, film composition, surface morphology and 
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current conversion were investigated. The effect of aluminium substrates and 

transparent fluorine doped tin oxide (SnO2:F) coated glass substrates on the 

properties of as-deposited CuInS2 films were analysed. An oxidation process 

occurs during the deposition onto the metallic substrates which forms an 

insulating layer between the photoactive film and substrate. The effects of two 

different spray needles on the properties of the as-deposited films were also 

studied. The results reveal that the use of a stainless steel needle results in 

contamination of the film due to the transfer of metal impurities through the spray 

whilst this is not seen for the glass needle. The films were characterised using a 

number of different analytical techniques such as X-ray diffraction, scanning 

electron microscopy, Rutherford back-scattering and secondary ion mass 

spectroscopy and opto-electronic measurements. 

 

Keywords 

CuInS2, electrostatic spray deposition (ESD), coating uniformity, solar cells, 

deposition conditions, needles, substrates 

 

1 Introduction 

Photovoltaic devices are one of a number of environmentally friendly forms of 

generating electricity that are undergoing significant research and development. 

The main barrier to the widespread use of this form of energy over the last few 

decades has been the high unit energy cost of production. A reduction in turn-key 

photovoltaic system prices and further technological developments are 
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necessary to allow the cell manufacturers to strengthen their position in the 

global market. The increasing demand for ‘green’ materials in solar cell 

production has raised the profile and hence the research interest in CuInS2-

based cells due to their inherently non-toxic composition. CuInS2 (CIS) is a very 

attractive material for device fabrication because it has a band gap of about 1.5 

eV which is close to the theoretical optimum value for single junction solar cells; 

CIS is a direct band gap semiconductor thus 1 µm thick films are able to absorb 

all the incident photons (with an energy greater than the band gap) of the solar 

spectrum; it also has non-degradable properties compared with other solar cell 

materials [1, 2]. CuInS2 is a ternary chalcogenide semiconductor which can 

behave as an n-type or p-type material by varying the molar ratios of the 

compositional elements [3, 4]. Highest theoretical efficiency (25%) [5] is 

attributed to CuInS2, although the experimental record (nearly 20%) has been 

achieved in single junction  CIGS [Cu(In,Ga)-(Se,S)2] solar cell absorbers [6] 

A number of methods have been used to deposit chalcopyrite CIS thin films such 

as molecular vacuum methods [7], radio frequency sputtering [8], single source 

evaporation [9], electrochemical deposition [10,11], spray pyrolysis [12]. 

Electrostatic spray deposition (ESD) is a simple, non-vacuum method which uses 

an applied voltage between a spray needle and a substrate to atomise a 

chemical solution. The droplets of solution undergo a complex decomposition-

reaction process which yields the deposition of dense films with good adhesion to 

the substrate. This method allows good control of stoichiometry and film 

thickness resulting in high quality CIS samples which do not require a post 
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deposition anneal. In this paper, the deposition of CuInS2 films using different 

types of spray needle (stainless steel and glass) is reported. The effect of 

different deposition conditions on films grown on various substrates (aluminium 

and SnO2:F coated glass) are also considered. In both cases, the structural, 

compositional and opto-electronic properties of the as-deposited films were 

analysed using various characterisation techniques. 

 

2 Experimental Details 

CuCl2•2H2O (99.99%, Sigma Aldrich), InCl3 (99.99%, Alfa Aesar) and thiourea 

(99%, Alfa Aesar) were dissolved in deionised water (18 MWcm-1 at 25 °C) 

During this experiment, the solution concentration was maintained at 0.21 M 

while the [S]/[Cu] and [Cu]/[In] molar ratios were fixed at 5 and 1 respectively 

[13]. HCl was added to facilitate the dissolution of the three salts. Two different 

experiments were carried out during the study in order to analyse the effect of 

changing the substrate and needle materials independently. 

Full details of the deposition setup have been given elsewhere [14,15]. 

During the initial experiment, the starting solutions were sprayed onto two 

different substrates: aluminium (Al) and SnO2:F coated glass using the glass 

needle. The glass needle (produced in house) had a platinum wire embedded 

through the wall in order to make an electric contact with the high voltage source 

and atomise the solution as it passed over the wire. The substrates had 

dimensions of 1.8 mm x 30 mm x 10 mm in thickness, length and depth, 

respectively. Deposition temperature, needle-substrate distance and solution 
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concentration were fixed at 450°C, 50 mm and 30 mM res pectively. The 

precursor solution was atomised using a positive applied voltage which was 

varied between 14 kV and 18 kV. The flow rate was varied between 25 µl/min 

and 100 µl/min and the deposition time was set to spray 18 ml in total. This 

resulted in spray times between 3 and 12 hours. The effects of these two 

depositions variables on the properties of CIS thin films have been examined. All 

the aluminium samples were polished using sandpaper (up to 2500 grit) and a 6 

micron diamond suspension reduced to 1 micron for final polishing. The glass 

substrate used for deposition was commercially available Nippon SnO2:F 

transparent coated glass (FTO). 

During the second experiment, CIS films were deposited using both stainless 

steel and glass needles. The stainless steel hypodermic needle had an external 

diameter of 0.5 mm and a 0.1 mm wall thickness. The tip of the needle was 

flattened prior to use to remove the sharp tip, which otherwise caused arcing 

between the needle and substrate. The external diameter of the glass needle at 

the tip was 0.6 mm with a wall thickness of approximately 0.1 mm. During this 

experiment all the samples were deposited on SnO2:F coated glass substrates. 

The structural, compositional and opto-electronic properties of the as-deposited 

films were analysed. The techniques used were X-ray diffraction (XRD), scanning 

electron microscopy (SEM), Rutherford Backscattering Spectrometry (RBS), 

secondary ion mass spectrometry (SIMS) and photocurrent conversion. In 

addition laser particle visualisation (PIV) was used to monitor the properties of 

the spray cone. 
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XRD was performed using a Philips PW1820 diffractometer with Cu-Kα radiation 

(λ = 1.5405 Å). Standard θ - 2θ diffraction data was collected over the range 10° 

< 2θ < 80° with a scan step size of 0.02 ° and 5 s coun t time. Additionally 

glancing angle XRD was undertaken on selected samples with θ fixed at 5 ° and 

2θ scanned between 10 and 80 ° with a step size of 0. 0 2 ° and count time of 5 s. 

Identification of the phases in each diffraction pattern was performed with 

reference to the powder diffraction file (PDF) database from the International 

Centre for Diffraction Data. SEM analysis was conducted using either a JEOL 

JSM840A or LEO 435VP with an accelerating voltage of 15 kV. 

The elemental composition and thickness of the thin films were analysed using 

RBS which was carried out using a 1.9 MeV 3He+ ion beam generated from a 

Van de Graaff generator in conjunction with a multi-channel analyzer with a 

system resolution of 25 keV. The detector was positioned at a back scattering 

angle of 170 ° with a collection solid angle of 5 m sr . RBS allows the atomic areal 

density of each element in the film to be determined independently of chemical 

bonding and, thus, the film thickness if the density is known. RBS measurements 

were only conducted on films deposited onto Al substrates. No measurements 

were made on films deposited onto FTO / glass as the underlying complexity of 

the substrate composition would introduce overlapping ‘peaks’ and thus large 

errors when determining CIS element ratios. 

Depth profiling of lateral uniformity of the layers were investigated in detail using 

a bench-top Millbrook MiniSIMS system with a Ga+ primary ion energy of 6 keV, 
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a crater area of 100 µm x 100 µm and a gating of 10%. The measurement yields 

a qualitative analysis and is not calibrated to give absolute concentrations. 

 

Photoelectrochemical measurements of the CuInS2 thin films were performed in 

aqueous 0.2 M europium nitrate (99.9%, Strem).  

The pH was adjusted to 2 by adding HNO3. Measurements were carried out in a 

three electrode configuration using a glass cell with a Ag|AgCl reference 

electrode, and a platinum foil as a counter electrode. Photovoltammograms were 

recorded using an Autolab 20 potentiostat under pulsed white light illumination 

provided by a light emitting diode (LED). Photocurrent spectra were recorded 

with a standard photoelectrochemical setup: lamp, monochromator, and chopper 

(Bentham); purpose-built potentiostat, function generator (Hi-Tek); lock-in 

amplifier (Stanford Research Systems). Spectra were recorded using chopped 

illumination with a frequency of 13 Hz or higher and normalized against a 

calibrated silicon photodiode. 

The laser particle visualisation was based on particle image velocimetry (PIV) 

method for measuring flow structures and velocities in particle laden flows. The 

particles within the aerosol are illuminated periodically by a pulsed laser light 

source which has its incident beam focused into a planar light sheet (Figure 1). 

The particles illuminated by the light sheet are imaged normal to the plane of the 

light sheet using a high frame rate Charge-Coupled Device (CCD) camera and 

can be analysed off-line to extract particle size and flow structure information.  
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The laser used during this experiment was a New Wave Gemini Nd:YAG pulsed 

laser (15 Hz double pulse rate) in conjunction with a Kodak ES1.0 CCD camera. 

The energy of the light source was 120 mJ per pulse at λ = 532 nm. 

3 Results 

3.1 Effects of different substrates 

3.1.1 Glass  
 
The FTO coated substrates were chosen due to their higher stability and hence 

higher resistance to oxidation compared to SnO2:In coated glass [16]. The 

deposition conditions of CIS films on FTO glass substrates are summarized in 

Table 1. 

The standard θ - 2θ XRD patterns of samples deposited on FTO at different 

voltages and flow rates are typical of CIS with no other extraneous phases such 

as CuxS or InxSy. An example of an XRD diffractogram for a CIS sample is shown 

in Figure 2. All the peaks have been assigned to the CIS chalcopyrite structure 

(or to the FTO substrate). 

The as-deposited films do not show a preferred orientation because the intensity 

ratios of the peaks match the corresponding theoretical intensity ratios, also the 

area and the FWHM of the (112) CIS peak are similar for all the samples 

deposited on glass suggesting an independency of grain size from the deposition 

condition. Figure 3 shows an SEM image of the cross-section of the CIS film on 

FTO glass (sample G3) deposited using an applied voltage of 18kV. The CIS 
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absorber layer in this sample has a thickness of approximately 1.8 µm. The 

image depicts a dense film with good adhesion to the substrate. All samples 

deposited at 18 kV were similarly adherent. 

SEM analysis of the surfaces of films deposited at lower voltages (14 kV and 16 

kV) show cracks and defects. The sample G7 (14 kV) is shown in Figure 4 as an 

example. The applied voltage and flow rate controls the size of the incoming 

droplets incident on the substrate [13-17]. At low voltage and high flow rate, “big 

droplets” arrive on the hot substrate but the solvent doesn’t evaporate 

immediately, leaving a thin liquid layer on the substrate. This phenomenon 

induces a mechanical stress in the film when the evaporation process is 

completed. When the solvent evaporates, a change in volume will occur. Since 

the layer is not able to shrink freely due to the adhesion on the substrates, cracks 

appear on the films. Figure 4 shows the details of the cracks and defects in the 

film and the regions where poor adhesion of the film has resulted in the film 

breaking away from the layers beneath. The indented regions on the surface of 

the film are thought to be caused by large droplets reaching the substrate. The 

evaporation of the solvent in the droplets leaves the resulting ‘pin-holed’ film 

structure.  

These results are in good agreement with previous results published by other 

groups [18-20]. 

 

The external quantum efficiency (EQE) of the films was measured as a function 

of wavelength to see which deposition conditions produced the most photoactive 
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films suitable for use in photovoltaic devices. A europium electrolyte was used to 

collect photo excited charge carriers from the films [9]. Figure 5 shows the data 

for the most photoactive film, G3, which has a maximum EQE of 35 % at 425 nm, 

which then reduces quickly at longer wavelengths. The EQE dropped to 28 % at 

425 nm for film G2, which was grown at twice the speed as film G3. Films 

deposited at lower voltages G4-G9, despite the pinholes and cracks, gave EQE 

values of around 25 %. The films were then etched in 5 wt % aqueous KCN and 

re-tested to see if this improved their photoresponse. KCN is a well know etching 

solution for CuInS2 layers which are grown under copper excess. The KCN etch 

removes undesired CuxSy preferentially [20-22]. No improvement in the EQE was 

observed, suggesting that the films contained no CuxSy at the surface, in 

agreement with the XRD (θ - 2θ and glancing angle) measurements. 

Maximum achievable EQE values are only 75 % for high quality Cu(In,Ga)Se2 

absorber layers. The loss of 25 % is due to optical reflection from the cell 

configuration.  In the films in this study, the lower maximum values of EQE at 

short wavelengths indicate that there is recombination near the surface of the 

semiconductor. Also, the reduction of EQE at longer wavelengths indicates either 

a small space charge region or poor collection of carriers generated outside the 

space charge region, possibly due to residual chlorine left over from the 

deposition process 

The band gap (Eg) of the films was calculated from the EQE spectra using the 

Gartner equation [23]. An example of the fit is shown in the inset of Figure 5 for 
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sample G3. For samples G1 to G3 an Eg value of 1.45 ±  0.02 eV was found, in 

agreement with other groups. 

 

3.1.2 Aluminium substrate 

The deposition conditions considered for film spraying onto aluminium substrates 

are summarised in Table 2. 

The XRD patterns for the 9 samples sprayed onto an aluminium substrate 

display the three main CIS peaks ((112), (220) and (312)) although the intensity 

is weak (XRD of sample A3 is shown in Figure 6 and Figure 7 as an example). 

The preferred orientation can be calculated from the intensity values. The 

intensity ratios of the peaks (220) and (112) (called I2/I1), (312) and (112) (called 

I3/I1), (312) and (220) (called I3/I2) were calculated for the samples and 

compared with the theoretical values. It is observed that the ratios I2/I1 and I3/I1 

have values lower than random powder, while the ratios I3/I2 are similar for all 

the samples. The higher intensity of the I1 peaks suggests a preferred orientation 

along the (112) plane. Some additional peaks also appear in the diffractograms 

of CIS films sprayed onto aluminium substrates (Figure 7). The number of these 

peaks has been observed to be inversely proportional to the applied voltage but 

appears to be independent of solution flow rate. The intensity of the peaks is 

small and thus they are difficult to positively identify. They could be due to an 

aluminium oxide layer formed during the deposition process. The acidic solution 

which for low voltages may not completely evaporate prior to arriving at the 
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substrate could corrode the aluminium producing an oxide layer between the 

substrate and CIS film. 

 

The thickness of the samples was determined by RBS analysis. The RBS 

measurements have been performed using a detector solid angle of 5 msr and 

170 ° back scattering angle. RBS spectra of the sam ple Al3 is shown in Figure 8. 

The spectra were modelled using SIMNRA software [24] to generate the 

simulation. The spectra show the combined contributions of the CIS layer and the 

aluminium substrate but a tail on the back edge of the Cu and S peaks was 

observed in all the samples and it is thought to be due to the large roughness of 

the CIS layer which is characteristic of the deposition method. 

 

The RBS spectra were fitted assuming the presence of a single homogeneous 

layer of CIS on the aluminium substrate. The stoichiometry of the samples 

deposited on aluminium appears to have a large variation (Table 3) with no clear 

trend. It is unclear whether the non-stoichiometric films contain secondary 

phases. Neither standard θ - 2θ XRD nor glancing angle XRD detected any 

extraneous phases but small amounts of secondary phases (ie below the 

detection levels) could feasibly be present.   

The nominal target growth thickness of the as-deposited films was 500 nm 

(based on the density of CIS = 4.748 g/cm3), and all but two films (sample Al7 

and Al8) grown under a range of deposition conditions lay within +/- 25 % of this 
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thickness. This could be due to a reduction in the diameter of the spray cone 

resulting in a higher solution volume per unit area incident on the substrate. 

The photo-response of the samples have been studied using three probe 

configuration photo-voltammetry, europium nitrate solution and a white LED as 

the light source. None of the samples deposited on aluminium showed any 

photocurrent response. This is probably because a thin aluminium oxide layer 

forms between the substrate and CIS film which acts as an insulating layer, and 

does not necessarily mean that the CIS films are not photo-active. In theory, 

determining the photovoltage from the CIS film would determine whether or not 

the CIS is photo-active but this is exceedingly difficult. The measurement is not 

straightforward, and may not be possible using the three-electrode 

electrochemical cell, a limitation of the technique, hence it was not undertaken in 

this study. 

 

3.1.3 Discussion of the differences between films deposited on aluminium 

and glass substrates 

The difference in thickness of the films deposited on the aluminium and FTO 

substrates can be explained by the difference in conductivity of the two materials. 

The Al has higher conductivity than the FTO which could result in different 

electrostatic fields. This in turn could affect the spray cone. The Al could have a 

larger cone angle as the columbic repulsion between the droplets is stronger and 

results in a longer cascade of particle splitting than seen in the lower intensity 

FTO case where the final particle size is larger. This has been confirmed by 
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analysis of the images seen in Figure 9 which are from the laser particle 

visualisation study. 

 

The pictures in Figure 9 show the difference in the cone shape when spraying 

onto aluminium (Figure 9A) and FTO (Figure 9B). Figure 9A shows a larger cone 

area while the Figure 9B shows a more compact aerosol cone. This is consistent 

with the film thickness results obtained using XRD, SEM and RBS which show 

the aluminium substrate to have a thinner CIS layer than that seen on the FTO 

substrate. The more dispersed cone area results in the solution being deposited 

over a larger area but with lower thickness than the more compact cone which 

concentrates the deposition in a smaller area but with a greater thickness. 

 

3.2 Glass and Steel Needles 

 
To study the effect of needle type on the film properties, the spray conditions 

were fixed; needle-substrate distance = 50 mm, deposition temperature 450 °C, 

applied voltage = 18 kV and flow rate = 100 µl/min. The XRD patterns of the films 

deposited using the two different needles (stainless steel and glass) can be seen 

in Figure 10. The diffraction pattern was identified as the CIS chalcopyrite 

structure. No extraneous peaks were observed in the XRD patterns suggesting 

an absence of other phases. In contrast, impurity phases are observed in 

samples deposited with other methods such as spray ion layer gas reaction [20] 

and electrochemical [25]. 
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The SEM pictures of the morphology of two samples deposited with two different 

needles are shown in Figure 11. On the top, the stainless steel needle produces 

a film with a rougher layer compared to the film obtained with a glass needle. 

This suggests a different particle size distribution inside the two aerosol cones 

probably caused by a different atomisation process of the precursor solutions. 

The electric field profile is dependant on many factors, one of the most important 

being the shape of the conductive parts of the needle. For the stainless steel 

needle this includes both the needle and the electrically conducting precursor 

solution, whereas for the glass needle only the precursor solution conducts. The 

high electrical conductivity of the stainless steel needle may dominate the electric 

field profile and effectively fix the geometry of the spray, making it less sensitive 

to changes in the shape of the precursor meniscus.  

Whereas for the glass needle only the precursor solution conducts and the 

electric field in the vicinity of the tip is solely defined by the shape of the 

meniscus. As the high electric field will distort the meniscus during deposition the 

spray from the glass needle is expected to be more diffuse due to rapid changes 

in meniscus shape. Figure 12 shows the MiniSIMS depth profiles of 2 films 

sprayed using a steel and glass needle. The figure shows the profiles of the films 

desired constituents (Cu, In and S) and the main contaminants (Cr and Fe). For 

both films the level of the three absorber layer constituents are uniform and of 

identical concentration (indicated by the same level of intensity in the same 

matrix system). A difference is seen in the impurity concentration in the CIS films. 

Cr and Fe, detected at a background level in samples deposited using the glass 
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needle, are present at higher levels in the films sprayed using the stainless steel 

needle. It also seems that the contamination increases with the time of deposition 

as both traces increase towards the surface of the film. This is consistent with the 

prolonged erosion of the stainless steel needle resulting in greater concentrations 

of the contaminant elements being introduced into the spray solution. 

The acidity of the spray solution results in the degradation of the integrity of the 

internal walls of the steel needle as shown by the optical microscopy images of 

the cross section of a used steel needle in Figure 13. The solution must result in 

de-passivation of the inside of the stainless steel needle. This could occur when 

the protective chromium oxide layer has been attacked by the solution, to then 

give subsurface corrosion. 

Figure 14 shows two typical photo-voltammogram responses for thin films under 

pulsed white light illumination where the light is on for a shorter period than it is 

off. The thin film deposited with the glass needle shows a negative photocurrent 

increasing with applied negative voltage. At greater negative potentials the Fermi 

level in the film is higher, filling trap states and increasing the band bending at 

the film electrolyte interface thus giving an increased photocurrent. Also, the 

photocurrent rise time is fast, which indicates good quality material. The dark 

current is small except at negative voltages above -0.5 V where the dark current 

increases. This is attributed to different causes such as reduction and dissolution 

of the material (which dissolves into the electrolyte), pinholes or cracks going 

through to the substrate so the redox couple reacts directly with the substrate, 

and finally that the material is highly doped thus electrons can tunnel through the 
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barrier. The thin film deposited with the stainless steel needle has a larger dark 

current and has only a small photo-response, indicating that the material is of 

poor quality. 

 

4 Conclusions 
The results of the study on the needle and substrate materials are definitive. 

Neither the samples deposited with a stainless steel needle nor the samples 

sprayed on metal substrates show any photoconductivity. This behaviour is 

attributed to two different causes: the stainless steel needle contaminating the 

solution and thus the as-deposited films; secondly the metal substrate is 

corroded by the acid solution resulting in an insulating barrier between the film 

and the substrate. In this case the films could be photoactive but the current 

could be blocked by the insulating oxide layer and thus can’t be measured. The 

photovoltage could be measured instead of the current. Unfortunately these 

measurements are very difficult in a three-electrode electrochemical cell. 
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Figure 6: Diffractogram of the CuInS2 deposited at 18 kV, 450° C and 25 µl/min 

on aluminium substrates  
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applied voltage = 18 kV, a solution flow rate = 100 µl/min, solution concentration 

= 0.21 M and a pH = 2.2 

Figure 14: Photo-voltammograms of CIS deposited by glass needle (___) and 

steel needle (----). The samples were deposited using a needle-substrate 

distance = 50 mm, a deposition temperature 450 °C, an a pplied voltage = 18 kV 

and flow rate = 100 µl/min 
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Table 1: Table of the deposition conditions for the samples sprayed on FTO's 

Sample Applied 
voltage [kV] 

Flow rate 
[µl/min] 

Time 
[h] 

G1 18 100 3 
G2 18 50 6 
G3 18 25 12 
G4 16 100 3 
G5 16 50 6 
G6 16 25 12 
G7 14 100 3 
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G8 14 50 6 
G9 14 25 12 

 
 
 
 
 
Table 2: Table of the deposition conditions for the samples sprayed on Al 
substrate 

Sample Applied 
voltage [kV] 

Flow rate 
[µl/min] 

Time 
[h] 

A1 18 100 3 
A2 18 50 6 
A3 18 25 12 
A4 16 100 3 
A5 16 50 6 
A6 16 25 12 
A7 14 100 3 
A8 14 50 6 
A9 14 25 12 

 

 

Table 3: Table of the compositional analysis of the samples sprayed on Al (from 
RBS) 

Sample 
Cu 

[atomic 
fraction] 

error 
In 

[atomic 
fraction] 

error 
S 

[atomic 
fraction] 

error 
Film 

Thickness 
[µm] 

error 

A1 0.24 0.02 0.16 0.01 0.60 0.02 
 

0.48 0.02 
A2 0.22 0.01 0.25 0.02 0.49 0.1 0.53 0.01 
A3 0.21 0.01 0.23 0.02 0.58 0.02 0.50 0.01 
A4 0.26 0.02 0.25 0.02 0.49 0.01 0.53 0.02 
A5 0.24  0.01   0.16   0.01   0.60   0.01    0.41       0.03   
A6 0.28   0.02 0.22 0.01   0.50   0.02        0.62       0.01  
A7 0.28  0.02 0.22   0.02   0.50   0.02    0.89       0.01   
A8 0.22 0.01   0.25   0.01   0.53   0.03    0.89       0.03   
A9 0.28  0.01   0.22   0.01   0.50   0.03    0.57       0.01   
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Fig. 1 
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Fig. 13 
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Fig. 14 


