13 research outputs found

    Patient-Reported Side Effects of Intradetrusor Botulinum Toxin Type A for Idiopathic Overactive Bladder Syndrome

    Get PDF
    Objective: The aim of the study was a prospective assessment of patient-reported side effects in an open-label study after intradetrusor botulinum toxin injections for idiopathic overactive bladder (OAB). Patients and Methods: Botulinum toxin A injection was performed in 56 patients with idiopathic OAB. Patients were followed up for 6 months concerning side effects and patients' satisfaction. Results: Different types of side effects were assessed such as dry mouth (19.6%), arm weakness (8.9%), eyelid weakness (8.9%), leg weakness (7.1%), torso weakness (5.4%), impaired vision (5.4%) and dysphagia (5.4%). In all cases, symptoms were mild and transient. Urological complications such as gross hematuria (17.9%), acute urinary retention (8.9%) and acute urinary tract infection (7.1%) were noticed. In all cases, acute urinary retention was transient and treated with temporary intermittent self-catheterization. There was no statistically significant correlation between dosage and observed side effects. Patients' satisfaction rate was high (71.4%). Conclusion: Intradetrusor injection of botulinum toxin was associated with a high rate of neurourological side effects. In general, side effects were transient, mild and did not require special treatment. Copyright (C) 2010 S. Karger AG, Base

    Opposite transcriptional regulation in skeletal muscle of AMP-activated protein kinase gamma3 R225Q transgenic versus knock-out mice

    Get PDF
    AMP-activated protein kinase (AMPK) is an evolutionarily conserved heterotrimer important for metabolic sensing in all eukaryotes. The muscle-specific isoform of the regulatory gamma-subunit of the kinase, AMPK gamma3, has an important role in glucose uptake, glycogen synthesis, and fat oxidation in white skeletal muscle, as previously demonstrated by physiological characterization of AMPK gamma3 mutant (R225Q) transgenic (TgPrkag3(225Q)) and gamma3 knock-out (Prkag3(-/-)) mice. We determined AMPK gamma3-dependent regulation of gene expression by analyzing global transcription profiles in glycolytic skeletal muscle from gamma3 mutant transgenic and knock-out mice using oligonucleotide microarray technology. Evidence is provided for coordinated and reciprocal regulation of multiple key components in glucose and fat metabolism, as well as skeletal muscle ergogenics in TgPrkag3(225Q) and Prkag3(-/-) mice. The differential gene expression profile was consistent with the physiological differences between the models, providing a molecular mechanism for the observed phenotype. The striking pattern of opposing transcriptional changes between TgPrkag3(225Q) and Prkag3(-/-) mice identifies differentially expressed targets being truly regulated by AMPK and is consistent with the view that R225Q is an activating mutation, in terms of its downstream effects. Additionally, we identified a wide array of novel targets and regulatory pathways for AMPK in skeletal muscle

    Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores

    No full text
    International audienceIndividual high-Alpine ice cores have been proven to contain a well-preserved history of past anthropogenic air pollution in western Europe. The question of how representative one ice core is with respect to the reconstruction of atmospheric composition in the source region has not been addressed so far. Here, we present the first study systematically comparing longer-term ice-core records (1750–2015 CE) of various anthropogenic compounds, such as major inorganic aerosol constituents (NH4+^+_4, NO3−^-_3, SO42−_4^{2-}), black carbon (BC), and trace species (Cd, F−^−, Pb). Depending on the data availability for the different air pollutants, up to five ice cores from four high-Alpine sites located in the European Alps analysed by different laboratories were considered. Whereas absolute concentration levels can partly differ depending on the prevailing seasonal distribution of accumulated precipitation, all seven investigated anthropogenic compounds are in excellent agreement between the various sites for their respective, species-dependent longer-term concentration trends. This is related to common source regions of air pollution impacting the four sites less than 100 km away including western European countries surrounding the Alps. For individual compounds, the Alpine ice-core composites developed in this study allowed us to precisely time the onset of pollution caused by industrialization in western Europe. Extensive emissions from coal combustion and agriculture lead to an exceeding of pre-industrial (1750–1850) concentration levels already at the end of the 19th century for BC, Pb, exSO42−_4^{2-} (non-dust, non-sea salt SO42−_4^{2-}), and NH4+_4^+, respectively. However, Cd, F−^−, and NO3−_3^- concentrations started surpassing pre-industrial values only in the 20th century, predominantly due to pollution from zinc and aluminium smelters and traffic. The observed maxima of BC, Cd, F−^−, Pb, and exSO42−_4^{2-} concentrations in the 20th century and a significant decline afterwards clearly reveal the efficiency of air pollution control measures such as the desulfurization of coal, the introduction of filters and scrubbers in power plants and metal smelters, and the ban of leaded gasoline improving the air quality in western Europe. In contrast, NO3- and NH4+ concentration records show levels in the beginning of the 21th century which are unprecedented in the context of the past 250 years, indicating that the introduced abatement measures to reduce these pollutants were insufficient to have a major effect at high altitudes in western Europe. Only four ice-core composite records (BC, F−, Pb, exSO42−_4^{2-}) of the seven investigated pollutants correspond well with modelled trends, suggesting inaccuracies of the emission estimates or an incomplete representation of chemical reaction mechanisms in the models for the other pollutants. Our results demonstrate that individual ice-core records from different sites in the European Alps generally provide a spatially representative signal of anthropogenic air pollution trends in western European countries

    Upgrade of the SPECIES beamline at the MAX IV Laboratory

    Get PDF
    Abstract The SPECIES beamline has been transferred to the new 1.5 GeV storage ring at the MAX IV Laboratory. Several improvements have been made to the beamline and its endstations during the transfer. Together the Ambient Pressure X-ray Photoelectron Spectroscopy and Resonant Inelastic X-ray Scattering endstations are capable of conducting photoelectron spectroscopy in elevated pressure regimes with enhanced time-resolution and flux and X-ray scattering experiments with improved resolution and flux. Both endstations offer a unique capability for experiments at low photon energies in the vacuum ultraviolet and soft X-ray range. In this paper, the upgrades on the endstations and current performance of the beamline are reported

    The SPECIES beamline at the MAX IV Laboratory : a facility for soft X-ray RIXS and APXPS

    Get PDF
    SPECIES is an undulator-based soft X-ray beamline that replaced the old I511 beamline at the MAX II storage ring. SPECIES is aimed at high-resolution ambient-pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine-structure (NEXAFS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) experiments. The beamline has two branches that use a common elliptically polarizing undulator and monochromator. The beam is switched between the two branches by changing the focusing optics after the monochromator. Both branches have separate exit slits, refocusing optics and dedicated permanent endstations. This allows very fast switching between two types of experiments and offers a unique combination of the surface-sensitive XPS and bulk-sensitive RIXS techniques both in UHV- and at elevated ambient-pressure conditions on a single beamline. Another unique property of the beamline is that it reaches energies down to approximately 27 eV, which is not obtainable on other current APXPS beamlines. This allows, for instance, valence band studies under ambient-pressure conditions. In this article the main properties and performance of the beamline are presented, together with selected showcase experiments performed on the new setup

    The SPECIES beamline at the MAX IV Laboratory : a facility for soft X-ray RIXS and APXPS

    Get PDF
    SPECIES is an undulator-based soft X-ray beamline that replaced the old I511 beamline at the MAX II storage ring. SPECIES is aimed at high-resolution ambient-pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine-structure (NEXAFS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) experiments. The beamline has two branches that use a common elliptically polarizing undulator and monochromator. The beam is switched between the two branches by changing the focusing optics after the monochromator. Both branches have separate exit slits, refocusing optics and dedicated permanent endstations. This allows very fast switching between two types of experiments and offers a unique combination of the surface-sensitive XPS and bulk-sensitive RIXS techniques both in UHV- and at elevated ambient-pressure conditions on a single beamline. Another unique property of the beamline is that it reaches energies down to approximately 27 eV, which is not obtainable on other current APXPS beamlines. This allows, for instance, valence band studies under ambient-pressure conditions. In this article the main properties and performance of the beamline are presented, together with selected showcase experiments performed on the new setup
    corecore