1,146 research outputs found

    Festival on Fifth Street: A Multi-modal Streetscape and Cultural Center in Downtown Bismarck, North Dakota.

    Get PDF
    This thesis is a study conducted to explore the effects of revitalizing a downtown street emphasizing the pedestrian. Through research, the streetscape will be redeveloped for the safety of pedestrians as well as various modes of traffic. Discovering what activities the pedestrian wants on a street will bring a steady flow of people to utilize a downtown space more often and make the street more comfortable to be shared with pedestrians as well as modes of transportation. The study considers adding the elements of a complete street (drive, bike, parking, transit, and walk lanes, also, planting and furniture zones) street trees/shrubs and new paving patterns to the urban core and community space for both private and civic use. As defined from the research and along with case studies the final design of a better streetscape for pedestrians will be accomplished

    Internationalization within networks: Exploring the relationship between inward and outward FDI in China’s auto components industry

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via https://doi.org/ 10.1007/s10490-015-9422-3We explore how the outward FDI strategies of Chinese auto component MNCs are shaped by sub-contracting supply relationships established with developed market MNCs. We argue the strong presence of foreign MNC business networks developed through prior inward FDI constitutes an important home country effect influencing the outward FDI strategies of emerging market MNCs. Using the updated internationalization process model, we show how commitment to business networks is a critical mechanism driving the internationalization trajectories of Chinese auto component MNCs. This includes geographic location choices to psychically distant developed markets, strategic asset seeking orientation, pace of internationalisation and entry mode decisions

    Laboratory freeze-thaw durability of pervious concrete with respect to curing time and addition of sand, slag, silica fume, and saltguard

    Get PDF
    Concerns persist regarding pervious concrete durability in cold climates related to freeze-thaw and exposure to salt. This study was conducted as an extension to previous work regarding pervious concrete in Vermont, to further investigate freeze-thaw durability with salt exposure in a laboratory environment representative of field conditions. Pervious concrete specimen variations included the addition of sand, replacement of cement with slag, replacement of cement with slag with silica fume, curing time, and saltguard treatment. The addition of 5% sand improved freeze-thaw durability, while the addition of 10% sand led to decreased workability, density, and durability. Both the slag and slag with silica fume cement replacements improved the freeze-thaw durability in comparison to the cement only base mix. Curing time (7 to 56 days) did not influence freeze-thaw durability of pervious concrete with slag or slag with silica fume replacement. The application of liquid saltguard treatment for freeze-thaw resistance was found to be best performed using a dipping procedure over spraying the surface of the pervious concrete. Considering the results of the current work as well as previous work regarding pervious concrete conducted at the University of Vermont and Norwich University, the following general conclusions are drawn which may assist in future pervious concrete mix designs and treatments. In general, the presence of sand replacing a small portion of coarse aggregate (up to about 10%) seems to improve freeze-thaw durability of pervious concrete. Adding sand to a mix design without making adjustments to water-tocement ratio and other ingredients will most likely be not beneficial, as adding sand makes the cement ratio lower, resulting in decreased workability, and lower densities. Replacing up to 20% of Portland cement with slag or slag with silica fume also appears to have benefits in improving freeze thaw durability of pervious concrete. Use of slag or slag with silica fume seem to yield better durability than using fly ash as cement replacement. It is likely that incorporating both sand replacement and cementitious alternatives (slag and slag with silica fume) may represent a more durable pervious concrete mix. If precast pervious concrete slabs were to be used, longer curing times and coating the slabs with saltguard may prove to be beneficial; however, any environmental concerns associated with the latter need to be investigated in future studies

    A hybrid approach to beach erosion mitigation and amenity enhancement, St Francis Bay, South Africa

    Get PDF
    The St Francis Bay beach has experienced chronic erosion over the past three decades. This erosion can largely be attributed to the stabilisation of a large coastal dunefield which contributed +/- 80 percent of the sand supply to St Francis Bay. Stabilisation began in 1975 initially using plant cuttings and followed by the development of the Santareme holiday suburb resulting in complete stabilisation by 1985. Effects were felt from the late 1970‟s and since then the beach has retreated at between 0.5 - 3 m.yr-1. Erosion has encroached on beachfront properties since the early 1990‟s, leading to the placement of 3-4 m high unsightly rock revetments along much of the beach. Where properly maintained these structures have proved successful in protecting the properties behind, however exacerbated erosion of areas in front and adjacent to these structures is evident. Currently no dry beach is present at high tide for most of the year, leading to a significant reduction in beach amenity value. Several technical studies to investigate remediation of this beach erosion problem have been conducted since the early 1990‟s. This study includes investigations into the processes and dynamics of the existing environment and evaluation of the effectiveness and impacts of several elements of a hybrid approach to coastal protection and amenity enhancement for St Francis Bay beach. This proposal incorporated: Multi-Purpose Reefs (MPR‟s) offshore, for coastal protection and amenity enhancement in terms of surfing; beach nourishment with sand from the Kromme Estuary and dune rehabilitation with appropriate native sand binding species. Extensive fieldwork and data collection were conducted, this included: a series of bathymetric surveys; diving surveys and a helicopter flight; sediment sampling; beach profiling and deployment of a wave/current meter. Analysis of these data provided a greater understanding of the existing environment and dynamics of St Francis Bay and provided reliable inputs for numerical modelling. Numerical and physical modelling was conducted to assess the existing processes and conduct MPR design testing. In addition calibrated hydrodynamic modelling of the Kromme Estuary was conducted in order to assess the impacts of sand extraction from the large sand banks within the mouth of the Kromme Estuary for use as beach nourishment. Comparison of bathymetric survey data collected by the author in 2005/06 with survey data collected by the South African Navy Hydrographic Office (SANHO) in 1952 suggest a major loss of sand from the bay, with a volume difference of some 8.8 X 106 m3 calculated. Greater losses were measured between 10-15 m water depths, with shallow areas of +/- 5 m water depth, remaining more stable. This can be attributed to the presence of shallow reef and rocky substrate through much of the bay at this depth range. Monthly RTK GPS survey data from September 2006 to September 2007 indicates a total loss of 40 000 m3 over this period with the greatest losses measured along the northern part of the beach. The greatest losses were measured after large long period waves from a southerly to south-easterly direction occurred in conjunction with equinox tides in mid March 2007. Sediment sampling at over 100 locations within the bay indicated a high percentage of reef (26 percent) and fairly consistent grain size in the fine to medium size class throughout much of the beach, bay and large sand bank within the estuary. While the majority of the South African Coast is exposed to the predominant south westerly winds and waves, St Francis Bay‟s orientation means that waves from a south easterly to easterly direction dominate. The results of the detailed numerical modelling of the hydrodynamics agree with previous calculations and modelling results which concluded that strong unidirectional longshore currents occur along the headland due to the oblique angle of wave incidence and the close to parallel angle of wave incidence along the beach leads to weak longshore currents of variable direction. Erosion along St Francis Bay beach is a result of cross-shore erosion due to large waves from a southerly to easterly direction. Detached breakwaters are the most effective form of coastal protection in these environments and MPR‟s offer additional benefits over traditional breakwater structures. Results of empirical calculations and numerical modelling indicate that the MPR‟s will provide effective coastal protection through the processes of wave dissipation, wave rotation, salient formation and alteration of nearshore circulation. Physical modelling results allowed the MPR design to be assessed and refined in terms of surfing amenity enhancement and construction constraints. In addition numerical modelling results indicate that impacts due to the extraction of up to 600 000 m3 of sand from the lower Kromme Estuary result in highly localised velocity reduction, mainly limited to the extraction areas. The calculated rate of sediment influx into the lower Kromme Estuary indicates that limited extraction, in the order of 20 000 – 40 000 m3 per year, should be sustainable in the long term. Sedimentation of the lower estuary over recent years has had negative recreational and ecological impacts, through reduced navigability and water exchange respectively. Therefore both the estuary and beach systems prove to benefit from this approach. Although not investigated in detail as part of this study, evidence from numerous projects worldwide indicates that foredunes help to trap wind-blown sand on the beach and form a buffer to storm erosion, therefore dune rehabilitation with native sand-binding plant species was recommended as the third element of the proposed remediation of St Francis Bay beach
    corecore