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This thesis develops the supervised gamma process Poisson factorization (S-

GPPF) framework, a novel supervised topic model for joint modeling of count matri-

ces and document labels. S-GPPF is fully generative and nonparametric: document

labels and count matrices are modeled under a unified probabilistic framework and

the number of latent topics is controlled automatically via a gamma process prior.

The framework provides for multi-class classification of documents using a generative

max-margin classifier. Several recent data augmentation techniques are leveraged to

provide for exact inference using a Gibbs sampling scheme.

The first portion of this thesis reviews supervised topic modeling and several key

mathematical devices used in the formulation of S-GPPF. The thesis then introduces

the S-GPPF generative model and derives the conditional posterior distributions of

the latent variables for posterior inference via Gibbs sampling. The S-GPPF is shown

to exhibit state-of-the-art performance for joint topic modeling and document classi-

fication on a dataset of conference abstracts, beating out competing supervised topic

models. The unique properties of S-GPPF along with its competitive performance

make it a novel contribution to supervised topic modeling.
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Chapter 1

Introduction

This thesis considers the problem of modeling text and other count data in a fully

probabilistic framework. Furthermore, each observation within a dataset is assumed

to have a single categorical response variable. The objective is to jointly perform di-

mensionality reduction and document class label prediction using the dimensionally-

reduced space. This thesis describes the Supervised Gamma Process Poisson Factor-

ization (S-GPPF), a fully probabilistic framework to jointly model count observations,

latent factors, and observation class labels.

1.1 Problem Statement

Supervised topic modeling seeks to jointly perform dimensionality reduction into

a latent topic space and predict document class labels. Some approaches provide su-

pervision by labeling each document with its set of topics [Ramage et al., 2009, Rubin

et al., 2012]. Other approaches [Mcauliffe and Blei, 2008, Zhu et al., 2009, Chang

and Blei, 2009] assume that supervision is provided for a single response variable to

be predicted for a given document. The response variable might be real-valued or

categorical, and modeled by a normal, Poisson, Bernoulli, multinomial or other dis-

tribution (see Chang and Blei [2009] for details). Other works deal with supervision

at both the topic and document level [Acharya et al., 2013]. Some examples of docu-

ments with response variables are essays with their grades, movie reviews with their

numerical ratings, web pages with their number of hits over a certain period of time,
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and documents with category labels.

Some supervised topic models [Mcauliffe and Blei, 2008, Chang and Blei, 2009]

have found the categorical response variable difficult to model jointly with the latent

topics as the resulting inference is intractable. Maximum Entropy Discriminative

LDA (MedLDA, Zhu et al. [2009]) address this problem by solving two problems

jointly: dimensionality reduction and max-margin classification using the features in

the dimensionally-reduced space. MedLDA solves the inference problem via varia-

tional approximations. Though the update equations are simple, the approximation

negatively affects the empirical performance. Additionally, the model has both dis-

criminative and generative components combined in a unified framework, thereby

limiting the choice of priors and model flexibility. MedLDA has been extended to

Gibbs sampling based inference [Zhu et al., 2013] with a completely generative model.

However, it does so at the cost of multi-class response variable modeling. The so-

called Gibbs-MedLDA must make use of a one-versus-all (OVA) framework to extend

its binary classification to the multi-class setting.

The problem addressed in this thesis is joint modeling of dimensionality reduction

and a multi-class response variable. Furthermore, additional properties are imposed

upon the model which contribute to its novelty: the model is restricted to be fully

generative, non-parametric, and must have exact inference.

1.2 Contributions of this Thesis

This thesis addresses the supervised topic model problem by developing the super-

vised gamma process Poisson factorization framework. S-GPPF extends the Poisson

factorization model put forth by Zhou et al. [2012] to the supervised setting. S-

GPPF explicitly models multiclass document class responses, eliminating the need

2



Model Nonparametric Model Type Inference Multi-class

S-LDAi 7 Genii Variational X
MedLDAiii 7 Disc+Geniv Variational X
NP-DSLDAv X Disc+Gen Variational X
GibbsMedLDAvi 7 Gen Gibbs 7

S-GPPF X Gen Gibbs X

i Mcauliffe and Blei [2008] ii Generative iii Zhu et al. [2009] iv Discriminative+Generative
v Acharya et al. [2013] vi Zhu et al. [2013]

Table 1.1: S-GPPF and Other Related Models

for a one-versus-all framework to extend a binary classification to the multiclass set-

ting. Multiclass modeling improves classifier performance, particularly when there is

a small amount of labeled data available as jointly modeling classes serves as an in-

ductive bias in prediction of the other class labels, as in multi-task learning. S-GPPF

is a fully generative model. This greatly expands the model flexibility in generalizing

to new data and in providing interpretation for model predictions. S-GPFF is also

a non-parametric model, automatically selecting the number of topics from the data.

Finally, S-GPPF provides for exact inference via Gibbs sampling. No other supervised

topic model provides a completely Bayesian formulation of a max-margin multiclass

classification with an unbounded number of topics and closed form inference via Gibbs

sampling. These properties are summarized in Table 1.1.

This thesis is organized as follows. In Chapter 2, relevant literature is reviewed and

the mathematical machinery used to implement the framework is discussed. Chapter 3

describes the generative model and provides the Gibbs sampling update equations. It

also describes running the model in separate training and testing phases and discusses

parameter estimation. Chapter 4 uses S-GPPF to factor real data, and shows its

empirical performance to be competitive to the state of the art. Finally, Chapter 5
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concludes this thesis with a discussion of the work presented as well further avenues

of research.
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Chapter 2

Background

This chapter provides an overview of related literature and introduces the math-

ematical devices used to develop the model and its closed form updates for Gibbs

sampling. Note that a proof for each lemma presented can be found in Appendix A

or the relevant literature. The chapter is arranged as follows. Section 2.1 introduces

the mathematical notations used throughout this thesis as well as some terminology

to describe data within the S-GPPF framework. Section 2.2 introduces the broad

subject of topic modeling and discusses prominent models for both supervised and

unsupervised topic modeling. Section 2.3 provides key results that are necessary for

the derivations of the conditional posterior sampling equations for the S-GPPF and

introduces uncommon distributions used in the S-GPPF model. Finally, Section 2.4

discusses the formulation of max-margin classifiers and their multiclass extensions in

fully generative frameworks.

2.1 Notation

A consistent mathematical notation is adopted throughout this document. Bold,

upper [lower] case letters such as A [b] denote matrices [vectors]. The element of a

matrix A at row i, column j is denoted as aij. The set of real numbers is denoted as

R. The set of numbers {x ∈ R : x > 0} is denoted R+. The set of positive integers

{0, 1, 2, · · · } is denoted as Z+. IK is used to denote a K×K sized identity matrix. A

shorthand for the summation over an axis of the elements of the matrix is represented

5



as
∑
k

xdk = x.k where the index of the axis that is summed over is replaced with a dot.

The notation x| · · · is used to denote the random variable x given all other variables

in the model. The script letter N is used to denote the normal distribution.

Throughout this thesis, data is referred to within the context of text corpora.

The smallest unit of discrete data is the word, which is an item from a vocabulary

set indexed by {1, · · · , V }. A document is a sequence of words. A corpus is a set of

documents indexed by {1, · · · , D}. Using text terms for describing data is useful for

providing intuition behind modeling state variables. However, S-GPPF is not limited

to textual data; the model is readily applied to supervised factorization of generic

count matrices.

2.2 Topic Modeling

Topic modeling can be viewed as unsupervised dimensionality reduction and clus-

tering of documents in a lower dimensional latent space. Topic modeling posits that

underlying a corpus is a set of latent topics. From Blei et al. [2003], “each word is

generated from a single topic, and different words in a document may be generated

from different topics.” Each topic is a distribution over words and each document is

in turn a distribution over topics. The key insight is that given a document about a

particular topic or set of topics, the document should predominantly feature words

related to those topics. Informally, topics represent the underlying thematic content

of a document.

Underpinning the theory of topic modeling is an assumption of exchangeability of

documents and words. In other words, the ordering of words within a document and

documents within a corpus is inconsequential [Aldous, 1985]. This is clearly a simpli-

fying assumption: the order of words in a sentence is paramount to understanding.
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The exchageability assumption makes modeling and inference much more straightfor-

ward and tractable. To introduce some dependency on the ordering of words, larger

discrete units of data such as n-grams can be just as easily modeled under topic

modeling. From the De Finetti et al. [1990] representation theorem, a collection of

exchangeable random variables has a representation as a mixture distribution. In

general, the mixture can be infinite, naturally lending to nonparametric Bayesian

methods. This mixture representation motivates the most prolific topic model, latent

Dirichlet allocation (LDA, Blei et al. [2003]), which is described in detail in the next

section.

2.2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation [Blei et al., 2003] treats documents as a mixture of

topics, which in turn are defined by a distribution over a set of words. LDA assumes

the following generative process for each document from a corpus:

1. Draw the length of a document N ∼ Poisson (ξ).

2. Draw the document’s distribution over topics θ ∼ Dir(α).

3. For each word wn in the document:

(a) Draw the topic zn ∼ Multinomial(θ).

(b) Draw the word wn from p(wn|zn, β), a multinomial probability distribution.

The corresponding plate model is shown in Figure 2.1.

In its original formulation, LDA can be viewed as a purely-unsupervised form of

dimensionality reduction and clustering of documents in the topic space, although

several extensions of LDA have subsequently incorporated some sort of supervision.

Two of these extensions are described in sections 2.2.2 and 2.2.3.
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βk

N

D
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Figure 2.1: Plate model for Latent Dirichlet Allocation

2.2.2 Supervised Latent Dirichlet Allocation

Supervised latent Dirichlet allocation (sLDA, Mcauliffe and Blei [2008]) extends

LDA to include a single response variable for each document. Document responses are

easily incorporated by using the topic-word distributions (z) to regress onto a response

variable. The model also incorporates the regression coefficients in the probabilistic

framework. The document responses are linked to their regression coefficients via a

generalized linear model (GLM) framework. The leads to the following addition to

the generative process of LDA:

• Draw response variable y|Z,η, δ ∼ GLM(z̄,η, δ)

where z̄ = 1
N

N∑
n=1

zn is the mean of z for each document. The corresponding plate

model is shown in Figure 2.2. There are several features lacking from sLDA that

are present in S-GPPF. First, sLDA is a parametric model: the number of topics

K must be specified apriori. In practice, the number of topics must be determined

using cross-validation as too many topics will lead to several junk topics that provide

poor predictive information and do not represent thematic structure. The other

major drawback of sLDA is that inference is via an expectation-maximization (EM)

approximation to the maximum likelihood. EM provides an inexact estimate of model

parameters, and is subject to local maxima.

8



wd,n

Yd

zd,nθdα βk

η, δ

N

D

K

Figure 2.2: Plate model for supervised latent Dirichlet allocation

2.2.3 Maximum Entropy Discriminant Latent Dirichlet Allocation

Maximum entropy discriminant latent Dirichlet allocation (MedLDA, Zhu et al.

[2009]) differs from sLDA in that it optimizes a joint objective function that represents

a combination of max-margin learning and a Bayesian topic model. Topics learned in

MedLDA not only cluster the data but are learned in an optimal max-margin sense:

the latent topics are well suited for use as predictive features. MedLDA provides

inference via variational methods, which are detrimental to predictive performance.

Additionally, the model has both discriminative and generative components com-

bined under a single unified framework, limiting model flexibility. MedLDA is also a

parametric model, requiring the number of topics be specified apriori. MedLDA has

empirically shown very good performance, and is generally considered state of the art

for class prediction in supervised topic modeling.

Further development of MedLDA has led to the so-called Gibbs MedLDA [Zhu

et al., 2013]. Gibbs MedLDA employs a Gibbs sampling based inference framework

on a completely generative model instead of using variational approximations by

using various ideas from Gibbs-based classifiers. However, it does this at the cost of

native multiclass classification, requiring a one-versus-all framework to extend binary

predictions to the multiclass setting.
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2.2.4 Poisson Count Matrix Factorization

An alternative to an LDA-based topic model is to factorize the corpus (which

is represented by a document × word count matrix) using a latent variable model

called Poisson factor analysis (PFA, Zhou et al. [2012]). The matrix X ∈ ZD×V+ has

a Poisson likelihood over the observed counts

X ∼ Poisson (ΘΦ) , (2.1)

where Φ ∈ RK×V
+ is the factor loading matrix or dictionary, Θ ∈ RD×K

+ is the factor

score matrix.

PFA offers two major advantages over classical matrix factorization models that

rely on Gaussian observation models [Mnih and Salakhutdinov, 2007]. Gaussian-based

factorizations require intricate strategies to mitigate the effects of zeros in settings

where zeros represent unobserved entries [Hu et al., 2008]. In contrast, PFA models

zeros as the result of finite resources [Gopalan et al., 2013]. This can be easily seen

by rewriting the factorization as a two level model: first draw a budget given by xd.,

which is Poisson-distributed according to the likelihood, then allocate the budget onto

individual columns following a multinomial distribution (see lemma 2.3.4 for details).

This allows PFA to explain zeros as partially due to a lack of resources. The other

advantage of PFA is that it need only iterate over non-zero elements. In a latent

variable model each element is represented by a summation of latent elements:

xdw =
∑
k

xdwk

Under a Gaussian likelihood and with xdw = 0, each of the latent values must also be

sampled because xdwk can be both positive and negative. On the other hand, with a

Poisson likelihood as in PFA, xdw = 0 =⇒ xdwk = 0 ∀k since xdwk ≥ 0.
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PFA represents a very general framework for factorization of count matrices. A

wide variety of algorithms can all be posed as PFA by placing different prior distribu-

tions on Φ and Θ. For example, non-negative matrix factorization [Lee and Seung,

2001, Cemgil, 2009], with the objective to minimize the Kullback-Leibler divergence

between X and its factorization ΦΘ is PFA solved with maximum likelihood esti-

mation. Imposing Dirichlet priors on both the columns of Φ and Θ makes LDA

equivalent to PFA in terms of both block Gibbs sampling and variational inference.

Placing gamma priors on Φ and Θ leads to the gamma-Poisson model [Canny, 2004,

Titsias, 2008, Gopalan et al., 2014]. This flexibility makes PFA easy to extend to

non-parametric factorizations by careful prior selection. A family of negative bino-

mial (NB) processes, such as the beta-NB [Zhou et al., 2012, Broderick et al., 2015]

and gamma-NB processes [Zhou et al., 2012, Zhou and Carin, 2015], impose different

gamma priors on Θ. Marginalizing over Θ explains the latent counts using a gamma-

Poisson construction of the negative binomial distribution. For example, the beta-NB

process imposes θtk ∼ Gamma (rt, pk/(1− pk)), where {pk}1,∞ are the weights of the

countably infinite atoms of the beta process [Hjort, 1990], and the gamma-NB process

imposes θtk ∼ Gamma (rk, pt/(1− pt)), where {rk}1,∞ are the weights of the count-

ably infinite atoms of the gamma process. Both the beta- and gamma- NB process

PFAs allow the number of latent factors, K, to grow without limits [Hjort, 1990].

As its name implies, S-GPPF uses a gamma process prior to control the number

of latent factors. The unsupervised gamma process Poisson factorization [Zhou et al.,

2012] has been extended to other problem settings, including dynamic count matrices

where columns of the observed count matrix represent observations over time [Acharya

et al., 2015] and network modeling where user network information is observed in

addition to the count matrix [Zhou, 2015]. A plate model for the gamma process

11
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Figure 2.3: Plate model for Gamma Process Poisson Factorization

Poisson factorization is shown in Figure 2.3.

2.3 Useful Distributions and Results

This section describes several distributions and processes used in the modeling

framework of S-GPPF. Several properties are presented in the form of lemmas, the

proofs of which can be found in Appendix A.

2.3.1 Gamma Distribution

Throughout this thesis, a random variable x ∼ Gamma (a, b) has probability den-

sity function p(x) = 1
Γ(a)ba

xa−1exp
(
−x
b

)
. This is the shape-scale parameterization of

the Gamma distribution with shape a > 0 and scale b > 0.

2.3.2 Gamma Process

The gamma process [Ferguson, 1973, Wolpert et al., 2011] G ∼ GaP(c,G0) is

a stochastic process whose realizations are random measures: it is a probability
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distribution over measures. This is called a completely random measure [King-

man, 1967, 1992]. Realizations are drawn from the product space R+ × Ω. The

gamma process is parameterized with concentration parameter c and a finite and

continuous base measure G0 over a complete separable metric space Ω, such that

G(Ai) ∼ Gamma(G0(Ai), 1/c) are independent gamma random variables for disjoint

partition {Ai}i of Ω. The Lévy measure of the gamma process can be expressed

as ν(drdω) = r−1e−crdrG0(dω). Since the Poisson intensity ν+ = ν(R+ × Ω) = ∞

and
∫
R+×Ω

rν(drdω) is finite, following Wolpert et al. [2011], a draw from the gamma

process consists of countably infinite atoms, which can be expressed as:

G =
∞∑
k=1

rkδωk
, (rk, ωk)

iid∼ π(drdω), π(drdω)ν+ ≡ ν(drdω). (2.2)

Imposing a gamma process prior on topics, assigns weights corresponding to the atoms

of the process to the topics. This leads to the number of active topics being discovered

automatically, rather than specified apriori.

2.3.3 Conjugate Prior Distributions

For computational convenience, many of the modeling assumptions are designed

using conjugate prior distributions. Some results are presented here in the form of

lemmas for ease of deriving the conditional posterior equations in Section 3.2.

Lemma 2.3.1. If λ ∼ Gamma(r, 1/c), xi ∼ Poisson(miλ), then

λ|{xi} ∼ Gamma (r +
∑

i xi, 1/(c+
∑

imi)).

Lemma 2.3.2. If ri ∼ Gamma(ai, 1/b) ∀i ∈ {1, 2, · · · , K}, b ∼ Gamma(c, 1/d), then

b|{ri} ∼ Gamma

(
K∑
i=1

ai + c, 1/(
K∑
i=1

ri + d)

)
.

Lemma 2.3.3. If zi ∼ N(µi, σ
−1) ∀i ∈ {1, 2, · · · , K}, σ ∼ Gamma(a, 1/b), then σ|{zi} ∼

Gamma

(
a+K/2, 1/(b+

K∑
i=1

(zi − µi)2/2

)
.

13



Lemma 2.3.4. Let xk ∼ Pois(ζk) ∀k, X =
∑K

k=1 xk, ζ =
∑K

k=1 ζk. If (y1, · · · , yK) ∼

mult(X; ζ1/ζ, · · · , ζK/ζ), then the following holds:

p(x1, · · · , xK) = p(y1, · · · , yK ;X).

2.3.4 Negative Binomial Distribution

The negative binomial (NB) distribution m ∼ NB(r, p) has probability mass

function Pr(M = m) = Γ(m+r)
m!Γ(r)

pm(1 − p)r for m ∈ Z. NB variables can be con-

structed via augmentation into a gamma-Poisson construction as m ∼ Pois(λ), λ ∼

Gamma(r, p/(1− p)), where the gamma distribution is parameterized by its shape r

and scale p/(1− p). This construction can be extended via the following lemma

Lemma 2.3.5. If λ ∼ Gamma(r, 1/c), xi ∼ Poisson(miλ), then x =
∑

i xi ∼ NB(r, p),

where p =
∑

imi

c+
∑

imi
.

The Negative Binomial can also be augmented under a compound Poisson repre-

sentation [Zhou et al., 2012, Zhou and Carin, 2012] as m =
∑l

t=1 ut, ut
iid∼ Log(p), l ∼

Pois(−rln(1 − p)), where u ∼ Log(p) is the logarithmic distribution [Johnson et al.,

2005]. The two different constructions are shown graphically in Figure 2.4, and they

lead to the following lemma:

Lemma 2.3.6. [Zhou et al., 2012] If m ∼ NB(r, p) is represented under its compound

Poisson representation, then the conditional posterior of l given m and r has PMF:

Pr(l = j|m, r) =
Γ(r)

Γ(m+ r)
|s(m, j)|rj, j = 0, 1, · · · ,m,

where |s(m, j)| are unsigned Stirling numbers of the first kind. We denote this condi-

tional posterior as l|m, r ∼ CRT(m, r), a Chinese restaurant table (CRT) count ran-

dom variable, which can be generated via l =
∑m

n=1 zn, zn ∼ Bernoulli(r/(n− 1 + r)).

14
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Figure 2.4: Alternative constructions of the Negative Binomial distribution

This lemma allows leads to the next lemma, which provides closed form sampling

of the gamma shape parameter via CRT data augmentation in the gamma-gamma-

Poisson framework.

Lemma 2.3.7. If r1 ∼ Gamma(a, 1/b), r2 ∼ Gamma(r1, 1/d), xi ∼ Poisson(mir2) ∀i,

then r1|{xi} ∼ Gamma(a + `, 1/(b − log(1 − p))) where ` ∼ CRT(
∑
i

xi, r1), p =∑
i

mi/(d+
∑
i

mi) ∀i.

2.3.5 Pólya-Gamma Distribution

A random variable X has a Pólya-Gamma distribution [Polson et al., 2011] with

parameters b > 0 and c ∈ R, denotedX ∼ PG(b, c), ifX
D
= 1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/4π2

,

where gk ∼ Gamma(b, 1)’s are independent Gamma random variables, and where
D
=

indicates equality in distribution. This leads to the following lemma:

Lemma 2.3.8. [Polson et al., 2013] If ω ∼ PG(b, 0), then

exp(ψ)a

(1 + exp(ψ))b
= 2−bexp((a− b/2)ψ)

∫ ∞
0

exp(−ωψ2/2)p(ω)dω (2.3)

ω|ψ ∼ PG(b, ψ) (2.4)

Pólya-Gamma random variables are used for augmentation in sampling the state

variables that link the count matrix factorization to the document class labels in the

S-GPPF model.
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2.4 Hinge Loss and Location-mixture of Normals

The support vector machine (SVM) seeks to find a classification function f(x) by

solving the following regularized learning problem:

arg min
f(x)

γ

N∑
n=1

(1− ynf(xn))+ +R(f(x)), (2.5)

where {(xn, yn)}Nn=1 is the set of N observation tuples, xn ∈ R is a feature vector

and yn ∈ {−1, 1} is the corresponding label for observation n. (1 − ynf(xn))+ is

the hinge loss, R(f(x)) is a regularization term that controls the complexity of f(x),

and γ is a tuning parameter controlling the trade-off between error penalization and

the complexity of the classification function. The decision boundary is defined as

{x : f(x) = 0} and sign(f(x)) is the decision rule, classifying x as either −1 or 1.

Polson et al. [2011] showed that for the linear classifier f(x) = 〈η,x〉, minimizing

Eq. (2.5) is equivalent to estimating the mode of the pseudo-posterior of η:

p(η|X,Y , γ) ∝
N∏
n=1

L(yn|xn,η, γ)p(η), (2.6)

where Y = (y1, · · · , yN) , X = (x1, · · · ,xN), L(yn|xn,η, γ) is the pseudo-likelihood

function, and p(η) is the prior distribution for the vector of coefficients η. This can

be seen by taking the exponential of the negative of Eq. (2.5), where the likelihood

is given by the hinge loss and the regularization term is given by the prior on η.

Placing a normal distribution prior on η is akin to L2 regularization. Estimating the

mode of Eq. (2.6) is equivalent to finding the corresponding minimum of the loss in

Eq. (2.5) since they are related under a monotonic transform. Lemma 2.4.1 enables

one to solve the optimization problem in Eq. (2.6) using closed form Gibbs sampling

updates via data augmentation.
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Lemma 2.4.1. [Polson et al., 2011] If u ∼ N(µ, σ2), one can show that:

exp (−2u+) =

∫ ∞
0

1√
2πλ

exp

(
−(λ+ u)2

2λ

)
dλ (2.7)

where

p(λ−1|u) ∼ IG(‖u‖−1, 1) (2.8)

p(u|λ) ∼ N(µ′, σ′2) (2.9)

where µ′ = λ(µ−σ2)
(λ+σ2)

, and σ′2 = λσ2

(λ+σ2)
and IG denotes the inverse-gaussian distribution.

2.4.1 Formulation of Multiclass SVM

SVM has also been extended to solve multiclass problems [Weston and Watkins,

1998, Crammer and Singer, 2002, Lee et al., 2004]. Tewari and Bartlett [2007] de-

scribes the theoretical consistency of different formulations of multiclass SVMs. S-

GPPF uses the formulation of Lee et al. [2004] where the discriminant function for

multiclass SVM is defined as fy(x) = 〈ηy,x〉, ηy being the weight vector correspond-

ing to the class label y ∈ {1, · · · ,M}. The regularized risk minimization problem is

given as follows:

min
η

λ

2
‖η‖2 +

D∑
d=1

∑
y 6=yd

(
〈ηy,x〉+

1

(M − 1)

)
+

(2.10)

such that
M∑
y=1

〈ηy,x〉 = 0 ∀d. This formulation of multiclass SVM is amenable to

tractable inference when the features (i.e. x’s) are latent rather than directly observed

as in a hierarchical model: for example, if they represent the assignment of documents

to topics in a topic model framework.
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Chapter 3

Supervised Gamma Process Poisson Factorization

This chapter describes the supervised gamma process Poisson factorization, which

is the main contribution of this thesis. As previously discussed, the novelty of S-GPPF

stems from several properties it simultaneously enjoys. First, the model is non-

parametric; the number of topics present in a corpus are determined automatically

through the use of a gamma process prior on topic weights. Second, the model

provides for multiclass classification directly through the use of a multiclass max-

margin formulation. Third, the model is fully generative, capturing the relationships

between documents, words, topics, and class labels under a completely probabilistic

framework. Finally, the model provides for closed form, exact inference through

the use of data augmentation and Gibbs sampling. This chapter is structured as

follows. Section 3.1 describes the generative process and the latent variables of the

model. Section 3.2 details the inference procedure using Gibbs sampling. Section 3.3

describes training the S-GPPF model using documents with known class labels and

Section 3.4 details using a trained S-GPPF model to predict unknown class labels.

3.1 Generative Process

Consider a corpus of D documents with a vocabulary of size V . The corpus is

partitioned into two sets of documents: those with observed class labels (denoted as

the training set) and those without observed class labels (denoted as the testing set).

Each document label takes one of M possible values, and the notation yd denotes the
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label for the dth document. The document × word count matrix, X, is decomposed

as a product of two latent matrices (Θ and Φ) and a topic strength vector (r) under a

Poisson likelihood. The generative process is described below, and the corresponding

plate model describing the family of distributions of which S-GPPF is a member is

shown in Figure 3.1.

For the dth document, sample θdk ∼ Gamma (τd, 1/exp (−βdk)) ∀k, where τd ∼

Gamma (c0, 1/d0), βdk ∼ N
(
0, α−1

dk

)
, and αdk ∼ Gamma (g0, 1/h0). θdk represents the

affinity of the dth document to the kth topic. Ideally, θdk would be used as feature to

predict document class labels. However it is not tractable to do so when using a multi-

class max-margin classifier. Instead, βdk is sampled as the per-document features

for classification. From the properties of Gamma distribution, we have E(θdk) =

E(τd exp (βdk)) and hence any change in θdk gets reflected in βdk monotonically under

a logarithmic transformation.

For the kth topic, sample φk ∼ Dir(ξ) where φk = (φwk)
V
w=1 and ξ is a V−dimensional

parameter. Each φwk maps the affinity of word w onto topic k. A Dirichlet prior is

used instead of a hierarchical gamma structure to improve model identifiability.

The strength of the kth topic is sampled as rk ∼ Gamma (γ0/K, 1/exp (−ζk)),

where γ0 ∼ Gamma (a0, 1/b0), ζk ∼ N
(
0, ν−1

k

)
, and νk ∼ Gamma (u0, 1/v0). This

places a gamma process prior on the topic strengths, approximating an infinite number

of topics with a finite number K; only a small number of topics will be appreciably

larger than zero due to the stick-breaking construction of the gamma process. Ideally,

the rk’s would be used directly as part of the classification weights but as in the case of

θdk this is intractable under a max-margin classifier. Instead, the ζk’s are used, which

are monotonically proportional to the rk’s under expectation. The ζk’s represent the

strength of the topics for the linear classifier.
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The count corresponding to the dth document and the wth word is sampled as

xdw ∼ Poisson

(∑
k

θdkφwkrk

)
. Alternatively, due to the property of Poisson distri-

bution, one may write xdw =
∑
k

xdwk, where xdwk ∼ Poisson (θdkφwkrk) ∀k. Each

latent count variable represents the contributions of the kth topic onto the (d, w)th

entry in the document × word matrix.

The class label yd ∈ {1, 2, · · · ,M} for the dth document is calculated using a multi-

class max-margin classifier. From the work of Lee et al. [2004], a pseudo-likelihood

of the class label yd is defined as:

q(yd| · · · ) = exp

(
−
∑
y 6=yd

(
zyd +

1

(M − 1)

)
+

)
(3.1)

where zyd ∼ N

(∑
k

ηykβdkζk, σ
−1

)
, σ ∼ Gamma (s0, 1/t0) and

M∑
y=1

zyd = 0. ηy =

(ηyk)
K
k=1 is the set of weights corresponding to the yth class and is generated as ηyk ∼

N
(
0, ε−1

k

)
, εk ∼ Gamma (e0, 1/f0). ηyk represent the classifier weights for the kth

topic to the yth class label. This is the same formulation of the constrained multiclass

SVM as described in Section 2.4.1 with the auxiliary variables {zyd} introduced to

provide closed form inference of the auxiliary variables {βdK} and {ζk} via a data

augmentation scheme.

3.2 Inference

Given the S-GPPF sampling model and a corpus, the main problem is posterior

inference: finding the distribution of the model parameters given the observed data.

Since S-GPPF seeks to also predict test set class labels, the unobserved class labels

are also considered as unknown parameters. One method for estimating the poste-

rior is through the use of Markov chain Monte Carlo Methods (MCMC, Hoff [2009],
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Figure 3.1: Plate Diagram of Supervised GPPF
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Gamerman and Lopes [2006]). MCMC methods describe Markov chains that are easy

to sample from and whose invariant distributions are the target posterior. Then the

samples from the Markov chain are also distributed according to the posterior, and

the distribution can be estimated via Monte Carlo integration. For a Markov chain

to converge to its invariant distribution regardless of its initialization, it must be

irreducible, invariant, and aperiodic [Cosma and Evers, 2010].

Hierarchical Bayesian models such as S-GPPF naturally lend themselves to Gibbs

sampling [Cosma and Evers, 2010, Hoff, 2009, Gamerman and Lopes, 2006]. In Gibbs

sampling, the conditional posterior distributions for each parameter are sampled pro-

gressively one by one (there are other Gibbs sampling schemes, such as random scan

but systematic scanning is considered here for simplicity). Parameters are drawn

using the most recent samples of all of the other parameters. It has been shown that

Gibbs sampling schemes are invariant [Cosma and Evers, 2010], so to show that a

Gibbs sampling scheme is valid for posterior inference it must be shown to be aperi-

odic and irreducible.

The proposed Gibbs sampling scheme for S-GPPF is easily shown to have both

of these properties. With the exception of the latent count variables (xdwk), all of

the parameters are drawn either from gamma or normal distributions (excluding the

augmented variables, since they are marginalized out). As such, each variable has

positive probability mass on its entire state-space (either R, R+, or RK). This means

that regardless of the current state of the chain, there is some positive (although

it may be very small) probability to move to any other valid state. Therefore, the

Gibbs sampling scheme forms an irreducible Markov chain. Furthermore, since the

entire state space has positive probability mass, there is positive mass on staying in

the same state. This implies that the chain is also aperiodic and therefore the Gibbs
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sampling scheme is valid for posterior inference.

Enumerated below are the conditional posterior distributions for each of the model

parameters. Full derivations of the sampling equations are provided in Appendix B.

Sampling of (xdwk)
K
k=1

(xdwk)
K
k=1| · · · ∼ mult




rkθdkφwk
K∑
k=1

rkθdkφwk


K

k=1

;xdw

 (3.2)

Sampling of θdk

θdk| · · · ∼ Gamma (τd + xd.k, 1/ (exp (−βdk) + rk)) (3.3)

Sampling of τd

ldk| · · · ∼ CRT (xd.k, τd) (3.4)

τd| · · · ∼ Gamma

(
c0 +

∑
k

ldk, 1/(d0 −
∑
k

log(1− pdk))

)
, (3.5)

where pdk = rk
exp(−βdk)+rk

.

Sampling of φk

φk| · · · ∼ Dir (ξ1 + x.1k, · · · , ξV + x.V k) (3.6)
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Sampling of rk

rk| · · · ∼ Gamma (γ0/K + x..k, 1/ (exp (−ζk) + θ.k)) (3.7)

Sampling of γ0

lk| · · · ∼ CRT (x..k, γ0/K) (3.8)

γ0| · · · ∼ Gamma

(
a0 +

∑
k

lk, 1/(b0 −
1

K

∑
k

log(1− pk))

)
, (3.9)

where pk = θ.k
exp(−ζk)+θ.k

.

Sampling of σ

σ| · · · ∼ Gamma

(
s0 +

MD

2
, 1/t′0

)
, (3.10)

where t′0 =

t0 +
∑
y,d

(zyd −
∑
k

ηykβdkζk)
2

2

.

Sampling of εk

εk| · · · ∼ Gamma

(
e0 +

M

2
, 1/

(∑
y

η2
yk

2
+ f0

))
(3.11)

Sampling of νk

νk| · · · ∼ Gamma

(
u0 +

1

2
, 1/

(
ζ2
k

2
+ v0

))
(3.12)
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Sampling of αdk

αdk| · · · ∼ Gamma

(
g0 +

1

2
, 1/

(
β2
dk

2
+ h0

))
(3.13)

Sampling of zyd

Since
M∑
y=1

zyd = 0, we need only sample {zyd}y 6=yd for each document d and assign

zydd = −
∑
y 6=yd

zyd. Then for y 6= yd:

γyd| · · · ∼ IG

∣∣∣∣∣zyd + 1
M−1

2

∣∣∣∣∣
−1

, 1

 (3.14)

zyd| · · · ∼ N
(
µ′, σ′2

)
(3.15)

where σ′2 =
γyd

γydσ+1/4
and µ′ = σ′2

(
σ
∑
k

βdkηykζk − 1
4γyd(M−1)

− 1
2

)
, and IG is used to

denote the inverse-Gaussian distribution.

Sampling of ηy

ηy| · · · ∼ N (µy,Σy) , (3.16)

where Σ−1
y =

[
α1IK + σ (ζIK)

∑
d

(β′dβd) (ζIK)

]
and

µy = Σy

(
σηy (ζIK)

∑
d

zydβ
′
d

)

Sampling of βd

ωdk| · · · ∼ PG(xd.k + τd, βdk + log(rk)) (3.17)

βd| · · · ∼ N (µd,Σd) , (3.18)
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where Σ−1
d =

[
(αdIK) + (ωdIK) + σ(ζIK)

∑
y

[
η′yηy

]
(ζIK)

]
,

µd =

[
σ
∑
y

[zydηy] (ζIK)− ωd(log(r)IK) + νd
2

]
Σd, and νd = {xd.k − τd}Kk=1.

Sampling of ζ

ωk| · · · ∼ PG(x..k + γ0/K, log(θ.k) + ζk) (3.19)

ζ| · · · ∼ N (µ,Σ) , (3.20)

where Σ−1 =

[
(α2IK) + (ωIK) + σ

∑
y,d

(βdIK)η′yηy(βdIK)

]
,

µ =

[
σ
∑
y,d

zydηy(βdIK)− log(θ)(ωIK) + λ/2

]
Σ, λ = {x..k − γ0/K}Kk=1, and

θ = {θ.k}Kk=1.

3.3 Training Phase

In the training phase, the document class labels are observed and all model vari-

ables are sampled in a Gibbs sampling scheme. The implementation used in this

thesis forms parameter estimates after the training phase by computing the sample

average as a Monte Carlo approximation of the posterior mean. This provides a point

estimate for parameters that can be easily used for sampling in the test phase.

It is worth noting that since topics are related to both observed counts and class

labels only through inner products, the resulting posterior distribution is not identi-

fiable: the exact index, k, for a specific topic will vary between runs of the Markov

chain. This has important ramifications for propagating multiple samples instead of

single point estimates of parameters for the test phase. It is certainly possible to

run separate chains for each sample, but care must be taken when concatenating the
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samples: results should only be combined at the level of the observed data, i.e. it is

invalid to combine the samples of θdk from multiple chains as draws from the same

posterior but it is valid to combine
∑
k

θdkrkφwk across chains as all being drawn from

the same posterior.

The experiments presented in Chapter 4 use only point estimates of the posterior

mean from the training phase. This makes the implementation simpler and eases

the computational burden since only a single chain is run in test phase, but it is a

simplification. In fact, using a point estimate gives up some of the advantage gained

by using a fully generative framework with exact inference as an estimate of the full

posterior distribution is no longer available. Incorporating better estimates between

training and test phases provides an opportunity for improvement upon the work

presented in this thesis.

3.4 Test Phase

The goal in the training phase it to estimate the model parameters that are not

specific to any document. The test phase then uses these estimates to sample the

posterior of the document specific parameters and uses the result to predict the un-

known class labels. In test phase, the posterior mean estimates from training for all

of the parameters that not document specific are held fixed. Gibbs sampling is then

run on only those variables that are document specific. This means that for each test

document d, only {θdk}Kk=1,{xdwk}K,Vk=1,w=1, βd, and {αdk}Kk=1 are sampled. Since the

class labels are unknown, βd is sampled without the influence of zyd, σ, and yd. To

estimate the class labels, zyd is estimated by its mean, given by
∑
k

βdkηykζk. The class

labels are then estimated by maximizing the likelihood given in Eq. (3.1).
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Chapter 4

Experiment Analysis

This section describes using the S-GPPF model on two different datasets: a syn-

thetic dataset used to explore and visualize the latent variables of the model and a

corpus of abstracts from several conferences to compare the performance of S-GPPF

against competing supervised topic models. S-GPPF is shown to have state-of-the-art

levels of performance for classification of document labels.

4.1 Factorization of Synthetic Data

This section considers a synthetic corpus to gain intuition into the model parame-

ters. The data has 90 documents and 60 words arranged in a block diagonal structure.

The upper third of the block diagonal are assigned a count value of one, the middle

third are assigned a count value of two, and the final third block diagonal are assigned

a value of three. All other values in the document × word matrix are set to zero.

Accordingly, the first third of the documents are assigned a class label of one, the

second third are assigned a class label of two, and the final third are assigned a class

label of three. The document × word matrix and class labels are shown in Fig 4.1.

Sampling is run for 1,000 iterations, with the first 500 discarded and the last 500

averaged to generate point estimates of the posterior mean for the parameters. These

estimates are what is displayed throughout this section.

The S-GPPF accurately models the synthetic data. To illustrate this, the original

document × word count matrix and document class labels are estimated from the
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(b) Document class labels.

Figure 4.1: Synthetic block diagonal data

model parameter estimates. Since the data is assumed to be drawn from a Poisson

likelihood, the count matrix is estimated as x̂dw =
K∑
k=1

θdkrkφwk. Similarly, the zyd

parameters are estimated by their mean, ẑyd =
∑
k

βdkζkηyk. The class labels can then

be estimated by Eq. (3.1). These parameter estimates are shown in Fig 4.2.

The next thing to evaluate is whether the Markov chain has converged to the

stationary distribution and if the non-parametric process is working as expected.

An ad-hoc method for assessing the convergence of Gibbs sampling is to examine

trajectory plots of parameter samples. Such trajectory plots are generated for the

strength of the topics, given by rk in Figure 4.3. The red region on the plot highlights

the “burn-in” iterations. The trajectory plots are indicative of a chain which has

reached its invariant distribution. From the clearly defined block diagonal structure

in the input data, three distinct topics should emerge from the data. The gamma

process prior on rk allows for the automatic discovery of the number of topics. In

these tests, the number of topics is artificially set to ten, but the estimate for rk
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Figure 4.2: Reconstructed block diagonal X and z matrices

(see Figure 4.3) assigns significant weight to only three topics, which is the desired

behavior in non-parametric modeling. A parametric model (such as LDA) assigns

weights for all ten topics.

To further explore and understand the latent topic space of S-GPPF, it is useful to

examine the mappings from documents and words to latent topics. Given the block

diagonal input structure, each third of documents should map onto its own topic. The

affinity between document d and topic k is computed as θdk
√
rk. This quantity can be

thought as the degree to which the content of document d is from topic k. Likewise,

each third of the vocabulary should map onto a single topic, and that topic should be

the same as the corresponding third of documents (due to the block diagonal input

structure). The affinity between word w and topic k is computed as φwk
√
rk. This

quantity gives the relative weighting for a word w onto the topics. The document-

and word- topic affinities are shown in Figure 4.4, and have the expected structure.
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Figure 4.3: Active topics in synthetic data

Note that the product of these matrices leads to the estimate for xdw, as shown in

Figure 4.2.

Also of value to explore are the higher level document and class mappings that

are used for class label prediction. Recall that using the document-to-topic map-

pings given by θdk
√
rk directly as the classification feature matrix is intractable under

the multiclass max-margin formulation used in S-GPPF. Instead, βdk and ζk are in-

troduced, which are logarithmically proportional under expectation to θdk and rk,

respectively. Ideally, the higher level document-to-topic affinities given by βdk should

have similar structure as θdk. The classification weights to assign class label y from

topic topic k is given by ηykζk. Under the block-diagonal structure of the data, the

class label of each third of documents should map onto the same latent topic as its

corresponding documents. These quantities are shown in Figure 4.5, and have the

desired structure. Note that the product of these matrices leads to the estimate for
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Figure 4.4: Document- and word- topic affinities in synthetic data

zyd, as shown in Figure 4.2.

4.2 ACM Conference Abstracts Classification

The ACM conference abstracts text corpus described by Acharya et al. [2013] con-

sists of abstracts collected from four data mining related conferences and two VLSI

conferences. The data mining conferences are Knowledge Discovery and Data Mining

(KDD), the International Conference on Machine Learning (ICML), the Special Inter-

est Group on Information Retrieval (SIGIR), and the International World Wide Web

conference (WWW). The two VLSI conferences are the International Symposium on

Physical Design (ISPD), and the Design Automation Conference (DAC). A total of

5,755 abstracts were collected. The documents in this dataset are abstracts and the

class labels are the conferences in which each abstract appeared.

The abstracts are preprocessed as follows: each abstract is converted to a count

vector under a bag-of-words assumption. Bag-of-words assumes that the specific
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Figure 4.5: Class regression parameters in synthetic data

ordering of words within a text document is unimportant (this is not really the case:

consider any paragraph in this document as an example). Hence each document is

represented as a “bag” of the words found in the document. Raw text is tokenized

using the Natural Language Tool Kit (NLTK, Loper and Bird [2002]) word tokenizer

with punctuation and numeric words stripped from the resulting tokens. Tokens

are stemmed using a Porter stemmer [Porter, 2001]. The set of English stop words

provided by NLTK are removed from the resulting tokens. Additionally, rare corpus

words (words that appear in less than 1% of all documents) and corpus specific stop

words (words that appear in more than 50% of all documents) are also removed.

After preprocessing, the vocabulary size is 971 words. A histogram of document

lengths (in words) is provided in Figure 4.6. The black vertical lines indicate the

edges of bins used to compute classification accuracy vs. document length. The

document frequency of words and the number of document per length bin are shown

in Figure 4.7.
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Figure 4.6: Distribution of abstract lengths (in words) of ACM conference data. Black
lines denote the bins used for computing classification accuracy vs doc length (see
Figure 4.9)
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Figure 4.7: Dataset statistics for ACM conference abstracts.
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The following models are also run on the ACM conference abstracts dataset with

identical preprocessing to compare against S-GPPF. All model parameters were se-

lected using a standard 10-fold cross validation on the entire dataset.

• Maximum entropy discrimination latent Dirichlet allocation (MedLDA, Zhu

et al. [2009]). Model parameters are the number of topics, K = 50, and the

max-margin penalty factor, C = 30. This model is intended as a strong baseline

as it jointly models both the class labels and count matrix, and is generally

considered state-of-the-art in supervised topic modeling.

• Latent Dirichlet allocation [Blei et al., 2003] with support vector machine (LDA

+ SVM). LDA is fit on the entire dataset, and the resulting document-topic

matrix (the θ parameter from LDA) is used as the feature matrix for a linear

support vector classifier. Model parameters are the number of topics, K = 50,

and the standard linear SVM tuning parameters with margin penalty C = 1.0.

This model is intended as a weak baseline, as topics and class labels are learned

in a disjoint manner.

Tests are run as follows. Twenty five independent splits of the data into equal test

and train sets are generated, maintaining class proportions to be the same as in the

whole dataset. Results are aggregated across independent splits, computing the mean

and standard deviation (the standard deviation is represented in performance plots

as error bars). Within this framework, accuracy is compared against two different

variables: amount of training data and document length. The model is sampled for

two thousand burnin and two thousand collection iterations for each independent run

of the model.
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The first test compares classification accuracy vs. the amount of training data.

For each train/test split, only a portion of the training data is available to the mod-

els. The training data is subsampled to maintain relative class proportions in 10%

increments up to 100% of the training data. The results of this test are shown in Fig-

ure 4.8. Since S-GPPF is a fully generative model, it outperforms the state of the art

model, MedLDA, by a large margin when there is limited training data available. By

using fully probabilistic priors, S-GPPF better generalizes to unseen data than dis-

criminative models. The LDA + SVM performs worse than S-GPPF and MedLDA,

which both jointly learn the topics and labels. This is exaggerated for small amounts

of training data since the topics learned in the disjoint model are not well suited to

the classification task.

The second test compares classification accuracy vs. document length. All of

the training data is available in these tests. The documents are binned in to equal

volume bins (see Figure 4.6 for the bin placement and Figure 4.7 for the bin volume).

Classification accuracy is then computed for each of the bins. The results of the

test are shown in Figure 4.9. These plots show that S-GPPF uniformly outperforms

competing supervised topic models for widely varying document lengths, a useful

property for modeling the long tail often found in real-world data [Gopalan et al.,

2013].

The topics learned in S-GPPF are easily interpreted. To visualize this, a single run

of S-GPPF is considered using all of the available training data. For each conference,

the document-to-topic weights (θdk
√
rk) are summed along the document axis and the

topic with the greatest weight for each conference is considered. Each topic can be

viewed as a distribution over words, given by φwk. The top ten words (by weight) for

the top topic of each conference are shown in Table 4.1. The data mining conferences
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Figure 4.8: ACM conference abstracts classification accuracy vs. percent of training
data observed
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Figure 4.9: ACM conference abstracts classification accuracy vs. document length in
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KDD ICML SIGIR WWW ISPD DAC

deal algorithm dynamic server plan system
mixture outperform return weight router device

algorithm minimum query appropriate device appropriate
people propose test provide algorithm throughput
growth embed baseline system chain life
propose baseline insert difficulty baseline simulate

approximate gather minimum utility throughput methodology
set retrieval reliable deal retrieval period

differentiable configure period baseline outperform arising
minimum set approximate internet worst process

recall solve independent procedure learn technology
decision architecture propose determine busy solution
retrieval context textual ir view hidden
strong approximate latter supply intelligent partial

Table 4.1: Top topic for each conference

(KDD, ICML, SIGIR, and WWW) feature words related to data mining: minimum,

query, approximate, etc. The VLSI conferences (ISPD and DAC) prominently feature

words related to the VLSI field: router, throughput, device, etc. This indicates that

the Poisson factorization captures the low dimensional topic space known to exist in

the data.
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Chapter 5

Conclusion

S-GPPF represents a novel supervised topic model due to its unique properties.

S-GPPF addresses the supervised topic modeling in a fully probabilistic framework.

It directly models multiclass document labels and automatically selects the number

of latent topics present in a corpus. Furthermore, S-GPPF provides for exact infer-

ence by using several data augmentation techniques for closed form Gibbs sampling

updates. S-GPPF is shown to provide state-of-the-art levels of performance, simul-

taneously learning clearly interpretable features and document class labels. Because

of its fully probabilistic framework, S-GPPF gains further advantage over competing

models when the amount of training data available is limited.

This chapter is structured as follows. Section 5.1 provides suggestions on imple-

menting and running S-GPPF in practical applications. Section 5.2 concludes this

thesis with a discussion of further avenues of research and provides final thoughts.

5.1 Practical Suggestions

S-GPPF is a good choice for document classification when the resulting classifier

should use clearly interpretable features in its decisions. The latent topic representa-

tion makes the S-GPPF model easy to interpret, as documents and class labels are

represented as mixtures of topics which are in turn mixtures of words. The fully gen-

erative nature of S-GPPF makes the class-decision rules easy to understand as they

are given by probability distributions. S-GPPF also gains clear advantage when the
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number of topics present in a corpus is not easily discernible or known apriori : extra

topics are automatically pulled to zero to avoid junk topics. This means that S-GPPF

can be used to estimate the number of clusters in a labeled corpus. Additionally, S-

GPPF gains substantial computational benefits by not requiring a cross-validation

over the number of topics.

The implementation of S-GPPF used in this thesis leads to several suggestions

regarding efficient computation and numeric stability in practice. This implemen-

tation makes use of the Armadillo C++ library for linear algebra [Sanderson, 2015]

and the GNU Scientific Library [Galassi et al., 2010] for random number generation.

The conditional posterior sampling requires the inversion of K×K precision matrices

for multivariate normal sampling. Recognizing that precision matrices are positive

semi-definite allows for more stable and faster methods of inversion such as through

the use of the Cholesky decomposition, which is provided by the Armadillo library.

Samplers for several of the distributions found in the conditional posterior updates

are not readily available in common libraries: namely the Chinese restaurant table

count, Pólya-Gamma, and inverse-Gaussian random variables. The Chinese restau-

rant table can be implemented as a sum of Bernoulli draws with varying parameters

[Zhou et al., 2012] and inverse-Gaussian sampling can be implemented using a Gaus-

sian sampler [Michael et al., 1976]. Polson et al. [2013] describe an efficient sampler for

Pólya-Gamma random variables, but it requires integer valued parameters. S-GPPF

makes use of Pólya-Gamma random variables with real-valued parameters, requiring

a truncation of an infinite sum of gamma distributed random variables. Such a sum

works wells for most parameter values, but becomes unstable for small floating point

values of parameters. The parameter values required for S-GPPF are very small due

to the sparsity in latent topics. The implementation used in this thesis corrects for
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this floating point bias by scaling the result of the Pólya-Gamma sampler to ensure

that the first moment of the resulting samples maintains the expected value.

Other variables in the model are subject to floating point errors when they become

sufficiently small. Specifically, rk and θdk (since they are sparse in topic space and are

used under a logarithmic transform in the sampling of other variables) and αdk, εk,

and νk (since they represent precisions). Since the values need only be small compared

to the active topic values, a minimum value clamp can be used to prevent numerical

instabilities. The implementation used here clamps these variables to greater than

10−10.

5.2 Discussion and Future Work

There is room for improvement in the classification performance of S-GPPF due to

the multi-class max-margin formulation used. The formulation requires the introduc-

tion of the latent zyd random variables, which add Gaussian noise to the classification

features. The zyd’s are needed due to the sum-to-zero constraint of Eq. (2.5). This

constraint makes it intractable to directly link η, β, and ζ to the class labels. Adopt-

ing a different multi-class max-margin formulation or data augmentation strategy

that does not require the introduction of z should lead to an increase in classifier

performance. Additionally, the current formulation does not fit intercepts. Adding

an intercept term to the learned parameters could also boost classifier performance.

The multi-class nature of S-GPPF can be extended to a multi-task setting. The

latent variables are already formulated in a multi-task framework: different class

labels serve as an inductive bias for inferring document labels. The existing classifier

structure suggests easy extensions to problems where a vector of binary labels are

observed for each document rather than a single multi-class response variable. In such
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a problem, a document may belong to multiple classes: for instance, a movie may

belong to multiple genres. The framework can also be extended to the active learning

setting similar to Acharya et al. [2013]. In the active learning setting, classification

labels are very expensive to obtain. The modeling process formulates queries of the

training examples for which class labels would be the most informative in modeling.

S-GPPF fits neatly into a group of several models which extend non-parametric

PFA to problems in which information in addition to the count matrix is observed.

In S-GPPF, document class labels are also observed. Acharya et al. [2015] extends

PFA to modeling count matrices when the columns are temporally related. Zhou

[2015] jointly models count matrices along with network side information. There is

potential to unify these modeling extensions under a single, broad non-parametric

PFA framework. Such a framework could jointly model count matrices with the side

information available on a case-by-case basis.

This thesis developed and presented the supervised gamma process Poisson fac-

torization model. S-GPPF represents a novel supervised topic model; it is fully gen-

erative and nonparametric, allows for multi-class classification, and provides for exact

inference via Gibbs sampling. S-GPPF is shown to outperform MedLDA and other

competing topic models for classification. S-GPPF fits neatly into a framework of ex-

tending the broad class of algorithms that can be unified under Poisson factorization

to including additional side information.
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Appendix A

Proofs of Lemmas

Proof of lemma 2.3.1. The proof follows directly from application of Bayes’ rule

p(λ|{xi}) ∝ p(λ|r, c)
∏
i

p(xi|mi, λ)

∝ λr−1exp (−λc)
∏
i

λxiexp (−miλ)

= λ
r+

∑
i
xi−1

exp

(
−λ

(
c+

∑
i

mi

))

=⇒ λ|{xi} ∼ Gamma

(
r +

∑
i

xi, 1/

(
c+

∑
i

mi

))

Proof of lemma 2.3.2. This lemma follows directly from application of Bayes’ rule

p(b|{ri}) ∝ p(b|c, d)
∏
i

p(ri|ai, b)

= Gamma (b; c, 1/d)
∏
i

Gamma (ri; ai, 1/b)

∝ bc−1exp (−bd)
∏
i

baiexp (−rib)

= b
c+

∑
i
ai−1

exp

(
−b

(
d+

∑
i

ri

))

=⇒ b|{ri} ∼ Gamma

(
c+

∑
i

ai, 1/

(
d+

∑
i

ri

))
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Proof of lemma 2.3.3. This lemma follows directly from application of Bayes’ rule

p(σ|{zi}) ∝ p(σ|a, b)
K∏
i=1

p(zi|µi, σ)

= Gamma (σ; a, 1/b)
K∏
i=1

N
(
zi;µi, σ

−1
)

∝ σa−1exp (−σb)
K∏
i=1

σ1/2exp

(
−σ (zi − µi)2

2

)

= σa+K/2−1exp

(
−σ

(
b+

K∑
i=1

(zi − µi)2

2

))

=⇒ σ|{zi} ∼ Gamma

(
a+K/2, 1/

(
b+

K∑
i=1

(zi − µi)2

2

))

Proof of lemma 2.3.4. The joint distribution for {yk}Kk=1 is given as

p(y1, · · · , yK ;X) = X!
K∏
k=1

(ζi/ζ)yk

yk!

=
X!

ζX

K∏
k=1

ζykk
yk!

∝ 1

[
K∑
k=1

yi = X

]
K∏
k=1

ζykk
yk!

which has the same form as p(x1, · · · , xK) since
K∑
k=1

xk = X by construction.

Proof of lemma 2.3.5. Since a summation of Poisson random variables is also a Pois-

son, x ∼ Poisson

(
λ
∑
i

mi

)
. Integrating out λ gives the following form for the
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distribution of x:

p(x) =

∞∫
0

Gamma (λ; r, 1/c) Poisson

(
x;λ

∑
i

mi

)
dλ

=

∞∫
0

λr−1exp (−λc)
crΓ(r)

(
λ
∑
i

mi

)x
x!

exp

(
−λ
∑
i

mi

)
dλ

=

(∑
i

mi

)x
cr

x!Γ(r)

∞∫
0

λr+x−1exp

(
−λ

(
c+

∑
i

mi

))
dλ

=

(∑
i

mi

)x
cr

x!Γ(r)

Γ(r + x)(
c+

∑
i

mi

)r+x
=

Γ(r + x)

x!Γ(r)


∑
i

mi

c+
∑
i

mi

x1−

∑
i

mi

c+
∑
i

mi

r

=⇒ x ∼ NB

r,
∑
i

mi

c+
∑
i

mi



Proof of lemma 2.3.6. The derivation of this lemma is found in Zhou et al. [2012].

Proof of lemma 2.3.7. Since the summation of Poisson random variables is also Pois-

son, x =
∑
i

xi ∼ Poisson

(
r2

∑
i

mi

)
. From lemma 2.3.5, this implies x ∼ NB(r1, p)

where p =

∑
i
mi

d+
∑
i
mi

. Then from the compound Poisson construction of the Negative

Binomial, l ∼ Poisson (−r1 log(1− p)). From lemma 2.3.6, l|x, r1 ∼ CRT(x, r1). Fi-

nally, by the gamma-Poisson conjugacy (lemma 2.3.1),

r1|l, · · · ∼ Gamma (r + l, 1/(b− log(1− p)), which is the desired result.
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Proof of lemma 2.3.8. The derivation of this lemma is found in Polson et al. [2013].
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Appendix B

Conditional Posterior Derivations

Sampling of (xdwk)
K
k=1

The conditional posterior of (xdwk)
K
k=1 follows directly from the multinomial-Poisson

distribution equivalence lemma 2.3.4.

p(xdw1, · · · , xdwK | · · · ) ∝
∏
k

p(xdwk|rk, θdk, φwk)

=
∏
k

Poisson (xdwk; rkθdkθdk)

xdw =
∑
k

xdwk

(xdwk)
K
k=1| · · · ∼ mult




rkθdkφwk
K∑
k=1

rkθdkφwk


K

k=1

;xdw

 (B.1)

Sampling of θdk

The conditional posterior of θdk follows directly from the gamma-Poisson conjugacy

lemma 2.3.1.

p(θdk| · · · ) ∝ p(θdk|βdk, τd)p(xd.k|rk, θdk)

= Gamma (θdk; τd, exp (βdk)) Poisson (xd.k; rkθdk)

θdk| · · · ∼ Gamma (τd + xd.k, 1/ (exp (−βdk) + rk)) (B.2)
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Sampling of τd

The conditional posterior of τd follows by repeated application of the CRT aug-

mentation lemma 2.3.7. Introduce ldk ∼ Poisson (−τd ln (1− pdk)) where pdk =∑
k
rk

exp(−βdk)+rk
. The posterior is then found by application of the gamma-Poisson conju-

gacy lemma 2.3.1. Then

ldk| · · · ∼ CRT (xd.k, τd) (B.3)

τd| · · · ∼ Gamma

(
c0 +

∑
k

ldk, 1/(d0 −
∑
k

log(1− pdk))

)
(B.4)

Sampling of φk

p(φk| · · · ) ∝ p(φk|ξ)
∏

p(x.wk|rk, θ.k, φwk)

φk| ∼ Dir (ξ1 + x.1k, · · · , ξV + x.V k) (B.5)

Sampling of rk

The conditional posterior of rk follows directly from the gamma-Poisson conjugacy

lemma 2.3.1.

p(rk| · · · ) ∝ p(rk|γ0, ζk)p(x..k|rk, θ.k)

= Gamma (rk; γ0/K, exp (ζk)) Poisson (x..k; rkθ.k)

rk| ∼ Gamma (γ0/K + x..k, 1/ (exp (−ζk) + θ.k)) (B.6)

Sampling of γ0

The conditional posterior of γ0 follows by repeated application of the CRT aug-

mentation lemma 2.3.7. Introduce lk ∼ Poisson (−γ0/K ln (1− pk)) where pk =
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θ.k
exp(−ζk)+θ.k

. The posterior is then found by application of the gamma-Poisson conju-

gacy lemma 2.3.1. Then

lk| · · · ∼ CRT (x..k, γ0/K) (B.7)

γ0| · · · ∼ Gamma

(
a0 +

∑
k

lk, 1/(b0 −
1

K

∑
k

log(1− pk))

)
(B.8)

Sampling of σ

The conditional posterior of σ follows directly from the gamma-normal conjugacy

lemma 2.3.3.

p(σ| · · · ) ∝ p(σ|s0, t0)
∏
y,d

p(zyd|σ,βd,ηy, ζ)

= Gamma (σ; s0, 1/t0)
∏
y,d

N

(
zyd;

∑
k

βdkηykζk, 1/σ

)

σ| · · · ∼ Gamma

(
s0 +

MD

2
, 1/t′0

)
, (B.9)

where t′0 =

t0 +
∑
y,d

(zyd −
∑
k

ηykβdkζk)
2

2

.

Sampling of εk

The conditional posterior of εk follows directly from the gamma-normal conjugacy

lemma 2.3.3.

p(εk| · · · ) ∝ p(εk|e0, f0)
∏
y

p(ηyk|εk)

= Gamma (εk; e0, 1/f0)
∏
y

N
(
ηyk; 0, ε−1

k

)

εk| · · · ∼ Gamma

(
e0 +

M

2
, 1/

(∑
y

η2
yk

2
+ f0

))
(B.10)
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Sampling of νk

The conditional posterior of νk follows directly from the gamma-normal conjugacy

lemma 2.3.3.

p(νk| · · · ) ∝ p(νk|u0, v0)p(ζk|νk)

= Gamma (νk;u0, 1/v0)N
(
ζk; 0, ν−1

k

)
νk| ∼ Gamma

(
u0 +

1

2
, 1/

(
ζ2
k

2
+ v0

))
(B.11)

Sampling of αdk

The conditional posterior of αdk follows directly from the gamma-normal conjugacy

lemma 2.3.3.

p(αdk| · · · ) ∝ p(αdk|g0, h0)p(βdk|αdk)

= Gamma (αdk; g0, 1/h0)N
(
βdk; 0, α−1

dk

)
αdk| · · · ∼ Gamma

(
g0 +

1

2
, 1/

(
β2
dk

2
+ h0

))
(B.12)

Sampling of zyd

Since
M∑
y=1

zyd = 0, only {zyd}y 6=yd need be sampled for each document d; assign zydd =

−
∑
y 6=yd

zyd. Then for y 6= yd:

p(zyd| · · · ) ∝ p(zyd|βd,ηy, ζ, σ)q(yd| · · · )

∝ N

(
zyd;

∑
k

βdkηykζk, σ
−1

)
exp

(
−
(
zyd +

1

M − 1

)
+

)
To handle the second term in this expression, the inverse-Gaussian data augmentation

of lemma 2.4.1 is used. Introduce γyd, where

γyd| · · · ∼ IG

∣∣∣∣∣zyd + 1
M−1

2

∣∣∣∣∣
−1

, 1

 (B.13)
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Then from the SVM data-augmentation strategy we have

p(zyd| · · · ) ∝ exp

−σ
2

(
zyd −

∑
k

βdkηykζk

)2
 exp

− 1

2γyd

(
zyd + 1

M−1

2
+ γyd

)2


∝ exp

(
− 1

2

[
σ

(
z2
yd − 2zyd

∑
k

βdkηykζk

)
+

1

γyd

(
1

4

(
zyd +

1

M − 1

)2

+ γyd

(
zyd +

1

M − 1

))])
Considering just the argument under the exp

(
−1

2
(· · · )

)
, since that is the form of a

normal distribution:

σ

(
z2
yd − 2zyd

∑
k

βdkηykζk

)
+

1

γyd

(
1

4

(
z2
yd +

2zyd
M − 1

)
+ γydzyd

)

= z2
yd

(
σ +

1

4γyd

)
− 2zyd

(
σ
∑
k

βdkηykζk −
1

4γyd(M − 1)
− 1

2

)
Comparing this to the P.D.F. of a normal distribution we get

zyd| · · · ∼ N
(
µ′, σ′2

)
(B.14)

where σ′2 =
γyd

γydσ+1/4
and µ′ = σ′2

(
σ
∑
k

βdkηykζk − 1
4γyd(M−1)

− 1
2

)
.

Sampling of ηy

The conditional posterior distribution has the form of a multivariate-normal distri-

bution.

p(ηy| · · · ) ∝ p(ηy|α1)
∏
d

p(zyd|βd,ηy, ζ)

= N
(
ηy; 0,α−1

1 IK
)∏

d

N
(
zyd;ηy (ζIK)β′d, σ

−1
)

∝ exp

(
−1

2
ηy(α1IK)η′y

)∏
d

exp
(
−σ

2
(zyd − ηy (ζIK)β′d)

2
)

= exp

(
−1

2

(
ηy(α1IK)η′y + σ

∑
d

(zyd − ηy (ζIK)β′d)
2

))
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Considering just the argument under the exp
(
−1

2
(· · · )

)
, since that is the form of a

normal distribution:

ηy(α1IK)η′y + σ
∑
d

(
(ηy (ζIK)β′d)(βd (ζIK)η′y)− 2zydηy (ζIK)β′d

)
= ηy(α1IK)η′y + σ

(
ηy (ζIK)

∑
d

(β′dβd) (ζIK)η′y − 2
∑
d

zydηy (ζIK)β′d

)

= ηy

[
α1IK + σ (ζIK)

∑
d

(β′dβd) (ζIK)

]
η′y − 2σηy (ζIK)

∑
d

zydβ
′
d

Comparing this expression with that of the multivariate-normal P.D.F. the expression

for the conditional posterior is

ηy| · · · ∼ N (µy,Σy) , (B.15)

where Σ−1
y =

[
α1IK + σ (ζIK)

∑
d

(β′dβd) (ζIK)

]
and

µy = Σy

(
σηy (ζIK)

∑
d

zydβ
′
d

)

Sampling of βd

The conditional posterior distribution has the form of a multivariate-normal distribu-

tion. First, integrate out θdk as described as follows: xd.k ∼ Poisson (rkθdk) (note that

φ.k = 1 ∀k) where θdk ∼ Gamma (τd, exp (βdk)). Therefore, by the gamma-Poisson

construction of the Negative Binomial described in Section 2.3.4, xd.k ∼ NB (τd, pdk)

where pdk = rk
exp(−βdk)+rk

. Then the posterior of βd is given as follows:

p(βd| · · · ) ∝ p(βd|αd)
∏
k

p(xd.k|τd, rk, βdk)
∏
y

p(zyd|ηy,βd, ζ, σ)

= N (βd; 0,αdIK)
∏
k

NB (xd.k; τd, pdk)
∏
y

N
(
zyd;ηy · (ζIK)β′d, σ

−1
)
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The second term can be manipulated as follows:

p(xd.k|τd, rk, βdk) = NB (xd.k; τd, pdk)

∝ pxd.kdk (1− pdk)τd

=

(
rk

exp (−βdk) + rk

)xd.k (
1− rk

exp (−βdk) + rk

)τd
=
rxd.kk exp (−βdk)τd

exp (−βdk) + rk

=
(rkexp (βdk))

xd.k

(rkexp (βdk) + 1)xd.k+τd

=
exp (ψdk)

xd.k

(exp (ψdk) + 1)κdk
,

where ψdk = βdk+log(rk) and κdk = xd.k+τd. Then the expression for the conditional

posterior becomes

p(βd| · · · ) ∝

exp

(
−1

2
βd (αdIK)β′d

)∏
k

exp (ψdk)
xd.k

(exp (ψdk) + 1)κdk

∏
y

exp
(
−σ

2
(zyd − ηy (ζIK)β′d)

2
)

To handle the second factor, the Pólya-Gamma augmentation lemma 2.3.8 is used.

Introduce ωdk ∼ PG(κdk, 0), and apply lemma 2.3.8, for which the corresponding

factor becomes proportional to the following:

exp

(
(xd.k − τd)ψdk

2

)∫ ∞
0

exp
(
−ωdkψ2

dk/2
)
p(ωdk)dωdk

By lemma 2.3.8, the posterior update of the augmented Pólya-Gamma variable is

given by:

ωdk| · · · ∼ PG(κdk, ψdk). (B.16)
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This leads to a posterior given by

p(βd| · · · )

∝ exp

(
−1

2
βd (αdIK)β′d

)∏
k

exp
(
(xd.k − τd)/2ψdk − ωdkψ2

dk/2
)
·∏

y

exp
(
−σ

2
(zyd − ηy (ζIK)β′d)

2
)

∝ exp

(
− 1

2
βd (αdIK)β′d +

∑
k

[
(xd.k − τd)/2βdk − ωdk

(
β2
dk + 2βdk log(rk)

)
/2
]
−

σ

2

∑
y

[(ηy(ζIK)β′d)(ηy(ζIK)β′d)− 2zyd(ηy(ζIK)β′d)]

)

Let νd = {xd.k − τd}Kk=1. Consider just the argument under the exp
(
−1

2
(· · · )

)
, since

that is the form of a normal distribution:

βd (αdIK)β′d − νdβ′d + βd(ωdIK)β′d + 2ωd(log(r)IK)β′d+

σ
∑
y

[
βd(ζIK)η′yηy(ζIK)β′d − 2zydηy(ζIK)β′d

]
= βd

[
(αdIK) + (ωdIK) + σ(ζIK)

∑
y

[
η′yηy

]
(ζIK)

]
β′d−

2

[
σ
∑
y

[zydηy] (ζIK)− ωd(log(r)IK) +
νd
2

]
β′d

Comparing this expression with that of the multivariate-normal P.D.F. the expression

for the conditional posterior is

βd| · · · ∼ N (µd,Σd) , (B.17)

where Σ−1
d =

[
(αdIK) + (ωdIK) + σ(ζIK)

∑
y

[
η′yηy

]
(ζIK)

]
and

µd =

[
σ
∑
y

[zydηy] (ζIK)− ωd(log(r)IK) + νd
2

]
Σd.
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Sampling of ζ

The derivation of the conditional posterior for ζ is very similar to that of βd. The

conditional posterior distribution has the same form as a multivariate-normal distri-

bution. Integrate out rk as follows. Since x..k ∼ Poisson (rkθ.k) and

rk ∼ Gamma (γ0/K, exp (ζk)), then from the gamma-Poisson construction of the neg-

ative binomial described in Section 2.3.4, x..k ∼ NB (γ0/K, pk), where pk = θ.k
exp−ζk+θ.k

.

This term in the posterior has the form:

p(x..k| · · · ) = NB (γ0/K, pk)

∝ px..kk (1− pk)γ0/K

=

(
θ.k

exp (−ζk) + θ.k

)x..k (
1− θ.k

exp (−ζk) + θ.k

)γ0/K
=

(θ.kexp (ζk))
x..k

(θ.kexp (ζk) + 1)x..k+γ0/K

=
exp (ψk)

x..k

(exp (ψk) + 1)κk
,

where ψk = log(θ.k) + ζk and κk = x..k + γ0/K. To handle this factor in the posterior

the Pólya-Gamma augmentation lemma 2.3.8 is used. Introduce ωk ∼ PG(κk, 0), and

apply lemma 2.3.8, for which the corresponding factor becomes proportional to the

following:

exp

(
(x..k − γ0/K)ψk

2

)∫ ∞
0

exp
(
−ωkψ2

k/2
)
p(ωk)dωk

By lemma 2.3.8, the posterior update of the augmented Pólya-Gamma variable is

given by:

ωk| · · · ∼ PG(κk, ψk). (B.18)
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Combining this with the prior and zyd contributed likelihood, the posterior has the

form:

p(ζ| · · · ) ∝

exp

(
−1

2
ζ(α2IK)ζ ′

)∏
k

exp
(
(x..k − γ0/K) /2ζk − ωk (log(θ.k) + ζk)

2 /2
)
·∏

y,d

exp
(
−σ

2
(zyd − ηy(ζIK)β′d)

2
)

= exp

(
− 1

2

[
ζ(α2IK)ζ ′ −

∑
k

[
(x..k − γ0/K)ζk − ωk

(
ζ2
k + 2 log(θ.k)ζk

)]
+

σ
∑
y,d

(ηy(ζIK)β′dηy(ζIK)β′d − 2zydηy(ζIK)β′d)

])

Let λ = {x..k − γ0/K}Kk=1 and let θ = {θ.k}Kk=1. Once again, consider just the

argument under the exp
(
−1

2
(· · · )

)
, since that is the form of a normal distribution:

ζ(α2IK)ζ ′ − λζ ′ + ζ(ωIK)ζ ′ + 2 log(θ)(ωIK)ζ ′+

σ
∑
y,d

[
ζ(βdIK)η′yηy(βdIK)ζ ′ − 2zydηy(βdIK)ζ ′

]
= ζ

[
(α2IK) + (ωIK) + σ

∑
y,d

(βdIK)η′yηy(βdIK)

]
ζ ′−

2

[
σ
∑
y,d

zydηy(βdIK)− log(θ)(ωIK) + λ/2

]
ζ ′

Comparing this expression with that of the multivariate-normal P.D.F. the expression

for the conditional posterior is

ζ| · · · ∼ N (µ,Σ) , (B.19)

where Σ−1 =

[
(α2IK) + (ωIK) + σ

∑
y,d

(βdIK)η′yηy(βdIK)

]
and

µ =

[
σ
∑
y,d

zydηy(βdIK)− log(θ)(ωIK) + λ/2

]
Σ.
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models using pólya–gamma latent variables. Journal of the American Statistical

Association, 108(504):1339–1349, 2013.

Jason Weston and Chris Watkins. Multi-class support vector machines. Technical

report, Department of Computer Science, Royal Holloway, University of London,

May 1998.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. The Journal of Machine Learning Research, 2:265–

292, 2002.

Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector machines:

Theory and application to the classification of microarray data and satellite radi-

ance data. Journal of the American Statistical Association, 99(465):67–81, 2004.

63



Ambuj Tewari and Peter L Bartlett. On the consistency of multiclass classification

methods. The Journal of Machine Learning Research, 8:1007–1025, 2007.

Peter D Hoff. A first course in Bayesian statistical methods. Springer, 2009.

Dani Gamerman and Hedibert F Lopes. Markov chain Monte Carlo: stochastic sim-

ulation for Bayesian inference. CRC Press, 2006.

Ioana A Cosma and Ludger Evers. Markov chains and monte carlo methods. African

Institute for Mathematical Sciences, Cape Town, 2010.

Edward Loper and Steven Bird. Nltk: The natural language toolkit. In Proceedings of

the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural

Language Processing and Computational Linguistics - Volume 1, ETMTNLP ’02,

pages 63–70, Stroudsburg, PA, USA, 2002. Association for Computational Linguis-

tics. doi: 10.3115/1118108.1118117. URL http://dx.doi.org/10.3115/1118108.

1118117.

Martin F Porter. Snowball: A language for stemming algorithms, 2001.

Conrad Sanderson. Armadillo: C++ linear algebra library, version 4.650. http:

//arma.sourceforge.net/, 2015.

M Galassi et al. Gnu scientific library reference manual , isbn 0954612078. Library

available online at http://www. gnu. org/software/gsl, 2010.

John R Michael, William R Schucany, and Roy W Haas. Generating random variates

using transformations with multiple roots. The American Statistician, 30(2):88–90,

1976.

64


