138 research outputs found

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Pain Reactivity and Plasma β-Endorphin in Children and Adolescents with Autistic Disorder

    Get PDF
    International audienceBackground: Reports of reduced pain sensitivity in autism have prompted opioid theories of autism and have practical care ramifications. Our objective was to examine behavioral and physiological pain responses, plasma β-endorphin levels and their relationship in a large group of individuals with autism.Methodology/Principal Findings: The study was conducted on 73 children and adolescents with autism and 115 normal individuals matched for age, sex and pubertal stage. Behavioral pain reactivity of individuals with autism was assessed in three observational situations (parents at home, two caregivers at day-care, a nurse and child psychiatrist during blood drawing), and compared to controls during venepuncture. Plasma β-endorphin concentrations were measured by radioimmunoassay. A high proportion of individuals with autism displayed absent or reduced behavioral pain reactivity at home (68.6%), at day-care (34.2%) and during venepuncture (55.6%). Despite their high rate of absent behavioral pain reactivity during venepuncture (41.3 vs. 8.7% of controls, P<0.0001), individuals with autism displayed a significantly increased heart rate in response to venepuncture (P<0.05). Moreover, this response (Δ heart rate) was significantly greater than for controls (mean±SEM; 6.4±2.5 vs. 1.3±0.8 beats/min, P<0.05). Plasma β-endorphin levels were higher in the autistic group (P<0.001) and were positively associated with autism severity (P<0.001) and heart rate before or after venepuncture (P<0.05), but not with behavioral pain reactivity.Conclusions/Significance: The greater heart rate response to venepuncture and the elevated plasma β-endorphin found in individuals with autism reflect enhanced physiological and biological stress responses that are dissociated from observable emotional and behavioral reactions. The results suggest strongly that prior reports of reduced pain sensitivity in autism are related to a different mode of pain expression rather than to an insensitivity or endogenous analgesia, and do not support opioid theories of autism. Clinical care practice and hypotheses regarding underlying mechanisms need to assume that children with autism are sensitive to pain

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd

    Autistic Disorder in Patients with Williams-Beuren Syndrome: A Reconsideration of the Williams-Beuren Syndrome Phenotype

    Get PDF
    International audienceBackground: Williams-Beuren syndrome (WBS), a rare developmental disorder caused by deletion of contiguous genes at 7q11.23, has been characterized by strengths in socialization (overfriendliness) and communication (excessive talkativeness). WBS has been often considered as the polar opposite behavioral phenotype to autism. Our objective was to better understand the range of phenotypic expression in WBS and the relationship between WBS and autistic disorder. Methodology: The study was conducted on 9 French individuals aged from 4 to 37 years old with autistic disorder associated with WBS. Behavioral assessments were performed using Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) scales. Molecular characterization of the WBS critical region was performed by FISH. Findings: FISH analysis indicated that all 9 patients displayed the common WBS deletion. All 9 patients met ADI-R and ADOS diagnostic criteria for autism, displaying stereotypies and severe impairments in social interaction and communication (including the absence of expressive language). Additionally, patients showed improvement in social communication over time. Conclusions: The results indicate that comorbid autism and WBS is more frequent than expected and suggest that the common WBS deletion can result in a continuum of social communication impairment, ranging from excessive talkativeness and overfriendliness to absence of verbal language and poor social relationships. Appreciation of the possible co-occurrence of WBS and autism challenges the common view that WBS represents the opposite behavioral phenotype of autism, and might lead to improved recognition of WBS in individuals diagnosed with autism

    EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12.As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.publishersversionpublishe

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032).As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants from three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years, and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, and benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs, and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with the highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European-wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability, and will give leverage to national policymakers for the implementation of targeted measures.info:eu-repo/semantics/publishedVersio

    Habilidades e avaliação de executivos

    Full text link

    7. Aptitude and Achievement Tests: The Curious Case of the Indestructible Strawperson

    Get PDF
    In a talk I gave at the 1979 ETS Invitational Conference, I remarked that, if I were suddenly endowed with the appropriate occult powers, I should choose to eliminate certain words from the psychometric vocabulary. Among them were the words aptitude and achievement (Anastasi, 1980). These terms have led to nearly as much confusion, misinterpretation, and misuse of tests as has the more notorious term intelligence. Having been asked once more to discuss the same general topic in 1982, it occurred to me that I might consider why the myths that surround these terms are so persistent-and persistent they certainly are. Let us examine specifically the traditional distinction between aptitude and achievement tests. Aptitudes are typically defined more precisely than intelligence, to designate more narrowly limited cognitive domains. Nevertheless, like intelligence, they have traditionally been contrasted with achievement in testing terminology. This contrast dates from the early days of testing, when it was widely assumed that achievement tests measured the effects of learning, whereas intelligence and aptitude tests measured so-called innate capacity, or potentiality, independently of learning. This approach to testing in turn reflected a simplistic conception of the operation of heredity and environment that prevailed in the j 920s and 1930s. The relevant historical background has been thoroughly examined in a recent book by a science historian, Hamilton Cravens, which covers the heredity- environment controversy among American scientists between the two World Wars (Cravens, 1978; see also Anastasi, 1979). HISTORICAL ANTECEDENTS Common misconceptions about the relation between aptitude and achievement tests are highlighted by an index introduced in the 1920s and variously named an achievement quotient or an accomplishment quotient. Both terms having the same initials, this index soon came to be known as the AQ. Its origin is generally attributed to Raymond Franzen (1920, 1922). The AQ could be found by dividing the individual’s educational quotient (EQ) by his or her intelligence quotient (IQ). The EQ was the ratio of educational age (EA) to chronological age (CA). The AQ could also be computed more directly by dividing educational age by mental age. The educational age was found by referring the score on an achievement battery to the age norms for that battery. Still another procedure was to use age norms for tests in particular academic subjects, like reading or arithmetic, to find subject ages for the individual, and then to average these subject ages to obtain the educational age. Early textbooks on testing regularly included a discussion of the AQ as a means of evaluating a student\u27s educational performance in relation to that student\u27s intellectual potential- a means of comparing achievement with capacity to learn (Freeman, 1926, 1939; Garrett & Schneck, 1933; Greene, 1941; Lincoln & Workman, 1935; Mursell, 1947). It is interesting to trace the statements about the AQ in texts appearing from the 1920s to the 1940s and early 1950s. Even the earliest discussions called attention to the technical and statistical weaknesses of the AQ as a ratio. The major criticisms fell into two categories: The first category was similar to the now familiar criticisms of the traditional ratio IQ; the second was similar to the equally familiar criticism of grade norms--educational age norms were certainly no better than educational grade norms
    corecore