62 research outputs found

    Deletion Mutants of the Attenuated Recombinant ASF Virus, BA71ΔCD2, Show Decreased Vaccine Efficacy

    Get PDF
    African swine fever (ASF) has become the major threat to the global swine industry. Lack of available commercial vaccines complicates the implementation of global control strategies. So far, only live attenuated ASF viruses (ASFV) have demonstrated solid protection efficacy at the experimental level. The implementation of molecular techniques has allowed the generation of a collection of deletion mutants lacking ASFV-specific virulence factors, some of them with promising potential as vaccine candidates against the pandemic genotype II ASFV strain currently circulating in Africa, Europe, Asia and Oceania. Despite promising results, there is room for improvement, mainly from the biosafety point of view. Aiming to improve the safety of BA71∆CD2, a cross-protective recombinant live attenuated virus (LAV) lacking the ASFV CD2v gene (encoding β-glucuronidase as a reporter gene) available in our laboratory, three new recombinants were generated using BA71∆CD2 as a template: the single mutant BA71∆CD2 f, this time containing the fluorescent mCherry reporter gene instead of CD2v, and two double recombinants lacking CD2v and either the lectin gene (EP153R) or the uridine kinase (UK) gene (DP96R). Comparative in vivo experiments using BA71∆CD2 f, BA71∆CD2DP96R and BA71∆CD2EP153R recombinant viruses as immunogens, demonstrated that deletion of either DP96R or EP153R from BA71∆CD2 f decreases vaccine efficacy and does not improve safety. Our results additionally confirm ASFV challenge as the only available method today to evaluate the protective efficacy of any experimental vaccine. We believe that understanding the fine equilibrium between attenuation and inducing protection in vivo deserves further study and might contribute to more rational vaccine designs in the future

    Shape characterization of polymersome morphologies via light scattering techniques

    Get PDF
    Polymersomes, vesicles self-assembled from amphiphilic block copolymers, are well known for their robustness and for their broad applicability. Generating polymersomes of different shape is a topic of recent attention, specifically in the field of biomedical applications. To obtain information about their exact shape, tomography based on cryo-electron microscopy is usually the most preferred technique. Unfortunately, this technique is rather time consuming and expensive. Here we demonstrate an alternative analytical approach for the characterization of differently shaped polymersomes such as spheres, prolates and discs via the combination of multi-angle light scattering (MALS) and quasi-elastic light scattering (QELS). The use of these coupled techniques allowed for accurate determination of both the radius of gyration (Rg) and the hydrodynamic radius (Rh). This afforded us to determine the shape ratio ρ (Rg/Rh) with which we were able to distinguish between polymersome spheres, discs and rods.</p

    Universal emulsion stabilization from the arrested adsorption of rough particles at liquid-liquid interfaces

    Get PDF
    Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil–water interfaces. We demonstrate that surface roughness strongly pins the particles’ contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughnessinduced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.ISSN:2041-172

    Ozone Decomposition on the Surface of Metal Oxide Catalyst

    No full text
    The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested
    corecore