286 research outputs found

    CARBON BALANCE AND VEGETATION DYNAMICS IN AN OLD‐GROWTH AMAZONIAN FOREST

    Get PDF
    Amazon forests could be globally significant sinks or sources for atmospheric carbon dioxide, but carbon balance of these forests remains poorly quantified. We surveyed 19.75 ha along four 1‐km transects of well‐drained old‐growth upland forest in the TapajĂłs National Forest near SantarĂ©m, ParĂĄ, Brazil (2°51â€Č S, 54°58â€Č W) in order to assess carbon pool sizes, fluxes, and climatic controls on carbon balance. In 1999 there were, on average, 470 live trees per hectare with diameter at breast height (dbh) ≄10 cm. The mean (and 95% ci) aboveground live biomass was 143.7 ± 5.4 Mg C/ha, with an additional 48.0 ± 5.2 Mg C/ha of coarse woody debris (CWD). The increase of live wood biomass after two years was 1.40 ± 0.62 Mg C·ha−1·yr−1, the net result of growth (3.18 ± 0.20 Mg C·ha−1·yr−1 from mean bole increment of 0.36 cm/yr), recruitment of new trees (0.63 ± 0.09 Mg C·ha−1·yr−1, reflecting a notably high stem recruitment rate of 4.8 ± 0.9%), and mortality (−2.41 ± 0.53 Mg C·ha−1·yr−1 from stem death of 1.7% yr−1). The gain in live wood biomass was exceeded by respiration losses from CWD, resulting in an overall estimated net loss from total aboveground biomass of 1.9 ± 1.0 Mg C·ha−1·yr−1. The presence of large CWD pools, high recruitment rate, and net accumulation of small‐tree biomass, suggest that a period of high mortality preceded the initiation of this study, possibly triggered by the strong El Niño Southern Oscillation events of the 1990s. Transfer of carbon between live and dead biomass pools appears to have led to substantial increases in the pool of CWD, causing the observed net carbon release. The data show that biometric studies of tropical forests neglecting CWD are unlikely to accurately determine carbon balance. Furthermore, the hypothesized sequestration flux from CO2 fertilization (\u3c0.5 Mg C·ha−1·yr−1) would be comparatively small and masked for considerable periods by climate‐driven shifts in forest structure and associated carbon balance in tropical forests

    Accounting for Location Uncertainty in Azimuthal Telemetry Data Improves Ecological Inference

    Get PDF
    Background: Characterizing animal space use is critical for understanding ecological relationships. Animal telemetry technology has revolutionized the fields of ecology and conservation biology by providing high quality spatial data on animal movement. Radio-telemetry with very high frequency (VHF) radio signals continues to be a useful technology because of its low cost, miniaturization, and low battery requirements. Despite a number of statistical developments synthetically integrating animal location estimation and uncertainty with spatial process models using satellite telemetry data, we are unaware of similar developments for azimuthal telemetry data. As such, there are few statistical options to handle these unique data and no synthetic framework for modeling animal location uncertainty and accounting for it in ecological models. We developed a hierarchical modeling framework to provide robust animal location estimates from one or more intersecting or non-intersecting azimuths. We used our azimuthal telemetry model (ATM) to account for azimuthal uncertainty with covariates and propagate location uncertainty into spatial ecological models. We evaluate the ATM with commonly used estimators (Lenth (1981) maximum likelihood and M-Estimators) using simulation. We also provide illustrative empirical examples, demonstrating the impact of ignoring location uncertainty within home range and resource selection analyses. We further use simulation to better understand the relationship among location uncertainty, spatial covariate autocorrelation, and resource selection inference. Results: We found the ATM to have good performance in estimating locations and the only model that has appropriate measures of coverage. Ignoring animal location uncertainty when estimating resource selection or home ranges can have pernicious effects on ecological inference. Home range estimates can be overly confident and conservative when ignoring location uncertainty and resource selection coefficients can lead to incorrect inference and over confidence in the magnitude of selection. Furthermore, our simulation study clarified that incorporating location uncertainty helps reduce bias in resource selection coefficients across all levels of covariate spatial autocorrelation. Conclusion: The ATM can accommodate one or more azimuths when estimating animal locations, regardless of how they intersect; this ensures that all data collected are used for ecological inference. Our findings and model development have important implications for interpreting historical analyses using this type of data and the future design of radio-telemetry studies

    Thopaz Portable Suction Systems in Thoracic Surgery: An end user assessment and feedback in a tertiary unit

    Get PDF
    Thopaz digital suction units were found to be user friendly and were liked by the staff and patients. The staff feedback stated the devices to be objective and scientific in making decisions about removal and enabled mobilisation

    A genomic and evolutionary approach reveals non-genetic drug resistance in malaria

    Get PDF
    Background: Drug resistance remains a major public health challenge for malaria treatment and eradication. Individual loci associated with drug resistance to many antimalarials have been identified, but their epistasis with other resistance mechanisms has not yet been elucidated. Results: We previously described two mutations in the cytoplasmic prolyl-tRNA synthetase (cPRS) gene that confer resistance to halofuginone. We describe here the evolutionary trajectory of halofuginone resistance of two independent drug resistance selections in Plasmodium falciparum. Using this novel methodology, we discover an unexpected non-genetic drug resistance mechanism that P. falciparum utilizes before genetic modification of the cPRS. P. falciparum first upregulates its proline amino acid homeostasis in response to halofuginone pressure. We show that this non-genetic adaptation to halofuginone is not likely mediated by differential RNA expression and precedes mutation or amplification of the cPRS gene. By tracking the evolution of the two drug resistance selections with whole genome sequencing, we further demonstrate that the cPRS locus accounts for the majority of genetic adaptation to halofuginone in P. falciparum. We further validate that copy-number variations at the cPRS locus also contribute to halofuginone resistance. Conclusions: We provide a three-step model for multi-locus evolution of halofuginone drug resistance in P. falciparum. Informed by genomic approaches, our results provide the first comprehensive view of the evolutionary trajectory malaria parasites take to achieve drug resistance. Our understanding of the multiple genetic and non-genetic mechanisms of drug resistance informs how we will design and pair future anti-malarials for clinical use. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0511-2) contains supplementary material, which is available to authorized users

    Increased Nucleotide Diversity with Transient Y Linkage in Drosophila americana

    Get PDF
    Recombination shapes nucleotide variation within genomes. Patterns are thought to arise from the local recombination landscape, influencing the degree to which neutral variation experiences hitchhiking with selected variation. This study examines DNA polymorphism along Chromosome 4 (element B) of Drosophila americana to identify effects of hitchhiking arising as a consequence of Y-linked transmission. A centromeric fusion between the X and 4(th) chromosomes segregates in natural populations of D. americana. Frequency of the X-4 fusion exhibits a strong positive correlation with latitude, which has explicit consequences for unfused 4(th) chromosomes. Unfused Chromosome 4 exists as a non-recombining Y chromosome or as an autosome proportional to the frequency of the X-4 fusion. Furthermore, Y linkage along the unfused 4 is disrupted as a function of the rate of recombination with the centromere. Inter-population and intra-chromosomal patterns of nucleotide diversity were assayed using six regions distributed along unfused 4(th) chromosomes derived from populations with different frequencies of the X-4 fusion. No difference in overall level of nucleotide diversity was detected among populations, yet variation along the chromosome exhibits a distinct pattern in relation to the X-4 fusion. Sequence diversity is inflated at loci experiencing the strongest Y linkage. These findings are inconsistent with the expected reduction in nucleotide diversity resulting from hitchhiking due to background selection or selective sweeps. In contrast, excessive polymorphism is accruing in association with transient Y linkage, and furthermore, hitchhiking with sexually antagonistic alleles is potentially responsible

    Comparison of an anti-rabies human monoclonal antibody combination with human polyclonal anti-rabies immune globulin

    Get PDF
    The World Health Organization estimates human mortality from endemic canine rabies to be 55,000 deaths/ year. Limited supply hampers the accessibility of appropriate lifesaving treatment, particularly in areas where rabies is endemic. Anti-rabies antibodies are key to protection against lethal rabies. Currently, only human and equine polyclonal anti-rabies immune globulin (HRIG and ERIG) is available. Replacement of HRIG and ERIG with a safer and more widely available product is recommended. We have recently identified a combination of 2 human monoclonal antibodies (MAbs), CR57 and CR4098, that has high potential. We here describe a head-to-head comparison between an CR57/CR4098 MAb cocktail and HRIG. The MAb cocktail neutralized all viruses from a panel of 26 representative street rabies virus isolates. In combination with vaccine, the MAb cocktail protected Syrian hamsters against lethal rabies when administered 24 h after exposure, comparable with the results obtained with HRIG. Furthermore, the MAb cocktail did not interfere with rabies vaccine differently from HRIG. These results demonstrate that the human MAb cocktail of CR57 and CR4098 is a safe and efficacious alternative to RIG in rabies postexposure prophylaxis. A recent World Health Organization publication estimated human mortality from endemic canine rabies to be 55,000 deaths/year Mouse MAbs, as well as human MAbs, have been shown to protect rodents from lethal RV challeng

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Astro2020 APC White Paper: The Early Career Perspective on the Coming Decade, Astrophysics Career Paths, and the Decadal Survey Process

    Get PDF
    In response to the need for the Astro2020 Decadal Survey to explicitly engage early career astronomers, the National Academies of Sciences, Engineering, and Medicine hosted the Early Career Astronomer and Astrophysicist Focus Session (ECFS) on October 8-9, 2018 under the auspices of Committee of Astronomy and Astrophysics. The meeting was attended by fifty six pre-tenure faculty, research scientists, postdoctoral scholars, and senior graduate students, as well as eight former decadal survey committee members, who acted as facilitators. The event was designed to educate early career astronomers about the decadal survey process, to solicit their feedback on the role that early career astronomers should play in Astro2020, and to provide a forum for the discussion of a wide range of topics regarding the astrophysics career path. This white paper presents highlights and themes that emerged during two days of discussion. In Section 1, we discuss concerns that emerged regarding the coming decade and the astrophysics career path, as well as specific recommendations from participants regarding how to address them. We have organized these concerns and suggestions into five broad themes. These include (sequentially): (1) adequately training astronomers in the statistical and computational techniques necessary in an era of "big data", (2) responses to the growth of collaborations and telescopes, (3) concerns about the adequacy of graduate and postdoctoral training, (4) the need for improvements in equity and inclusion in astronomy, and (5) smoothing and facilitating transitions between early career stages. Section 2 is focused on ideas regarding the decadal survey itself, including: incorporating early career voices, ensuring diverse input from a variety of stakeholders, and successfully and broadly disseminating the results of the survey
    • 

    corecore