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5Faculdades Integradas do Tapajós, Santarém, PA, Brasil

Abstract. Amazon forests could be globally significant sinks or sources for atmospheric
carbon dioxide, but carbon balance of these forests remains poorly quantified. We surveyed
19.75 ha along four 1-km transects of well-drained old-growth upland forest in the Tapajós
National Forest near Santarém, Pará, Brazil (28519 S, 548589 W) in order to assess carbon
pool sizes, fluxes, and climatic controls on carbon balance. In 1999 there were, on average,
470 live trees per hectare with diameter at breast height (dbh) $10 cm. The mean (and
95% CI) aboveground live biomass was 143.7 6 5.4 Mg C/ha, with an additional 48.0 6
5.2 Mg C/ha of coarse woody debris (CWD). The increase of live wood biomass after two
years was 1.40 6 0.62 Mg C·ha21·yr21, the net result of growth (3.18 6 0.20 Mg C·ha21·yr21

from mean bole increment of 0.36 cm/yr), recruitment of new trees (0.63 6 0.09 Mg
C·ha21·yr21, reflecting a notably high stem recruitment rate of 4.8 6 0.9%), and mortality
(22.41 6 0.53 Mg C·ha21·yr21 from stem death of 1.7% yr21). The gain in live wood
biomass was exceeded by respiration losses from CWD, resulting in an overall estimated
net loss from total aboveground biomass of 1.9 6 1.0 Mg C·ha21·yr21. The presence of
large CWD pools, high recruitment rate, and net accumulation of small-tree biomass, suggest
that a period of high mortality preceded the initiation of this study, possibly triggered by
the strong El Niño Southern Oscillation events of the 1990s. Transfer of carbon between
live and dead biomass pools appears to have led to substantial increases in the pool of
CWD, causing the observed net carbon release. The data show that biometric studies of
tropical forests neglecting CWD are unlikely to accurately determine carbon balance. Fur-
thermore, the hypothesized sequestration flux from CO2 fertilization (,0.5 Mg C·ha21·yr21)
would be comparatively small and masked for considerable periods by climate-driven shifts
in forest structure and associated carbon balance in tropical forests.

Key words: biometry; carbon balance; carbon release; carbon sequestration; coarse woody
debris; El Niño; LBA; mortality; tropical forest.

INTRODUCTION

In recent years, about one half of anthropogenic car-
bon dioxide emissions have remained in the atmo-
sphere, while oceans and the terrestrial biosphere have
taken up the balance (Dixon et al. 1994, Schimel 1995,
Prentice et al. 2001). The mechanisms and location of
the terrestrial sink for atmospheric carbon dioxide re-
main controversial. Model studies constrained by glob-
al atmospheric measurements tend to place the terres-
trial sink in the northern midlatitudes (Tans et al. 1990,
Fan et al. 1998, Gurney et al. 2002), possibly attributed
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accepted 6 November 2002. Corresponding Editor: W. L. Silver.
For reprints of this Special Issue, see footnote 1, p. S1.

6 Corresponding author. E-mail: saleska@fas.harvard.edu
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to reforestation of abandoned agricultural lands and fire
suppression (Hurtt et al. 2002). Ecosystem modeling
studies (Prentice and Lloyd 1998, Tian et al. 1998,
2000) and some empirical studies (Grace et al. 1995,
Malhi et al. 1998, Phillips et al. 1998) have suggested
that tropical forests might be large terrestrial sinks.

Undisturbed tropical forests have historically been
presumed to contribute little to changes in atmospheric
carbon dioxide. Large areas of undisturbed forest in
Amazonia are typically uneven aged with many large
trees, indicating the long periods of succession as-
sumed suitable for attaining carbon equilibrium (An-
derson and Spencer 1991). However, tropical forests
account for 40% of carbon stored globally in terrestrial
biomass (Dixon et al. 1994) and contribute as much as
36% of the net exchange between atmosphere and ter-
restrial vegetation (Melillo et al. 1993). Thus, small
changes in net carbon balance of undisturbed tropical
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PLATE 1. (Left) Mateiro measuring a large buttressed tree with tape, (center) a large piece of coarse woody debris, and
(right) a canopy tree within a gap. Photo credit: Lucy Hutyra.

forests could result in significant storage or release of
carbon to the atmosphere. The high productivity of
these forests may make them particularly responsive
to growth enhancement from rising atmospheric carbon
dioxide concentrations (Prentice and Lloyd 1998, Tian
et al. 1998). Therefore, the role of tropical forests in
the global carbon cycle remains a key scientific ques-
tion.

Several recent studies have focused on potential car-
bon storage by primary tropical forests by examining
their carbon flux and dynamics. Short-term (ø1 yr or
less) eddy-covariance studies of carbon exchange re-
ported significant accumulation of carbon in two trop-
ical forests, with net uptake of 1.1–5.9 Mg C·ha21·yr21

carbon (Grace et al. 1995, Malhi et al. 1998). However,
stand-level inhomogeneities and observational artifacts
of the eddy-flux method make the interpretation of
these observations problematic. In addition, interan-
nual variations of stand-level carbon fluxes (Goulden
et al. 1996, Tian et al. 1998, Barford et al. 2001) and
of the global carbon budget (Marston et al. 1991, Keel-
ing et al. 1996) indicate the need to characterize carbon
balance over the long term in a variety of tropical for-
ests.

Phillips et al. (1998) used inventories for widely dis-
tributed forest plots to infer average net storage of 0.71
6 0.34 Mg C·ha21·yr21 in live biomass of undisturbed
tropical forests, with neotropical forests dominating
uptake. The long time scale and extensive spatial cov-
erage of these aggregated measurements should ac-
count for interannual and stand-level variations. How-
ever, these sites were not originally established to study
carbon budgets, and may suffer from inadequate plot
size (,2 ha), bias in plot selection, uncertain site his-
tory, and measurement inconsistencies (Phillips and
Gentry 1994, Clark and Clark 2000, Clark 2002); the
significance of these potential methodological prob-

lems has generated some debate (Clark 2002, Phillips
et al. 2002). An additional issue is the neglect of coarse
woody debris (CWD). Stocks of CWD can be large
(42% of aboveground live woody biomass in a Costa
Rican forest [Clark et al. 2002]) and turnover times
short (6–10 yr, Chambers et al. 2000, 2001a), thus
changes in CWD can account for substantial carbon
fluxes.

In this paper, we report on the first two-plus years
of biometric data from a long-term study combining
ground-based biometry with whole-system carbon di-
oxide fluxes (using eddy covariance) in an old-growth
tropical forest designed to address the question of car-
bon balance and its ecological and climatic drivers in
Amazon forests. We analyze data for aboveground
woody growth increment, tree recruitment and mor-
tality, CWD, and fine litterfall, to estimate aboveground
net ecosystem production (NEP). The focus is on mea-
surements of pool sizes and changes in pool sizes of
live and dead wood, the carbon pools with relatively
long turnover times. We focus on NEP, the difference
in carbon inputs (NPP), and outputs (heterotrophic res-
piration), because the net change in stored ecosystem
carbon is most appropriate for assessing terrestrial
sources and sinks for atmospheric carbon dioxide.

METHODS

The site

The site is located in the Tapajós National Forest
(548589 W, 28519 S, Pará, Brazil), accessed by an en-
trance road at kilometer 67 along the Santarém–Cuiabá
Highway (BR-163). As part of the Large-scale Bio-
sphere–Atmosphere Experiment in Amazonia (LBA),
an international research initiative led by Brazil, we
have installed permanent forest research transects and
an eddy-flux tower 1 km east of the access road (GPS



August 2004 S57AMAZON FOREST CARBON BALANCE

FIG. 1. Map of transects and CWD plots for kilometer 67 site in the Tapajós National Forest, Brazil.

coordinates: UTM zone 21M, 726889 E, 9684049 N).
Temperature, humidity, and rainfall average 258C,
85%, and 1920 mm per year, respectively (Parotta et
al. 1995). Soils are predominantly nutrient-poor clay
oxisols with some sandy utisols (Silver et al. 2000),
both of which have low organic content and cation
exchange capacity. The canopy has a significant num-
ber of large emergent trees (to 55 m height), Manilkara
huberi (Ducke) Chev., Hymenaea courbaril L., Be-
tholletia excelsa Humb. and Bonpl., and Tachigalia
spp., and a closed canopy at ;40 m. With large logs,
many epiphytes, uneven age distribution, and emergent
trees, the forest can be considered primary, or ‘‘old-
growth’’ (Clark 1996). It shows no signs of recent an-
thropogenic disturbance other than hunting trails.

Live biomass, growth, mortality,
and recruitment measurements

Four permanent 50 3 1000 m transects were installed
adjacent to the eddy-covariance tower in July of 1999
(Fig. 1), accounting for 19.75 ha of surveyed forest.
Three transects originate near the tower and run in the
predominant wind directions from the tower (northeast,
east, and southeast), while the fourth runs north–south,
intersecting the east transect at 550 m. The long, con-
tinuous transects aim to incorporate spatial heteroge-
neity throughout the tower footprint, avoiding bias as-
sociated with small scattered plots that can be dispro-
portionately influenced by emergent trees. Trees $35
cm dbh (diameter at breast height) (n 5 949) were

identified to species, tagged, measured, and mapped
(Table 1). Trees $10 cm dbh (n 5 1646) were identified
to species, tagged, measured, and mapped in narrower
transects (four each 10 3 1000 m, for a total area of
3.99 ha) running down the middle of the larger tran-
sects. Whole-sample measures reported on an areal ba-
sis (stems per hectare, growth rate per hectare, etc.)
were calculated as a per-area weighted sum of small
(10 cm , dbh , 35 cm) and large tree ($35 cm dbh)
samples. Trees with significant buttresses were mea-
sured above buttress termination (see Plate 1).

Stainless steel dendrometer bands were placed on a
random subsample of 1000 trees, stratified by taxo-
nomic family and size class, in December 1999 (Table
1). The 48 identified taxonomic families were divided
into five size classes (10–,22.5, 22.5–,35, 35–,55,
55–,90, and $90 cm dbh). We included all individual
trees in the largest size class ($90 cm dbh), because
large trees account for a major portion of aboveground
biomass in neotropical forests (Brown et al. 1995, Clark
and Clark 1996). The rest of the sample was drawn
randomly from the remaining size-class–taxonomic-
family categories, with a probability proportional to
1/ where di was the stem frequency of trees inÏd ,i
category i. This sampling strategy ensures that all size
classes and the full diversity of life-history traits (as
represented by taxonomic family) were sampled, but
avoids repetitively sampling the large number of stems
in smaller subgroups that have more limited influence
on carbon balance. We banded a large number of trees
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TABLE 1. Measurements of biomass pools and fluxes at kilometer 67, Tapajós National Forest, Brazil.

Pool or flux and
measurement method Size class Area n Frequency

Live aboveground biomass
dbh survey
dbh survey

.35 cm dbh
10–35 cm dbh

19.75 ha
3.99 ha

;1000 stems
;1800 stems

2 yr
2 yr

Growth increment
dbh comparison
dbh comparison
dendrometers

.35 cm dbh
10–35 cm dbh

.10 cm dbh

19.75 ha
3.99 ha

19.75 ha

951 stems
1610 stems
1000 stems

2 yr
2 yr
6 wk

Mortality
dbh survey
dbh survey

.35 cm dbh
10–35 cm dbh

19.75 ha
3.99 ha

30 stems
57 stems

2 yr
2 yr

Recruitment
dbh survey 10–35 cm dbh 3.99 ha 201 stems 2 yr

Standing CWD
stem survey .10 cm dbh 19.75 ha 539 snags once

Fallen CWD
plot-based survey
plot-based survey
plot-based survey

.30 cm diam.
10–30 cm diam.
2–10 cm diam.

32 plots, each 120 m2

64 plots, each 25 m2

64 plots, each 1 m2

246 pieces
191 pieces
390 pieces

once
once
once

line-intercept survey
line-intercept survey

.10 cm diam.
2–10 cm diam.

200 lines, each 10 m long
40 lines, each 1 m long

249 pieces
238 pieces

once
once

Litter fall
litter traps ,2 cm diam. 40 3 0.43 m2 ··· 2 wk

Note: CWD 5 coarse woody debris.

with the goal of obtaining high-resolution growth mea-
surements that could be correlated to precipitation or
seasonality with errors ,10%.

An initial baseline dbh was measured and canopy
status was assessed for banded trees in February 2000
(two months after band installation). Classes were as-
signed reflecting each tree’s actual status relative to the
nearby canopy. Trees whose crowns rose above the
surrounding canopy were classified as ‘‘emergent,’’
trees reaching the canopy were labeled ‘‘canopy,’’ trees
(see Plate 1) whose crown remained just below the
canopy were labeled ‘‘subcanopy,’’ and trees whose
crown remained well below the canopy were labeled
‘‘suppressed.’’ Dendrometer band increments, or ex-
pansion of the bands with tree growth, were subse-
quently measured every 4–6 wk using electronic cal-
ipers, allowing detailed examination of variation in sea-
sonal growth rates.

The permanent transect plots were resurveyed in
2001 to give estimates of growth, mortality, and re-
cruitment. The dbh of the 1000 subsampled trees with
dendrometers was remeasured in April 2001, while the
dbh of remaining nonbanded trees was remeasured in
July 2001, providing a 2-yr growth increment for trees
that survived the sampling interval. The April 2001
dbh resurvey of banded trees was adjusted to the full
2-yr interval by adding 3 mo (April through July) of
growth as measured by the dendrometer bands. Trees
with no foliage and dry sapwood all around the tree
were recorded as dead. Previously untagged trees,

which had grown into the minimum size classes (n 5
201 for 10-cm size class, n 5 94 for 35-cm size class),
were inventoried and trees growing into the smallest
(10 cm) size class were added to the sample as re-
cruitment.

Best-estimate whole-tree biomass was calculated
from tree dbh measurements using an allometry (Cham-
bers et al. 2001a) derived from trees in two forest sites
north of Manaus, Amazonas, Brazil. We consider it to
be a best estimate due to the relative similarities be-
tween forests in Manaus and the Tapajós. In order to
make an estimate of allometric uncertainty for com-
parison, we also used two allometries (Eqs. 3.2.3 and
3.2.4) from Brown (1997), derived from worldwide
tropical forest data.

Tree growth increments were calculated for the two
different live tree measurement methods (Table 1). For
the repeated dbh surveys of 1999 and 2001, growth
arises from the subset of trees alive in both data sets
and was calculated as the pairwise difference in bio-
mass between 1999 and 2001 (n 5 2561). Field mea-
surement errors were corrected by removing trees with
growth rates outside of the central 99% of the frequency
distribution of growth rates (i.e., trees with growth rates
,24.8 cm/yr or .5.3 cm/yr, n 5 56). This is an un-
biased method to exclude outliers resulting from mea-
surement errors such as misread dbh tapes. Sampling
uncertainty on growth was also estimated using boot-
strap analyses (1000 bootstrap samples of growth in-
terval, the 95% confidence interval reported).
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For the dendrometer survey, growth was determined
as the addition of the increment measured by the den-
drometer to the initial dbh for each tree. The 1000-tree
dendrometry subsample was scaled up to per unit area
flux (G, in Mg C·ha21·yr21) by the following sum:

Nc1
G 5 d DBO i iDt i51

where Dt is the sampling interval, di is the observed
stem density from the original inventory (number of
trees per hectare), and DBi is the measured mean bio-
mass increment in the dendrometry subsample (Mg C
per tree), both in the ith size-class–taxonomic-family
category, and Nc is the number of such stratification
categories.

Losses from the pool of live biomass through mor-
tality were accounted in the 2001 resurvey of all stems.
The biomass for each tree that died was determined
using the same allometric equations applied to live bio-
mass and employing last measured dbh prior to death.

Biomass additions due to recruitment (individuals
growing into the 10-cm size class) were determined
with the same allometries. Previously untagged trees
whose sizes were greater than 10 cm 1 g99, where g99

is the 99th percentile of the 2-yr species-specific
growth distribution, were deemed to have been mis-
takenly missed in the original survey, and thus not true
recruitment. These individuals were added into the
1999 data set and the growth data set, with their dbh
in 1999 back calculated from 2001 measurements, us-
ing the species’ average annual growth rates.

Coarse woody debris (CWD) measurements

All standing dead stems $10 cm dbh in the entire
19.75 ha and taller than 1.3 m were measured, tagged,
identified to common name, and assigned to a decay
class in April 2001. Measurements of dbh of standing
dead trees were used to find an estimate of top diameter
using Chambers et al.’s (2000) taper function and then
were converted to volumes using the formula for a
frustum of a cone (Harmon and Sexton 1996). In July
2001, we made dimensional measurements of fallen
CWD (see Plate 1) in a series of nested plots within
the 19.75 ha used for live biomass measurements (Table
1, Fig. 1). All fallen debris .30 cm in diameter and 1
m in length were tagged, measured, and assigned to
decay classes in 32 20 3 60 m plots randomly placed
in pairs along the biomass transect lines. All debris
from 10 to 30 cm in diameter were measured in 64 5
3 5 m subplots, and all debris from 2 to 10 cm were
measured in 64 1 3 1 m subplots, randomly located
within the 5 3 5 m plots (Fig. 1). Decay classes used
for both standing and fallen CWD were: decay class
1, solid wood, recently fallen, bark and twigs present;
decay class 2, solid wood, significant weathering,
branches present; decay class 3, wood not solid, may
be sloughing but nail still must be pounded into tree;

decay class 4, wood sloughing and/or friable, nails may
be forcibly pushed into log; and decay class 5, wood
friable, barely holding shape, nails may be easily
pushed into log. Dimensional measurements were con-
verted to volumes, using Newton’s formula for a cyl-
inder (Harmon and Sexton 1996).

Biomass estimates for CWD were calculated by com-
bining measured volumes with measured decay-class
specific CWD densities obtained from a CWD density
study conducted at a nearby site, also in the Tapajós
National Forest (at kilometer 83, 17 km south of the
site described here). For CWD .10 cm diameter, logs
(n 5 258) were selected for sampling based on a ran-
dom, size-class stratification. Logs were initially sawed
in two places yielding cylinders 5–8 cm in height. Cyl-
inders were digitally photographed and then the pho-
tograph was analyzed for wood and void sections to
calculate percent void space for each cylinder. Each
cylinder was sampled by extracting wood plugs (n 5
634 for the 258 logs) with a tenon cutter attached to a
portable power drill. Plugs were extracted every 5 cm
from the center of the cylinder along one of eight even-
ly spaced radii selected at random. Fresh plug volumes
were estimated using a cylinder calculation. Plugs were
then labeled and dried for three months at 658C and
weighed. Density was calculated by dividing dry mass
by fresh volume for each plug and then averaging for
each tree sampled with a multiplicative adjustment for
the total wood volume (1 2 fraction of void space).
Uncertainty on density was estimated from the varia-
tion across samples within each decay class. Final den-
sity estimates for each decay class were determined by
averaging adjusted densities for trees sampled within
a decay class and weighting them according to the in-
verse of sampling frequency. For more details, see Kel-
ler et al. (in press).

For comparison, necromass was also estimated using
wood density numbers from other tropical forests in
Delaney et al. (1998), Summers (1998), and Clark et
al. (2002). We represent sampling uncertainty for CWD
biomass with 95% confidence intervals calculated us-
ing a bootstrap analysis with 1000 bootstrap simula-
tions using individual CWD pieces as the unit of rep-
lication. The biomass errors for CWD represent the
combination of volume sampling uncertainty and den-
sity uncertainty.

For comparison, additional measurements of CWD
pools were made at the kilometer 67 site using the line-
intercept method (Van Wagner 1968, Brown 1974; Ta-
ble 1). In January 2002, 2000 m of line was run, in
10-m segments, measuring pieces greater than 10 cm
in diameter and 400 m of line, in 10-m segments, mea-
suring pieces .2 cm in diameter. The line-intercept
survey estimates of CWD volumes (;164 m3/ha)
agreed with the plot based estimates (;152 m3/ha),
within sampling uncertainty (1000 bootstrap simula-
tions, using each individual CWD line segment as the
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TABLE 2. Aboveground biomass pool sizes (Mg C/ha) and fluxes (Mg C·ha21·yr21) between
July 1999 and July 2001 (all uncertainties are 95% CI).

Pool or flux
(n 5 no. stems) Best estimate† Alternate A‡ Alternate B§

A) Live biomass

Pool size in trees .10 cm dbh
1999 (n 5 2648)
2001 (n 5 2803)

143.7 (6 5.4)
147.4 (6 5.9)

154.4 (6 9.0)
157.9 (6 8.8)

161.4 (6 11.1)
164.5 (6 12.0)

Fluxes to aboveground live biomass in trees .10 cm dbh
Recruitment (n 5 180)
Growth (n 5 2561)
Mortality (n 5 87)

0.63 (6 0.09)
3.18 (6 0.20)

22.41 (6 0.53)

0.53 (6 0.08)
3.25 (6 0.22)

22.51 (6 0.65)

0.53 (6 0.08)
3.11 (6 0.28)

22.55 (6 0.75)
Net flux 1.40 (6 0.62) 1.27 (6 0.80) 1.09 (6 0.92)

B) Coarse woody debris (CWD)
Pool size in standing

trees (.10 cm dbh) and
fallen (.2 cm) pieces

48.0 (6 5.2) NA NA

Fluxes to CWD
Mortality
Respiration

2.4 (6 0.5)
25.7 (6 1.0)

2.5 (6 0.7)
24.0 (6 0.4)

2.6 (6 0.8)
28.2 (6 0.9)

Net flux 23.3 (6 1.1) (range 21.4 to 25.8)\

C) Total aboveground biomass (live biomass 1 CWD)
Pool size 195.4 (6 7.9) 205.9 (6 9.8) 212.5 (6 13.1)
Net flux 21.9 (6 1.0) (range 20.1 to 24.5)\

† Values are derived using the Chambers et al. (2001a) Amazon allometry for tree biomass
and the decay-class-specific respiration rates for CWD respiration, adjusted for slower decom-
position of standing dead wood (see Table 4). Allometry is: ln[tree mass] 5 21.06 1 0.333
ln(dbh) 1 0.933 ln(dbh)2 2 0.122 ln(dbh)3, with dbh in centimeters and tree mass in kilograms
C in biomass (assuming 1 kg dry biomass 5 0.5 kg C biomass).

‡ Values are derived using Brown’s (1997) universal tropical allometry (Eq. 3.2.3 in Brown
[1997]) for tree biomass, and a lower-bound CWD respiration rate constant of k 5 0.0825 yr21,
the average of respiration rates across non-pine forests in the southern United States (Turner
et al. 1995). Allometry is: Tree mass 5 21.345 2 6.4 (dbh) 1 0.621 (dbh)2.

§ Values are derived using Brown’s (1997) universal tropical allometry (Eq. 3.2.4 in Brown
[1997]) for tree biomass, and an upper-bound respiration rate constant of k 5 0.17 yr21 for
CWD respiration. Allometry is: ln[tree mass] 5 22.827 1 2.53 ln(dbh).

\ Flux ranges give a highly conservative uncertainty analysis, based on the largest and
smallest possible sums of inflow and outflow permutations (within consistent allometries) in
the ‘‘best estimate,’’ ‘‘alternate A,’’ and ‘‘alternate B’’ columns.

TABLE 3. Coarse woody debris densities, respiration rates, pool sizes, and respiration, by
decay class.

Decay
class

Density
(Mg biomass/

m3)
k†

(yr21)

Volume (m3/ha)

Fallen Standing
Mass

(Mg C/ha)

Respiration
(Mg

C·ha21·yr21)

1
2
3
4
5

0.60 (6 0.04)
0.70 (6 0.06)
0.58 (6 0.06)
0.45 (6 0.06)
0.28 (6 0.06)

0.091
0.063
0.099
0.162
0.314

20.6
26.2
35.2
45.2
24.5

1.1
6.4

13.0
7.5
6.3

6.5 (6 2.5)
11.4 (6 3.2)
14.0 (6 3.8)
11.9 (6 2.6)

4.3 (6 1.4)

0.6
0.7
1.4
1.9
1.4

Total 151.7 (6 19.4) 34.3 (6 7.6) 48.0 (6 5.2) 6.0 (6 0.7)
Total CWD respiration adjusted for slower decomposition of standing

dead wood:‡ 5.7 (6 1.0)

Note: Error measurements are 95% CI.
† Decay-class-specific CWD respiration rate derived from k 5 exp(br), where b 5 24.117

6 0.62 (mean 6 1 SE), r 5 density (Chambers et al. 2001b), and an unbiased estimate of mean
k assuming normal distribution of the exponent is k̄ 5 exp(24.117r 1 0.5[0.62r]2) (Gut 1995).

‡ Standing dead wood is observed to have a substantially lower respiration rate (Chambers
et al. 2001b); accordingly, adjusted respiration is lower because it assumes all standing CWD
respires at the moderately low rate of decay class 1, and its confidence interval is wider than
the purely statistical interval by an amount equal to the downward adjustment (0.3 Mg
C·ha21·yr21).
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TABLE 4. Coarse woody debris pools segregated by size class and standing/fallen status, in
terms of directly measured volume and calculated mass.

CWD size
class (cm)

No.
pieces

Volume (m3/ha)†

Fallen CWD Standing CWD Total CWD
Mass

(Mg C/ha)

.30
10–30
2–10

456
520
390

97.7 (6 14.7)
34.6 (6 5.8)
19.3 (6 6.4)

31.6 (6 6.3)
2.6 (6 0.2)

NA

129.4 (6 17.6)
37.3 (6 7.3)
19.3 (6 5.9)

33.9 (6 5.2)
9.4 (6 1.5)
4.7 (6 1.2)

Total 151.7 (619.4) 34.3 (6 7.6) 186.0 (6 18.4) 48.0 (6 5.2)

Note: Values are mean and 95% CI.
† Volume of fallen CWD 1 volume of standing CWD 5 total CWD volume.

unit of replication). However, sampling uncertainty
around the line-based estimates was larger (.20% of
the mean), despite the relatively long line lengths. Be-
cause of this higher uncertainty in the line-intercept
survey, we report values and analysis using the plot-
based measurements (Tables 2B, 3, and 4).

To examine change in the stock of the CWD pool,
we compared measured mortality inputs (using the
methods described above) to CWD respiration losses.
We estimated these losses by assuming respiration fol-
lows first-order kinetics, respiration 5 k 3 (total CWD
biomass), where the plausible range for CWD respi-
ration was bracketed by using three different approach-
es. The first (best-estimate) approach uses a separate k
for each decay class, calculated from the expression

([21.78860.27( )]r)SEk 5 10 5 exp([24.117 6 0.62(SE)] 3 r)

derived from CWD respiration studies in tropical forest
near Manaus, Brazil (Chambers et al. 2001b), and from
our decay-class specific densities, r (Tables 4 and 5).
Since k is lognormal, we calculated the decay-class-
specific rates from the expression for the mean of a
lognormal distribution, which is affected by its vari-
ance: k̄ 5 exp(24.117r 1 [0.5][0.62r]2) (Gut 1995).
The second and third approaches use upper and lower
bound k’s, respectively, which were applied to whole-
forest CWD mass, regardless of decay class. Upper-
bound k 5 0.17 yr21, from a study of CWD mass loss
over 10–15 yr in a tropical forest near Manaus (Cham-
bers et al. 2000). Lower bound k 5 0.0825 yr21, based
on an average across non-pine temperate forests (oak–
hickory, and bottomland hardwoods) in the southern
United States (Turner et al. 1995). Both of these values
are for average annual whole-forest conditions and for
CWD from a range of decay classes.

The upper bound k is probably too high, because it
includes the lost mass of fragmented material that is
not immediately respired to the atmosphere. The lower
bound k is almost certainly too low for this tropical
forest, since it is derived from midlatitude temperate
forests. In our analysis, we use these two extreme val-
ues to bracket the conservative range of possible CWD
respiration losses, and we used the first approach (along
with the results of uncertainty analysis) to give a more
plausible central best estimate.

Fine litterfall measurements

Litter collection began in July 2000 using 40 circular,
mesh screen traps (0.43 m diameter, 0.15 m2) randomly
located throughout the 19.75-ha tree-survey area. Ev-
ery 2 wk, litter was collected, sorted, oven dried at
608C, and weighed. The litterfall from each trap was
sorted into (1) leaves, (2) fruits and flowers, (3) wood
,2 cm diameter, and (4) miscellaneous. We report here
on the 19-mo period from July 2000 through February
2002.

Uncertainty analysis

We quantified two kinds of uncertainties in general:
sampling uncertainty and uncertainties due to nonsta-
tistical sources of error (such as allometric uncertainty
and possible biases due to applying parameters that
were derived in other tropical forests, such as CWD
respiration rates). Sampling uncertainties were quan-
tified using bootstrap analyses (Efron and Tibshirani
1997), and nonstatistical uncertainties were quantified
by bracketing a best estimate with possible alternate
estimates intended to represent a maximum possible
range of outcomes.

For bootstrap analyses, we used 1000 bootstrap sam-
ples. Stems were used as the unit of replication for
carbon stocks and growth and mortality fluxes, and plot
segments 50 m long were used as the unit of replication
for recruitment. Unless otherwise indicated, 95% con-
fidence intervals are reported as central estimate (plus
or minus uncertainty). For brevity and a more conser-
vative analysis, asymmetrical confidence limits (as
with distributions that are lognormal) are reported sym-
metrically, where reported uncertainty is the maximum
of (97.5 percentile 2 median) and (median 2 2.5 per-
centile).

Because CWD respiration was based in part on ap-
plication of respiration rates derived from studies at
other sites (rather than measured directly here), we used
an approach that was more conservative than a purely
statistical one by combining the bootstrap sampling
uncertainty with analysis accounting for potential
sources of bias. First, for sampling uncertainty, the res-
piration of each piece of wood in each bootstrap sample
was calculated from Respiration 5 k 3 (CWD mass)
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FIG. 2. Stem density (log scale) vs. dbh for the 2001 live
biomass survey. Two different loglinear trend lines were fit
to data for trees .40 cm dbh and ,40 cm dbh (estimated
regression coefficients 6 1 SE are shown).

5 exp(b 3 r) 3 ([CWD volume] 3 r), where CWD
volume was the volume of the sample piece, b was
drawn from its normal distribution (mean 5 24.117,
1 SD 5 0.62; Chambers et al. 2001b), and r is drawn
from a normal distribution with mean and standard de-
viations appropriate to the decay class of the sample
piece. This gave an uncertainty estimate on CWD res-
piration that accounts for combined uncertainty in vol-
ume, density, and first-order rate constant, and accounts
for the correlation between CWD mass and rate con-
stant k (which arises because both depend on CWD
density r).

In addition, we adjusted estimated respiration down-
ward to account for the lower respiration rate of stand-
ing (vs. fallen) dead wood, a consequence of its lower
moisture at a given density (Chambers et al. 2001b).
The difference in respiration rate between standing
snags and fallen dead wood is a bias that is not well
quantified (n 5 two standing dead snags in Chambers
et al. 2001b), so we used a simple approach that as-
sumed all standing CWD respires at the moderately
low rate of decay class one (instead of at the rate as-
sociated with its actual decay class). To account for
residual unknown bias, we expanded the 95% confi-
dence interval (calculated via the bootstrap described
above) by an amount equal to the downward adjust-
ment. We used this downward-adjusted value, along
with its associated expanded confidence interval, as our
best estimate of whole-forest CWD respiration.

RESULTS

Live biomass pool and flux

We surveyed 2596 trees in 1999 and 2803 trees in
2001; stem density was 469 and 498 trees per hectare,
respectively. The total aboveground live biomass
(mean and 95% CI) was 143.7 6 5.4 Mg C/ha in 1999
and 147.4 6 5.9 Mg C/ha in 2001 (Table 2A, allometry
from Chambers et al. 2001a). These values fall within

the range of previously published biomass estimates
for similar primary neotropical forests (Brown and
Lugo 1992, 1995, Gerwing and Farias 2000, Chave et
al. 2001, Keller et al. 2001). However, live biomass for
trees $35 dbh (99.4 Mg C/ha) was 12% greater than
a nearby Tapajós survey reporting 88.5 Mg C/ha of
biomass (Keller et al. 2001). Allometric uncertainty for
standing biomass was about the same as sampling un-
certainty, each less than 610% (Table 2A). Larger trees
($35 cm dbh) accounted for the main portion of total
biomass (67%), though smaller trees ($10 cm and ,35
cm dbh) were much more common (1780 trees, 64%
of stems).

The distribution of stem density vs. size was piece-
wise loglinear with a distinctly steeper slope for trees
,40 cm dbh (Fig. 2). The size class at which the slope
change occurs is about the same as the cutoff in our
nested plot design (35 cm), but this shift in the density
curve is not an artifact of the larger plot areas for trees
$35 cm: the stem density distribution using only the
smaller subtransects (on which all trees $10 cm were
inventoried) was indistinguishable from Fig. 2. The
steeper slope for small trees could represent non-
steady-state forest demography (in-growth of released
trees) or suppression of growth rates in the smaller size
classes (excess in stem density for suppressed stems in
smaller size classes). The latter would contradict the
constant-slope loglinear relationship often assumed be-
tween dbh and tree density in demographic models
(e.g., Gillespie et al. 1992, Keller et al. 2001).

The annual stand biomass growth increment was
3.18 6 0.20 Mg C·ha21·yr21 (n 5 2561 trees, Table 2A)
based on 1999 and 2001 dbh measurements, a mean
diameter increase of 0.36 cm/yr. The diameter growth
increment per tree increased with size until 40 cm dbh
(Fig. 3), with no clearly discernable pattern for larger
trees (error bars increase as samples sizes decrease in
the larger size classes). In contrast, the mean biomass
increment per-tree increases significantly with diameter
(Fig. 3) due to the power-law relation in the allometry.
Remarkably, the bulk of the stand biomass growth in-
crement was in small trees (2.10 6 0.17 Mg C·ha21·yr21

for trees ,35 cm dbh; Fig. 4a) because of the great
numbers of individuals in the smallest size class. Bio-
mass growth increment based on dendrometer mea-
surements (1000 trees) were similar, 2.3–3.1 Mg
C·ha21·yr21 (range based on both allometric and sam-
pling uncertainties). Growth rates were examined by
taxonomic family, however, placement in the canopy
(light availability) was a more significant factor (Fig.
5a).

Trees were recruited at a rate of 23 trees·ha21·yr21,
adding 180 new stems and 0.63 6 0.09 Mg C·ha21·yr21

to our pool of aboveground live biomass (Table 2A,
Fig. 6). Stem recruitment rates (4.8 6 0.9%) were el-
evated compared to rates for other undisturbed forests
in the central Amazon, which average 1.84% (Laurance
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FIG. 3. Average annual growth increment per tree
(cm·tree21·yr21, and 95% CI) and annual biomass increment
per tree (Mg biomass·tree21·yr21), by dbh size class (the bio-
mass increment was calculated using Chambers et al. [2001a]
allometry). Growth increment per tree increases with size up
to 40 cm dbh; above 40 cm dbh there is no discernible pattern
because of large error bars due to small samples sizes.

et al. 1998, corrected to 2-yr sampling interval) with
a range of 0.81 to 2.32% (Phillips and Gentry 1994).
In order to evaluate the possibility that high recruitment
is an artifact of missing trees in the original survey and
counted in the resurvey, we examined the rate of trees
crossing all size thresholds (ratio of trees crossing to
trees in size class) to determine if the recruitment into
the 10-cm size class was anomalously high. We ob-
served that the rate of trees crossing into the 10–15
cm size class was not detectably different from the rate
of trees crossing into other 5-cm size-class intervals
(Table 5), and concluded that the high recruitment rates
were not an artifact of trees overlooked in 1999.

Mortality (22.41 6 0.53 Mg C·ha21·yr21; Table 2A,
Figs. 4a and 6) offsets accumulation of aboveground
live biomass through growth and recruitment. Eighty-
eight trees died in the 2-yr interval, giving an annu-
alized stem mortality rate of 1.7%. This rate is slightly
higher than both the average mortality rate measured
at several other sites across the Amazon basin (1.5%),
and the average measured at tropical sites across world
(1.6%), but well within the 10th and 90th percentiles
for both (Lugo and Scatena 1996). More small indi-
viduals (dbh , 35 cm) died (57 stems, ;66% of stems
that died), but mortality in large trees ($35 cm) ac-
counted for a larger portion of the biomass lost (21.59
6 0.31 Mg C·ha21·yr21, ;66% of mortality losses) (Fig.
4a and b). The contrast with carbon gain in live biomass
(dominated by smaller trees) is discussed next.

Dividing the live biomass pool by input (growth 1
recruitment) or outflow (mortality) gave turnover times
of 38 and 59 yr, respectively, whereas the stem turnover

times, based on 4.8 6 0.9% recruitment and 1.7% mor-
tality, were 21 and 59 yr (geometric mean 31 yr). The
stem turnover times are shorter than for other Ama-
zonian forests: average turnover from mortality was 67
yr for 12 Amazonian sites (Lugo and Scatena 1996)
and 80 yr (geometric mean of mortality and recruitment
turnover times) for five other Amazonian sites (Phillips
and Gentry 1994). Our site in the Tapajós is more dy-
namic than other Amazonian forests, this is possibly a
response to a recent disturbance.

Growth, recruitment, and mortality combine to yield
a net flux (uptake of carbon) in live biomass of 1.40
6 0.62 Mg C·ha21·yr21 (Table 2A). This value is similar
(Fig. 6) to the net flux measured in an aggrading tem-
perate forest in central Massachusetts (Harvard Forest
[Barford et al. 2001]; see Fig. 6), despite the much
larger gross fluxes in Tapajós.

Fig. 4 summarizes the increase of biomass and stem
density, which was notably concentrated in smaller trees
where growth and recruitment exceed mortality and out-
growth. In the larger (60–85 cm) trees, mortality out-
strips growth and recruitment (Fig. 4a). Stem density
increased from 448 to 478 trees/ha (1.44 Mg C·ha21·yr21

biomass accumulation) in classes ,60 cm, but was es-
sentially stable (from 20 to 19 trees/ha, 0.04 Mg
C·ha21·yr21 biomass loss) in classes $60 cm (Fig. 4).

Coarse woody debris: pool sizes and fluxes

CWD totaled 48.0 6 5.2 Mg C/ha with a large frac-
tion (18%, or 27 stems/ha) as standing dead snags (Ta-
ble 4). CWD estimates using wood densities derived
in other neotropical forests gave slightly lower num-
bers: 40.4 6 5.2 Mg C/ha, 42.8 6 4.5 Mg C/ha, and
31.9 6 3.6 Mg C/ha (Delaney et al. 1998, Summers
1998, Clark et al. 2002, respectively). CWD exhibited
high spatial variability (e.g., sixfold differences in av-
erage volume across the 16 large CWD plots in Fig.
1) but there was no detectable difference from a random
pattern across the four transects.

The CWD pool is in the upper range of estimates
from other tropical forests, though detailed compari-
sons are difficult due to incompatible measurement
methods and size class delineations. Standing CWD
falls in the range of other reported values (Clark et al.
2002, Delaney et al. 1998). The fallen CWD is higher:
our estimate of fallen CWD (39.1 6 5.7 Mg C/ha for
pieces $2 cm, 34.4 6 5.6 for pieces $10 cm) is roughly
twice as much as found by Delaney et al. (1998) (16.6
Mg C/ha for fallen pieces $2 cm), Clark et al. (2002)
(23 Mg C/ha for pieces $10 cm), and Brown et al.
(1995) (15 Mg C/ha for pieces $10 cm). Total CWD
$10 cm (44.0 Mg C/ha) was significantly higher than
Summers (1998) estimate of 32.3 Mg C/ha for a nearby
forest in Manaus. There is also evidence that the CWD
at kilometer 67 is larger than other areas of the Tapajós.
Volume estimates for fallen CWD at our site by the
plot method (151.7 6 19.4 m3/ha) and the line-intercept
method (164.2 6 38.1 m3/ha) are both ;50% higher
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FIG. 4. (a) Gross fluxes to aboveground live biomass (allometry from Chambers et al. [2001a]) by size class due to
growth, mortality, and recruitment (light gray, stippled, and hatched bars), and corresponding net flux (and 95% CI; dark
gray bars) showing carbon accretion in small size classes and carbon loss from larger size classes. Recruitment for the
smallest size class was due to ‘‘grow-ins’’ or previously unsurveyed stems; in subsequent classes, trees that grew across
size-class limits were added into the new size class (‘‘ingrowth’’) and subtracted from the preceding class as ‘‘outgrowth’’
(wide-hatched bars). (b) Gross changes in tree stem density (trees/ha) by size class due to ingrowth, mortality, and outgrowth
(light gray and narrow-hatched bars), and corresponding net changes in stem density (dark gray bars).

than in the nearby forest at kilometer 83 (109 m3/ha
by line intercept, data not shown). Note that our forest
at kilometer 67 also had greater biomass in the largest
trees (99.4 vs. 88.5 for trees $35 cm).

Mortality inputs to the pool of CWD from dying trees
(Table 2B) were outstripped by respiration losses. The
best estimate of CWD respiration, after adjusting for
the slower respiration of standing dead wood, was 5.7
6 1.0 Mg C·ha21·yr21 (Table 3), indicating an effective
whole-forest CWD respiration rate of k 5 0.119. The
net result was loss from the CWD pool of 3.3 6 1.1
Mg C·ha21·yr21 (1.4–5.8 Mg C·ha21·yr21 for the most
conservative range) (Table 2B).

Aboveground biomass and flux in total:
live and dead

Combining data for live and dead pools gives total
aboveground biomass of 195.4 6 7.9 Mg C·ha21·yr21

(trees with dbh $ 10 cm and CWD $ 2 cm, Table 2C),
with ;76% alive and 24% dead. The best-estimate net
flux to aboveground biomass was 21.9 6 1.0 (negative
carbon storage, Table 2C) at this site over the 2-yr
period of the study, despite the large uptake by growing
trees. The most conservative range of net flux was 20.1
to 24.5 Mg C·ha21·yr21; carbon storage in aboveground
biomass is excluded with very high probability.
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FIG. 5. (a) Mean tree growth increment (and 95% CI), by canopy status and year (dendrometry sample, February 2000–
February 2002). Growth rate increases with light availability (as indicated by canopy status) and water availability (as
indicated by annual precipitation: 2200 mm in 2000, 1846 mm in 2001 [Nepstad et al. 2002]). Mean dbh in 2001: emergent,
73.7; canopy, 35.2; subcanopy, 19.8; suppressed, 15.9. (b) Growth fluxes to aboveground tree biomass (February 2000 through
July 2002) and in litterfall (July 2000 through July 2002), together with biweekly precipitation (Nepstad et al. 2002). Flux–
precipitation correlations are: tree growth, r 5 10.71, P , 0.001; litterfall, r 5 20.4, P , 0.005. Biomass increments were
calculated using Chambers et al. (2001a) allometry.

Fine litter: pool size and flux

Litterfall was 5.73 Mg C·ha21·yr21 in the first year
and 6.32 Mg C·ha21·yr21 in the second year for all litter,
including fruits, flowers, and wood ,2 cm diameter.
Leaves accounted for ;70% both years. Total litter was
somewhat higher than the range reported by most other
studies of moist tropical forests (3.65–4.15 Mg
C·ha21·yr21; Klinge and Rodrigues 1968, Franken 1979,
Luizao and Schubart 1987, Luizao 1995), lying at the
upper end of the range (0.9–6.0 Mg C·ha21·yr21) given

by Clark et al. (2001) for the tropics as a whole. The
high litterfall rate suggests that this site may have an
unusually high leaf area, and/or more rapid leaf turn-
over, than other neotropical forests.

Fine litter fluxes exceed the growth flux to above-
ground live wood and contribute significantly to NPP.
Because litter turnover time is short, on the order of
one year (Klinge and Rodrigues 1968, Brown and Lugo
1982), litter fluxes are balanced by decomposition on
the time scale of several years. Thus we did not include
litter in our net carbon storage calculations.
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FIG. 6. Gross and net fluxes to live, dead, and total aboveground biomass (mean and 95% CI) in the Tapajós National
Forest and in a temperate mid-latitude forest (Harvard Forest, Petersham, Massachusetts, USA). Live biomass uptake in the
Tapajós Forest is indistinguishable from that at Harvard Forest; however, the temperate forest has carbon gains for the dead
biomass and the total aboveground biomass pools while the Tapajós has large net losses.

Ecological and climatic controls on tree growth
and fine litterfall

Canopy status (correlated with light availability) and
year (a surrogate for annual precipitation input) to-
gether account for statistically significant variance in
annual stem diameter growth increments in the den-
drometry sample (two-way ANOVA, with both factors
highly significant: canopy status F3, 1933 5 43.7, P ,
0.0001; year F1, 1933 5 25.5, P , 0.0001). Suppressed
and subcanopy trees grew at significantly smaller rates
than canopy and emergent trees, and growth in the wet
year (February 2000 to February 2001, precipitation 5
2412 mm) significantly exceeded the dry year (Feb-
ruary 2001 to February 2002, precipitation 5 1805

mm) growth (Fig. 5a). Precipitation also correlated
with tree growth at the monthly time scale (Pearson
correlation coefficient, r 5 0.71, P , 0.001; Fig. 5b).
Litterfall also correlated with rainfall, but in the op-
posite sense (biweekly litterfall vs. precipitation cor-
relation, r 5 20.4, P , 0.01) (Fig. 5b).

DISCUSSION

Aboveground biomass measurements for the two-
year study period indicate net emission of carbon from
this site (1.9 6 1.0 Mg C·ha21·yr21 [mean and 95% CI]),
an apparent contrast with both the eddy-covariance
studies that report net carbon uptake in similar Ama-
zonian forests (Grace et al. 1995, Malhi et al. 1998),
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TABLE 5. The number of stems crossing a size class thresh-
old (every 5 cm) vs. the number of stems originally in a
size class, expressed as raw numbers and as an annualized
percentage rate.

Thresh-
old

(cm)†

No. stems
crossing
threshold

No. stems
originally present

in size class

Rate of stems
crossing
threshold
(%·yr21)

10
15
20
25
30

201‡
78
36
21
19

882
419
192

92
61

11
9
9

11
16

35
40
45
50
55

11
33
35
18
17

32
167

99
101

75

17
10
18

9
11

60
65
70
75
80

15
19

6
12
11

71
52
54
40
24

11
18

6
15
23

85
90
95

.100

5
10

4
16

43
25
14
67

6
20
14
12

† For trees ,40 cm dbh, numbers and rates are determined
from 4 ha of data. For trees .40 cm dbh, numbers and rates
are determined from 20 ha of data.

‡ Stems crossing the 10 cm dbh threshold are recruited
trees.

and with the reported trend of biomass accumulation
in neotropical and Amazon forests (Phillips et al.
1998). Preliminary estimates of cumulative CO2 flux
from the eddy covariance measurements on the adja-
cent tower indicated loss of 0.7–2.0 Mg C·ha21·yr21

(data not shown), in close agreement with the biometric
data presented here.

Sensitivity of results to CWD fluxes and pool size

The respiration from CWD, based on published de-
composition rates measured in a forest near Manaus
(Chambers et al. 2000, 2001b), represents the least-
constrained parameter in the analysis of aboveground
biomass flux. Nevertheless, net loss of carbon from
CWD appears certain: decomposition rates would have
to be only 0.05 yr21 for CWD to be in steady state at
our site. This rate would be slower than in cold tem-
perate forests (0.06 yr21; Turner et al. 1995).

The CWD budget might be closer to balance if inputs
were larger than we derived from mortality rates, e.g.,
from large branch falls. Large branches commonly fall
from live trees in the neotropics (Aide 1987, Chambers
et al. 2001a); individual limbs as large as trees may
fall, preferentially in previously created gaps (Young
and Hubbell 1991). Most studies of limb loss focus on
tree recovery following breakage (Putz and Brokaw
1989, Bellingham et al. 1994) or the effects of limb
loss on the understory (Aide 1987, Clark and Clark
1989), and so the contribution of limb falls to CWD

remains uncertain. However, limb falls are unlikely to
account for the imbalance in inputs and outflows in the
pool of CWD, because associated inputs would have
to equal or exceed mortality to bring the current CWD
pool into balance. Note that falling limbs move carbon
from live to dead pools, with no effect on our conclu-
sion that carbon is being lost from combined above-
ground pools.

A disturbance-recovery hypothesis to explain
ecosystem carbon loss in the Tapajós Forest

What factors may be causing the net emission of
(0.1–4.5 Mg C·ha21·yr21) of carbon from the site? Rel-
evant features of the observations include:

1) Loss results from net emissions from CWD, which
exceed the carbon accumulation in live trees (Ta-
ble 2).

2) Accumulation in live biomass is concentrated in
the small trees (Fig. 4a) and stem densities of
smaller trees are also increasing (Fig. 4b).

3) Recruitment rates are very high (4.8 6 0.9%),
closer to rates observed in forest fragments (where
baseline rates can be raised by up to ;70% [Laur-
ance et al. 1998]) than in intact primary forest
(0.81–2.8% [Phillips and Gentry 1994]).

4) Litter production is in the upper end of the range
for neotropical forests.

5) The pool of CWD, the driver of carbon loss in
this forest, is large not only by comparison to
other forests, but also in comparison to mortality
inputs. It would take ø13 yr of the total input
from mortality to accumulate just the excess CWD
stock (above the steady state at present mortality
input rates).

We propose a hypothesis that is consistent with all
of these observed anomalies: that the site is in the
process of recovery from a significant disturbance or
disturbances which caused sharply elevated mortality
in years preceding the onset of the study in 1999. This
process would have caused the CWD pool to increase
to the current state where losses substantially exceed
inputs, and simultaneously opened canopy gaps. Can-
opy gaps stimulate recruitment of new trees, high levels
of leaf production, and tree growth, causing the ob-
served net accumulation in live biomass. If we are in-
deed observing the initial recovery phase, biomass ac-
cumulation would show up in smaller trees, as we have
found.

The disturbance-induced mortality required to make
this hypothesis work is significantly above background
rates, but well below the near-complete mortality ob-
served in large blow-downs (Nelson et al. 1994) that
occur occasionally in the Amazon basin, apparently due
to large convective storms (Garstang et al. 1998). Mor-
tality rates of 5% yr21 (taken as the dividing line be-
tween background and catastrophic mortality by Lugo
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and Scatena [1996]) would have to persist for ;4 yr
to achieve current CWD pool sizes.

ENSO, drought in the Amazon, and its effects
on net carbon flux

The protracted and severe droughts associated with
the ENSO (El Niño Southern Oscillation) events in the
1990s (1992–1995, 1997–1998 Multivariate ENSO In-
dex [MEI]8) could have contributed to a previous mor-
tality event and the observed loss of carbon. El Niño
years are associated with anomalously low rainfall over
most of Amazonia (Ropelewski and Halpert 1987), and
drought was particularly severe during the 1997–1998
ENSO, the strongest ENSO of the century (Marengo
et al. 1998, McPhaden 1999, Williamson et al. 2000).
Precipitation measured at Belterra, ;30 km from our
site, shows strong drought conditions during the dry
season (June to October) of 1997, when rainfall totaled
162.0 mm, compared to an average of 370.4 mm in
non-ENSO years (data from Belterra weather station;
E. Moran, unpublished data). Williamson et al. (2000)
links such ENSO related drought to temporarily ele-
vated tree mortality, reporting that when dry season
rainfall near Manaus dropped to 232 mm during the
1997 ENSO, from the non-ENSO year average of 732
mm, tree mortality rates jumped from 1.12% to 1.91%.
Other studies have shown increased tree mortality as-
sociated with ENSO events, though they do not cite
drought conditions specifically (Leighton and Wirawan
1986, Condit et al. 1995, Kinnaird and O’Brien 1998).

The ENSO-induced mortality observed in these stud-
ies is less than the ;5% rate needed to explain our
observations. It may be that the kilometer 67 site in
the Tapajós Forest had a stand structure more suscep-
tible to mortality than other forests, and this could have
either made the ENSO effect bigger at this site, or could
have contributed to a localized mortality event inde-
pendent of ENSO. There is some evidence that the
stand may be in a state of decline because of an ad-
vanced age structure, indicated by a greater tree density
and a greater stand biomass at kilometer 67 (99.4 Mg
C/ha) than at the nearby kilometer 83 site (88.5 Mg
C/ha; Keller et al. 2001) for trees $35. An advanced-
age stand may be more likely to experience disturbance
and elevated mortality because of biological limitations
on tree size and stand structure. It has been observed
that large trees (.70 cm dbh) are more drought sus-
ceptible (Clark and Clark 1996) than smaller trees.

Drought may also enhance CWD by slowing decom-
position. Eddy-flux measurements at a nearby Tapajós
Forest site indicate that dry conditions are linked to
markedly lower ecosystem respiration (Goulden et al.
2004). Thus, the combination of increased input into
the CWD pool by mortality with slower decomposition
during the ENSO events of the 1990s could have caused

8 ^http://www.cdc.noaa.gov/;kew/MEI/&

the accumulation of CWD pool that we observed, and
the consequent emissions during the period of our
study.

Model studies by Tian et al. (1998) suggested that
undisturbed forests in the Amazon Basin should act as
a source of CO2 during dry El Niño years and a sink
during other years (7.0 3 108 Mg C). In this study, we
measured a carbon source in the years following a par-
ticularly strong ENSO event. We have suggested that
the effect of recent ENSO events on the net carbon flux
in this old-growth forest was delayed, leading to emis-
sions well after the meteorological event. Lag in carbon
budget response seems likely based on simple tree dy-
namics: mortality may occur within a year or two of
an ENSO, but decomposition is actually inhibited dur-
ing the event and in many case takes 10–15 yr for large
pieces of CWD. Carbon release is then more likely to
occur when the drought ends. There may also be a
‘‘methodological’’ lag time associated with biometric
measurements of carbon accretion from elevated re-
cruitment, because trees must attain a minimum size
class (in this study, 10 cm dbh) to be measured.

One might expect that, in the future, the forest will
return to long-term net carbon balance as it recovers
from an episode of drought and mortality. But if ENSO
events increase in severity or frequency in response to
changing climate, long-term carbon balance may be
affected. Evidently, long monitoring periods are re-
quired to determine the contribution of this, or any,
primary tropical forest to the budget of atmospheric
CO2.

Implications for biometric studies
of forest carbon accumulation

The net uptake by live biomass in our Tapajós site,
1.40 6 0.62 Mg C·ha21·yr21, is equal to the 90th per-
centile of uptake observed across all tropical forest
plots in the Phillips et al. (1998) study. Nevertheless,
the net carbon balance in the Tapajós for live and dead
pools together is actually negative due to large respi-
ration losses from an excess of CWD. Evidently, bio-
metric studies of tropical forest carbon sequestration
that neglect the CWD pool may be misleading, espe-
cially if study duration is shorter or comparable to the
turnover time of CWD (on the order of 10 yr) or com-
pared to the return frequency of important disturbance-
inducing events such as ENSO.

These observations are generally relevant to ongoing
studies of forest carbon sequestration. For example, the
Phillips et al. study did not include CWD, yet their
finding of statistically significant uptake in tropical sys-
tems depends on the inclusion of forest plots observed
for less than 10 yr (Phillips et al. 1998, supplemental
information); these plots (24 out of 68 plots globally)
are precisely those most susceptible to the bias caused
by excluding CWD. Detecting the effects of increasing
atmospheric CO2 on in situ tropical forest carbon se-
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questration (a goal of an increasing number of studies)
will also likely be difficult, since the predicted CO2

fertilization signal (e.g., 0.42 Mg C·ha21·yr21 extra up-
take [Tian et al. 2000]) is small compared to the signal
we might expect from periodic climate-disturbance
events (0.1–4.5 Mg C·ha21·yr21, taking the Tapajós as
an indicator). Because climatic events such as ENSO
are regional, the signal of climate-driven shifts in car-
bon balance may also be expected to extend broadly
in space as well, suggesting that the need to include
CWD may not be ameliorated even by spatially exten-
sive sampling.

CONCLUSIONS

The present study shows net carbon loss from this
old-growth tropical forest between 1999 and 2001, with
accumulation in live biomass offset by even larger res-
piration losses from necromass. CWD was an espe-
cially large and labile pool of carbon with significant
impact the net carbon budget for the ecosystem. This
work shows that surveys of live biomass alone are in-
sufficient to determine carbon budgets.

Several observations suggest that the site is recov-
ering from a period of high mortality preceding the
onset of the study: loss from necromass was due to an
unusually large CWD pool, the net carbon accumula-
tion observed in live biomass was concentrated exclu-
sively in small size classes, and recruitment rates were
much higher than what is typical for old-growth forests.
We present the hypothesis that drought conditions re-
sulting from the 1990s ENSO events (documented in
local rainfall records) contributed to the elevated mor-
tality that led, first, to a substantial transfer of biomass
from live to dead pools and preservation of the dead
pools during the dry periods, and subsequently (during
our study), to both losses from CWD and gains in live
biomass for smaller trees.

The observed loss of carbon (1.9 6 1.0 Mg
C·ha21·yr21) was large compared to the hypothesized
carbon uptake from fertilization by elevated atmo-
spheric CO2 (0.42 Mg C·ha21·yr21 [Tian et al. 2000]),
indicating that any signal from such uptake is likely to
be strongly masked. Since ENSO events are regional,
affecting tropical forests globally in different ways,
interpretation of short-term ecological studies in terms
of CO2 fertilization should be approached with caution.

Climatic variations influence forest demographic
processes, and thus carbon balance, for extended pe-
riods. For time scales of several years, a dominant sig-
nal in forest dynamics and net carbon budgets in this
tropical forest, and no doubt in many others, appears
to be climatic variation.
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