1,186 research outputs found

    Development of Anharmonic Molecular Models and Simulation of Reaction Kinetics in Zeolite Catalysis

    Get PDF
    -- Entwicklung von anharmonischen MolekĂŒlmodellen und Kinetiksimulationen fĂŒr Zeolithkatalyse -- Zeolithe katalysieren eine bemerkenswerte Kohlenwasserstoffchemie durch ihre einzigartige Topologie mit Poren von molekularer GrĂ¶ĂŸenordnung und verteilten aktiven BrĂžnsted SĂ€urezentren. Insbesondere industriell nutzbare Prozesse wie “Ethanol-to-Olefins” (ETO) und “Methanol-to-Olefins” (MTO) könnten ein fester Bestandteil der Wertschöpfungskette von vergaster Biomasse zu Petrochemikalien werden. Simulationen bieten direkte Einblicke in ansonsten kaum beobachtbare VorgĂ€nge, wie zum Beispiel unter Reaktionsbedingungen arbeitende Katalysatoren, und erleichtern somit die zielgerichtete Gestaltung von neuen Materialien und Prozessen. Mehrskalenmodellierung von Zeolithkatalyse, wie in dieser Arbeit gezeigt, verbindet Theorien zur Beschreibung von PhĂ€nomenen auf verschiedensten LĂ€ngen- und Zeitskalen. Grundlegende katalytische Eigenschaften auf molekularer Ebene werden durch Dichtefunktionaltheorie (DFT) und weitere Quantenmethoden bestimmt. Die Zustandssummen der statistischen Mechanik – einschließlich der NĂ€herung des harmonischen Oszillators – verknĂŒpfen diese fundamentalen Ergebnisse mit Thermodynamik. Dadurch abgeleitete Ratenkonstanten ermöglichen Kinetiksimulationen mit Reaktormodellen wie dem idealen RĂŒhrkessel und idealen Strömungsrohr. Die Untersuchung der eher unerforschten, aber vermutlich mangelhaften QualitĂ€t der NĂ€herung des (molekularen) harmonischen Oszillators fĂŒr Adsorptionsprozesse und Reaktionsbarrieren in Zeolithen zeigt die Bedeutung von AnharmonizitĂ€t fĂŒr Schwingungen sowie fĂŒr unterdrĂŒckte Rotationen und Translationen (Dissoziationen). Um AnharmonizitĂ€t zu quantifizieren wird eine neue allgemein anwendbare Methode zur Berechnung anharmonischer Korrekturen vorgestellt. Das neue Konzept bedient sich thermodynamischer λ\lambda-Pfadintegration (λ\lambda-TI) vom harmonisch zum DFT-basiert interagierenden System kombiniert mit krummlinigen internen Koordinaten in Systemen mit periodischen Randbedingungen. Seine UnabhĂ€ngigkeit von jeglichen Reaktionskoordinaten macht dieses λ\lambda-TI Verfahren besonders nĂŒtzlich fĂŒr computergestĂŒtzte (Zeolith-)Katalyse und vorteilhaft fĂŒr die Betrachtung von Adsorption relativ zur Gasphase, da es zur Untersuchung beliebiger ZustĂ€nde in der freien EnergiehyperflĂ€che angewendet werden kann. In zwei Schritten wird das λ\lambda-TI Verfahren unter Verwendung von DFT-basierter Molekulardynamik Simulation zur Untersuchung von Adsorption im Zeolith H-SSZ-13 und von Reaktionsbarrieren eingesetzt. Die Vorhersage experimenteller freier Adsorptionsenthalpien wird verbessert. FĂŒr Barrieren erweist sich das λ\lambda-TI Verfahren als vergleichbare Alternative zu einer etablierten, von der Reaktionskoordinate abhĂ€ngigen, Methode. Maschinelles Lernen und damit verbundene Deskriptoren werden als vielversprechende ErgĂ€nzungen zum λ\lambda-TI Verfahren skizziert. Reaktionspfade der Ethanoldehydratisierung und eines wesentlichen Teils des autokatalytischen Olefinzyklus in ETO werden unter Verwendung der oben beschriebenen Mehrskalenmodellierung untersucht. Die Bildung von Diethylether wird bei niedrigeren Temperaturen mit abnehmender SelektivitĂ€t fĂŒr steigenden Umsatz beobachtet. Bei höheren Temperaturen verlĂ€uft die Ethanoldehydratisierung viel schneller als die Ethylierung des entstehenden Ethens. Hexenisomere bilden sich auf der gleichen Zeitskala wie Buten, wobei verzweigte Isomere bevorzugt werden, und 2-Methylpentenisomere am meisten zur Propenbildung durch Spaltung beitragen. OberflĂ€chengebundene Alkoxygruppen ermöglichen den relevantesten (schrittweisen) Alkylierungsmechanismus unter den untersuchten Reaktionsbedingungen in H-SSZ-13 sowohl bei ETO als auch bei MTO. Außerdem wird die Relevanz einer Auswahl gĂ€ngiger organischer Verunreinigungen fĂŒr die Initiierung des MTO Prozesses in einem kinetischen Modell mit 107 Elementarschritten, darunter ein reprĂ€sentativer Teil des Olefinzyklus und die direkte Initiierung aus Methanol durch CO-vermittelte C−C BindungsknĂŒpfung, quantifiziert. Die Wirkung verschiedener Verunreinigungen auf die Olefinentwicklung variiert mit ihrer Art und Menge. Bereits extrem kleine Verunreinigungsmengen fĂŒhren zu schnellerer Initiierung als die direkte C−C BindungsknĂŒpfung, die nur in vollstĂ€ndiger Abwesenheit von Verunreinigungen von Bedeutung ist

    Effect of Impurities on the Initiation of the Methanol-to-Olefins Process: Kinetic Modeling Based on Ab Initio Rate Constants

    Get PDF
    The relevance of a selection of organic impurities for the initiation of the MTO process was quantified in a kinetic model comprising 107 elementary steps with ab initio computed reaction barriers (MP2:DFT). This model includes a representative part of the autocatalytic olefin cycle as well as a direct initiation mechanism starting from methanol through CO-mediated direct C–C bond formation. We find that the effect of different impurities on the olefin evolution varies with the type of impurity and their partial pressures. The reactivity of the considered impurities for initiating the olefin cycle increases in the order formaldehyde < di-methoxy methane < CO < methyl acetate < ethanol < ethene < propene. In our kinetic model, already extremely low quantities of impurities such as ethanol lead to faster initiation than through direct C–C bond formation which only matters in complete absence of impurities. Graphic Abstract: [Figure not available: see fulltext.

    Theoretical investigation of the olefin cycle in H-SSZ-13 for the ethanol-to-olefins process using ab initio calculations and kinetic modeling

    Get PDF
    The formation of the hydrocarbon pool (HCP) in the ethanol-to-olefins (ETO) process catalyzed by H-SSZ-13 is studied in a kinetic model with ab initio computed reaction barriers. Free energy barriers are computed using density functional theory (DFT) and post-Hartree–Fock methods with a complete basis set extrapolation applied to a hierarchy of periodic and cluster models. The kinetic model includes ethanol (EtOH) dehydration to ethene as well as olefin ethylations up to hexene isomers and the corresponding cracking reactions. Ethylation of ethene and of products thereof leads only to even-numbered olefins, while cracking can lead to propene and thus initiate the formation of olefins with an odd number of carbon atoms. During EtOH dehydration at 473.15 K we observe diethyl ether (DEE) formation for a short period of time where the DEE selectivity decreases monotonically with increasing EtOH conversion. At 673.15 K we find that EtOH dehydration occurs much faster than ethylation of the formed ethene, which takes considerably longer due to higher free energy barriers. Hexene isomers form on the same time scale as butene, where branched isomers are favored with 2-methyl-pentene isomers contributing most to the formation of propene through cracking. As in the methanol-to-olefins (MTO) process, the most relevant alkylation pathway is the stepwise mechanism via surface alkoxy species (SAS) on the zeolite catalyst. A comparison of ethylation with methylation barriers of up to heptene isomers forming nonene and octene isomers, respectively, shows that ethylation barriers are lower by around 11 kJ mol−1^{-1} on average

    Thermodynamics and reaction mechanism of urea decomposition

    Get PDF
    The selective catalytic reduction technique for automotive applications depends on ammonia production from a urea-water solution by thermolysis and hydrolysis. In this process, undesired liquid and solid by-products are formed in the exhaust pipe. The formation and decomposition of these by-products have been studied by thermogravimetric analysis and differential scanning calorimetry. A new reaction scheme is proposed that emphasizes the role of thermodynamic equilibrium of the reactants in liquid and solid phases. Thermodynamic data for triuret have been refined. The observed phenomenon of liquefaction and re-solidification of biuret in the temperature range 193–230 °C is explained by formation of a eutectic mixture with urea

    Thermodynamics and reaction mechanism of urea decomposition

    Get PDF
    Selective catalytic reduction (SCR) for automotive applications depends on ammonia production from a urea-water solution by thermolysis and hydrolysis. In this process, undesired liquid and solid by-products are formed in the exhaust pipe. The formation and decomposition of these by-products have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Based on a previously published reaction mechanism by Brack et al. [1], a new reaction scheme is proposed that emphasizes the role of thermodynamic equilibrium of the reactants in liquid and solid phases [2]. The observed phenomenon of liquefaction and re-solidification of biuret in the temperature range 193–230 °C can be explained by formation of a eutectic mixture with urea. According to DSC data, the direct decomposition of urea to ammonia and isocyanic acid can be ruled out. The dominant route is a self-polymerisation of urea to biuret and triuret. Biuret and triuret decomposition are dominated by thermodynamic equilibria with gaseous isocyanic acid. For this, thermodynamic data of triuret have been refined. The apparent melting point of biuret at 193 °C is explained by the formation of a eutectic mixture within the urea-biuret-triuret-cyanuric acid ensemble. Furthermore, DSC data shows that cyanuric acid sublimates without decomposition at temperatures above 300 °C. Numerical simulations of the TGA and DSC experiments are performed by a multi-phase tank reactor model (DETCHEMMPTR [3]). The new reaction mechanism describes well the main features (decomposition steps and calorimetry) and dependencies (on heating rate and surface area) of the decompositions of urea, biuret, triuret and cyanuric acid. [1] W. Brack, B. Heine, F. Birkhold, M. Kruse, G. Schoch, S. Tischer and O. Deutschmann, “Kinetic modeling of urea decomposition based on systematic thermogravimetric analyses of urea and its most important by-products”, CES 106, 1–8 (2014). [2] S. Tischer, M. Börnhorst, J. Amsler, G. Schoch and O. Deutschmann, “Thermodynamics and reaction mechanism of urea decomposition”, PCCP, in press, DOI: 10.1039/C9CP01529A (2019). [3] www.detchem.co

    Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts

    Full text link
    [EN] The potential of oxide-supported rhodium single atom catalysts (SACs) for heterogeneous hydroformylation was investigated both theoretically and experimentally. Using high-level domain-based local-pair natural orbital coupled cluster singles doubles with perturbative triples contribution (DLPNO-CCSD(T)) calculations, both stability and catalytic activity were investigated for Rh single atoms on different oxide surfaces. Atomically dispersed, supported Rh catalysts were synthesized on MgO and CeO2. While the CeO2-supported rhodium catalyst is found to be highly active, this is not the case for MgO, most likely due to increased confinement, as determined by extended X-ray absorption fine structure spectroscopy (EXAFS), that diminishes the reactivity of Rh complexes on MgO. This agrees well with our computational investigation, where we find that rhodium carbonyl hydride complexes on flat oxide surfaces such as CeO2(111) have catalytic activities comparable to those of molecular complexes. For a step edge on a MgO(301) surface, however, calculations show a significantly reduced catalytic activity. At the same time, calculations predict that stronger adsorption at the higher coordinated adsorption site leads to a more stable catalyst. Keeping the balance between stability and activity appears to be the main challenge for oxide supported Rh hydroformylation catalysts. In addition to the chemical bonding between rhodium complex and support, the confinement experienced by the active site plays an important role for the catalytic activity.X-ray absorption experiments were performed at the ALBA Synchrotron Light Source (Spain), experiment 2019023278. Beamline scientists L. Simonelli and C. Marini are gratefully acknowledged for their contribution to beam setup. E. AndrĂ©s, E. MartĂ­nez-Monje, I. LĂłpez, and M. GarcĂ­a-FarpĂłn (ITQ) are acknowledged for their assistance with XAS data acquisition. J. Ternedien (MPI-KOFO) is acknowledged for the performance of XRD experiments. N. PfĂ€nder (MPI-CEC) is acknowledged for his contribution to STEM characterization. The authors acknowledge support by the state of Baden-WĂŒrttemberg through bwHPC (bwUnicluster and JUSTUS, RV bw17D01). The authors gratefully acknowledge support by the GRK 2450. Financial support from the Helmholtz Association is also gratefully acknowledged. The experimental work received funding from the Max Planck Society and the Spanish Ministry of Science, Innovation and Universities (projects SEV-2016-0683 and RTI2018-096399-A-I00). B.B.S. acknowledges the Alexander von Humboldt Foundation for a postdoctoral scholarship.Amsler, J.; Sarma, BB.; Agostini, G.; Prieto GonzĂĄlez, G.; Plessow, P.; Studt, F. (2020). Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts. Journal of the American Chemical Society. 142(11):5087-5096. https://doi.org/10.1021/jacs.9b12171S5087509614211Franke, R., Selent, D., & Börner, A. (2012). Applied Hydroformylation. Chemical Reviews, 112(11), 5675-5732. doi:10.1021/cr3001803Serna, P., Yardimci, D., Kistler, J. D., & Gates, B. C. (2014). Formation of supported rhodium clusters from mononuclear rhodium complexes controlled by the support and ligands on rhodium. Phys. Chem. Chem. Phys., 16(3), 1262-1270. doi:10.1039/c3cp53057dGuan, E., & Gates, B. C. (2017). Stable Rhodium Pair Sites on MgO: Influence of Ligands and Rhodium Nuclearity on Catalysis of Ethylene Hydrogenation and H–D Exchange in the Reaction of H2 with D2. ACS Catalysis, 8(1), 482-487. doi:10.1021/acscatal.7b03549Dossi, C., Fusi, A., Garlaschelli, L., Roberto, D., Ugo, R., & Psaro, R. (1991). Ethylene hydroformylation with the silica-supported K2[Rh12(CO)30] cluster: evidence for vapor-phase cluster catalysis. Catalysis Letters, 11(3-6), 335-339. doi:10.1007/bf00764325Ehresmann, J. O., Kletnieks, P. W., Liang, A., Bhirud, V. A., Bagatchenko, O. P., Lee, E. J., 
 Haw, J. F. (2006). Evidence from NMR and EXAFS Studies of a Dynamically Uniform Mononuclear Single-Site Zeolite-Supported Rhodium Catalyst. Angewandte Chemie International Edition, 45(4), 574-576. doi:10.1002/anie.200502864Sun, Q., Dai, Z., Liu, X., Sheng, N., Deng, F., Meng, X., & Xiao, F.-S. (2015). Highly Efficient Heterogeneous Hydroformylation over Rh-Metalated Porous Organic Polymers: Synergistic Effect of High Ligand Concentration and Flexible Framework. Journal of the American Chemical Society, 137(15), 5204-5209. doi:10.1021/jacs.5b02122De Munck, N. A., Verbruggen, M. W., & Scholten, J. J. F. (1981). Gas phase hydroformylation of propylene with porous resin anchored rhodium complexes part I. Methods of catalyst preparation and characterization. Journal of Molecular Catalysis, 10(3), 313-330. doi:10.1016/0304-5102(81)85052-3Lang, R., Li, T., Matsumura, D., Miao, S., Ren, Y., Cui, Y.-T., 
 Zhang, T. (2016). Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3. Angewandte Chemie International Edition, 55(52), 16054-16058. doi:10.1002/anie.201607885Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., & Zhang, T. (2013). Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 46(8), 1740-1748. doi:10.1021/ar300361mPaolucci, C., Khurana, I., Parekh, A. A., Li, S., Shih, A. J., Li, H., 
 Gounder, R. (2017). Dynamic multinuclear sites formed by mobilized copper ions in NO x selective catalytic reduction. Science, 357(6354), 898-903. doi:10.1126/science.aan5630Jangjou, Y., Do, Q., Gu, Y., Lim, L.-G., Sun, H., Wang, D., 
 Epling, W. S. (2018). Nature of Cu Active Centers in Cu-SSZ-13 and Their Responses to SO2 Exposure. ACS Catalysis, 8(2), 1325-1337. doi:10.1021/acscatal.7b03095Wang, L., Zhang, W., Wang, S., Gao, Z., Luo, Z., Wang, X., 
 Zeng, J. (2016). Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nature Communications, 7(1). doi:10.1038/ncomms14036Li, T., Chen, F., Lang, R., Wang, H., Su, Y., Qiao, B., 
 Zhang, T. (2020). Styrene Hydroformylation with In Situ Hydrogen: Regioselectivity Control by Coupling with the Low‐Temperature Water–Gas Shift Reaction. Angewandte Chemie International Edition, 59(19), 7430-7434. doi:10.1002/anie.202000998Heck, R. F., & Breslow, D. S. (1961). The Reaction of Cobalt Hydrotetracarbonyl with Olefins. Journal of the American Chemical Society, 83(19), 4023-4027. doi:10.1021/ja01480a017Van Leeuwen, P. W. N. M., & Claver, C. (Eds.). (2002). Rhodium Catalyzed Hydroformylation. Catalysis by Metal Complexes. doi:10.1007/0-306-46947-2Van Rooy, A. (1996). Rhodium-catalysed hydroformylation of branched 1-alkenes; bulky phosphite vs. triphenylphosphine as modifying ligand. Journal of Organometallic Chemistry, 507(1-2), 69-73. doi:10.1016/0022-328x(95)05748-eSparta, M., BĂžrve, K. J., & Jensen, V. R. (2007). Activity of Rhodium-Catalyzed Hydroformylation:  Added Insight and Predictions from Theory. Journal of the American Chemical Society, 129(27), 8487-8499. doi:10.1021/ja070395nGellrich, U., Himmel, D., Meuwly, M., & Breit, B. (2013). Realistic Energy Surfaces for Real-World Systems: An IMOMO CCSD(T):DFT Scheme for Rhodium-Catalyzed Hydroformylation with the 6-DPPon Ligand. Chemistry - A European Journal, 19(48), 16272-16281. doi:10.1002/chem.201302132Kumar, M., Chaudhari, R. V., Subramaniam, B., & Jackson, T. A. (2014). Ligand Effects on the Regioselectivity of Rhodium-Catalyzed Hydroformylation: Density Functional Calculations Illuminate the Role of Long-Range Noncovalent Interactions. Organometallics, 33(16), 4183-4191. doi:10.1021/om500196gJiao, Y., Torne, M. S., Gracia, J., Niemantsverdriet, J. W. (Hans), & van Leeuwen, P. W. N. M. (2017). Ligand effects in rhodium-catalyzed hydroformylation with bisphosphines: steric or electronic? Catalysis Science & Technology, 7(6), 1404-1414. doi:10.1039/c6cy01990kSchmidt, S., Deglmann, P., & Hofmann, P. (2014). Density Functional Investigations of the Rh-Catalyzed Hydroformylation of 1,3-Butadiene with Bisphosphite Ligands. ACS Catalysis, 4(10), 3593-3604. doi:10.1021/cs500718vJacobs, I., de Bruin, B., & Reek, J. N. H. (2015). Comparison of the Full Catalytic Cycle of Hydroformylation Mediated by Mono- and Bis-Ligated Triphenylphosphine-Rhodium Complexes by Using DFT Calculations. ChemCatChem, 7(11), 1708-1718. doi:10.1002/cctc.201500087KĂ©gl, T. (2015). Computational aspects of hydroformylation. RSC Advances, 5(6), 4304-4327. doi:10.1039/c4ra13121eWodrich, M. D., Busch, M., & Corminboeuf, C. (2016). Accessing and predicting the kinetic profiles of homogeneous catalysts from volcano plots. Chemical Science, 7(9), 5723-5735. doi:10.1039/c6sc01660jLiu, J., Bunes, B. R., Zang, L., & Wang, C. (2017). Supported single-atom catalysts: synthesis, characterization, properties, and applications. Environmental Chemistry Letters, 16(2), 477-505. doi:10.1007/s10311-017-0679-2Kwon, Y., Kim, T. Y., Kwon, G., Yi, J., & Lee, H. (2017). Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion. Journal of the American Chemical Society, 139(48), 17694-17699. doi:10.1021/jacs.7b11010Sarma, B. B., Kim, J., Amsler, J., Agostini, G., Weidenthaler, C., PfĂ€nder, N., 
 Prieto, G. (2020). One‐Pot Cooperation of Single‐Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization‐Hydrosilylation Process. Angewandte Chemie International Edition, 59(14), 5806-5815. doi:10.1002/anie.201915255Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., 
 Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8), 634-641. doi:10.1038/nchem.1095Sun, S., Zhang, G., Gauquelin, N., Chen, N., Zhou, J., Yang, S., 
 Sun, X. (2013). Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports, 3(1). doi:10.1038/srep01775Abbet, S., Sanchez, A., Heiz, U., Schneider, W.-D., Ferrari, A. M., Pacchioni, G., & Rösch, N. (2000). Acetylene Cyclotrimerization on Supported Size-Selected Pdn Clusters (1 ≀ n ≀ 30): One Atom Is Enough! Journal of the American Chemical Society, 122(14), 3453-3457. doi:10.1021/ja9922476Lin, J., Wang, A., Qiao, B., Liu, X., Yang, X., Wang, X., 
 Zhang, T. (2013). Remarkable Performance of Ir1/FeOx Single-Atom Catalyst in Water Gas Shift Reaction. Journal of the American Chemical Society, 135(41), 15314-15317. doi:10.1021/ja408574mGu, X.-K., Qiao, B., Huang, C.-Q., Ding, W.-C., Sun, K., Zhan, E., 
 Li, W.-X. (2014). Supported Single Pt1/Au1 Atoms for Methanol Steam Reforming. ACS Catalysis, 4(11), 3886-3890. doi:10.1021/cs500740uJones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., 
 Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800Fei, H., Dong, J., Arellano-JimĂ©nez, M. J., Ye, G., Dong Kim, N., Samuel, E. L. G., 
 Tour, J. M. (2015). Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nature Communications, 6(1). doi:10.1038/ncomms9668Wei, H., Liu, X., Wang, A., Zhang, L., Qiao, B., Yang, X., 
 Zhang, T. (2014). FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 5(1). doi:10.1038/ncomms6634Wang, X., van Bokhoven, J. A., & Palagin, D. (2020). Atomically dispersed platinum on low index and stepped ceria surfaces: phase diagrams and stability analysis. Physical Chemistry Chemical Physics, 22(1), 28-38. doi:10.1039/c9cp04973hNeitzel, A., Figueroba, A., Lykhach, Y., SkĂĄla, T., Vorokhta, M., Tsud, N., 
 Libuda, J. (2016). Atomically Dispersed Pd, Ni, and Pt Species in Ceria-Based Catalysts: Principal Differences in Stability and Reactivity. The Journal of Physical Chemistry C, 120(18), 9852-9862. doi:10.1021/acs.jpcc.6b02264Tang, Y., Asokan, C., Xu, M., Graham, G. W., Pan, X., Christopher, P., 
 Sautet, P. (2019). Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nature Communications, 10(1). doi:10.1038/s41467-019-12461-6DeRita, L., Resasco, J., Dai, S., Boubnov, A., Thang, H. V., Hoffman, A. S., 
 Christopher, P. (2019). Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nature Materials, 18(7), 746-751. doi:10.1038/s41563-019-0349-9Su, Y.-Q., Wang, Y., Liu, J.-X., Filot, I. A. W., Alexopoulos, K., Zhang, L., 
 Hensen, E. J. M. (2019). Theoretical Approach To Predict the Stability of Supported Single-Atom Catalysts. ACS Catalysis, 9(4), 3289-3297. doi:10.1021/acscatal.9b00252O’Connor, N. J., Jonayat, A. S. M., Janik, M. J., & Senftle, T. P. (2018). Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nature Catalysis, 1(7), 531-539. doi:10.1038/s41929-018-0094-5Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Kresse, G., & FurthmĂŒller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Anisimov, V. I., Zaanen, J., & Andersen, O. K. (1991). Band theory and Mott insulators: HubbardUinstead of StonerI. Physical Review B, 44(3), 943-954. doi:10.1103/physrevb.44.943Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., & Sutton, A. P. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide:  An LSDA+U study. Physical Review B, 57(3), 1505-1509. doi:10.1103/physrevb.57.1505Song, Y.-L., Yin, L.-L., Zhang, J., Hu, P., Gong, X.-Q., & Lu, G. (2013). A DFT+U study of CO oxidation at CeO2(110) and (111) surfaces with oxygen vacancies. Surface Science, 618, 140-147. doi:10.1016/j.susc.2013.09.001Nolan, M., Grigoleit, S., Sayle, D. C., Parker, S. C., & Watson, G. W. (2005). Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surface Science, 576(1-3), 217-229. doi:10.1016/j.susc.2004.12.016Huang, M., & Fabris, S. (2008). CO Adsorption and Oxidation on Ceria Surfaces from DFT+U Calculations. The Journal of Physical Chemistry C, 112(23), 8643-8648. doi:10.1021/jp709898rMonkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188Plessow, P. N. (2018). Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans. Journal of Chemical Theory and Computation, 14(2), 981-990. doi:10.1021/acs.jctc.7b01070Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-xStephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, 98(45), 11623-11627. doi:10.1021/j100096a001TURBOMOLE, V.7.1 2016, a development of Karlsruhe Institute of Technology, Karlsruhe, 1989–2019, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com. Turbomole GmbH: 2016.Weigend, F. (2006). Accurate Coulomb-fitting basis sets for H to Rn. Physical Chemistry Chemical Physics, 8(9), 1057. doi:10.1039/b515623hWeigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541aNeese, F. (2011). The ORCA program system. WIREs Computational Molecular Science, 2(1), 73-78. doi:10.1002/wcms.81Neese, F. (2017). Software update: the ORCA program system, version 4.0. WIREs Computational Molecular Science, 8(1). doi:10.1002/wcms.1327Ekström, U., Visscher, L., Bast, R., Thorvaldsen, A. J., & Ruud, K. (2010). Arbitrary-Order Density Functional Response Theory from Automatic Differentiation. Journal of Chemical Theory and Computation, 6(7), 1971-1980. doi:10.1021/ct100117sAndrae, D., Hïżœuïżœermann, U., Dolg, M., Stoll, H., & Preuïżœ, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77(2), 123-141. doi:10.1007/bf01114537Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B, 113(18), 6378-6396. doi:10.1021/jp810292nRiplinger, C., Pinski, P., Becker, U., Valeev, E. F., & Neese, F. (2016). Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. The Journal of Chemical Physics, 144(2), 024109. doi:10.1063/1.4939030Ugliengo, P., & Damin, A. (2002). Are dispersive forces relevant for CO adsorption on the MgO(001) surface? Chemical Physics Letters, 366(5-6), 683-690. doi:10.1016/s0009-2614(02)01657-3Alessio, M., Usvyat, D., & Sauer, J. (2018). Chemically Accurate Adsorption Energies: CO and H2O on the MgO(001) Surface. Journal of Chemical Theory and Computation, 15(2), 1329-1344. doi:10.1021/acs.jctc.8b01122Utamapanya, S., Klabunde, K. J., & Schlup, J. R. (1991). Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chemistry of Materials, 3(1), 175-181. doi:10.1021/cm00013a036Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719Connett, J. E. (1972). Chemical equilibria 5. Measurement of equilibrium constants for the dehydrogenation of propanol by a vapour flow technique. The Journal of Chemical Thermodynamics, 4(2), 233-237. doi:10.1016/0021-9614(72)90061-4Wodrich, M. D., Busch, M., & Corminboeuf, C. (2018). Expedited Screening of Active and Regioselective Catalysts for the Hydroformylation Reaction. Helvetica Chimica Acta, 101(9), e1800107. doi:10.1002/hlca.201800107Goula, G., Botzolaki, G., Osatiashtiani, A., Parlett, C. M. A., Kyriakou, G., Lambert, R. M., & Yentekakis, I. V. (2019). Oxidative Thermal Sintering and Redispersion of Rh Nanoparticles on Supports with High Oxygen Ion Lability. Catalysts, 9(6), 541. doi:10.3390/catal9060541Lazzaroni, R., Raffaelli, A., Settambolo, R., Bertozzi, S., & Vitulli, G. (1989). Regioselectivity in the rhodium-catalyzed hydroformylation of styrene as a function of reaction temperature and gas pressure. Journal of Molecular Catalysis, 50(1), 1-9. doi:10.1016/0304-5102(89)80104-xYu, S., Chie, Y., Guan, Z., Zou, Y., Li, W., & Zhang, X. (2008). Highly Regioselective Hydroformylation of Styrene and Its Derivatives Catalyzed by Rh Complex with Tetraphosphorus Ligands. Organic Letters, 11(1), 241-244. doi:10.1021/ol802479

    Combining Theoretical and Experimental Methods to Probe Confinement within Microporous Solid Acid Catalysts for Alcohol Dehydration

    Get PDF
    Catalytic transformations play a vital role in the implementation of chemical technologies, particularly as society shifts from fossil-fuel-based feedstocks to more renewable bio-based systems. The dehydration of short-chain alcohols using solid acid catalysts is of great interest for the fuel, polymer, and pharmaceutical industries. Microporous frameworks, such as aluminophosphates, are well-suited to such processes, as their framework channels and pores are a similar size to the small alcohols considered, with many different topologies to consider. However, the framework and acid site strength are typically linked, making it challenging to study just one of these factors. In this work, we compare two different silicon-doped aluminophosphates, SAPO-34 and SAPO-5, for alcohol dehydration with the aim of decoupling the influence of acid site strength and the influence of confinement, both of which are key factors in nanoporous catalysis. By varying the alcohol size from ethanol, 1-propanol, and 2-propanol, the acid sites are constant, while the confinement is altered. The experimental catalytic dehydration results reveal that the small-pore SAPO-34 behaves differently to the larger-pore SAPO-5. The former primarily forms alkenes, while the latter favors ether formation. Combining our catalytic findings with density functional theory investigations suggests that the formation of surface alkoxy species plays a pivotal role in the reaction pathway, but the exact energy barriers are strongly influenced by pore structure. To provide a holistic view of the reaction, our work is complemented with molecular dynamics simulations to explore how the diffusion of different species plays a key role in product selectivity, specifically focusing on the role of ether mobility in influencing the reaction mechanism. We conclude that confinement plays a significant role in molecular diffusion and the reaction mechanism translating to notable catalytic differences between the molecules, providing valuable information for future catalyst design

    One Pot Cooperation of Single Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization - Hydrosilylation Process

    Get PDF
    [EN] Realizing the full potential of oxide-supported single-atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one-pot combination of Ru-1/CeO2 and Rh-1/CeO2 SACs enables a highly selective olefin isomerization-hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double-bond migration and anti-Markovnikov alpha-olefin hydrosilylation, respectively. First-principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single-pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio-selectivity (>95 %) even from industrially-relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide-supported single-atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.X-ray absorption experiments were performed at the ALBA Synchrotron Light Source (Spain), experiments 2018082961 and 2019023278. L. Simonelli and C. Marini (CLAESSALBA beamline) are thanked for beamline setup. E. Andres, M. E. Martinez, M. Garcia, and I. Lopez (ITQ), are acknowledged for their assistance with XAS experiments. J. Buscher, J. Ternedien, B. Spliethoff, and C. Wirtz (MPI-KOFO) are acknowledged for the performance of XPS, XRD, BF-TEM and 2H NMR experiments, respectively. I. C. de Freitas (MPIKOFO) is thanked for assistance with Raman spectroscopy. J. M. Salas (ITQ) is gratefully acknowledged for his contribution to CO-FTIR experiments. J. J. Barnes and Shell (Amsterdam) are acknowledged for kindly providing an industrial olefin mixture as feed. Authors are thankful to F. Schuth for the provision of lab space and continued support. Part of the HRSTEM and EDX-STEM studies were conducted at the Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Spain. R.A. gratefully acknowledges the support from the Spanish Ministry of Economy and Competitiveness (MINECO) through project grant MAT2016-79776-P (AEI/FEDER, UE) and from the European Union H2020 programs "ESTEEM3" (823717). The authors acknowledge support by the state of Baden-Wurttemberg through bwHPC (bwUnicluster and JUSTUS, RV bw17D01), by the GRK 2450 and by the Helmholtz Association. This research received funding from the Max Planck Society, and the Fonds der Chemische Industrie of Germany. Funding from the Spanish Ministry of Science, Innovation and Universities (Severo Ochoa program SEV-2016-0683 and grant RTI2018096399-A-I00) is also acknowledged. B.B.S. acknowledges the Alexander von Humboldt Foundation for a postdoctoral scholarship. Open Access funding is provided by the Max Planck Society.Sarma, BB.; Kim, J.; Amsler, J.; Agostini, G.; Weidenthaler, C.; Pfaender, N.; Arenal, R.... (2020). One Pot Cooperation of Single Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization - Hydrosilylation Process. Angewandte Chemie International Edition. 59(14):5806-5815. https://doi.org/10.1002/anie.201915255S580658155914Liang, S., Hao, C., & Shi, Y. (2015). The Power of Single-Atom Catalysis. ChemCatChem, 7(17), 2559-2567. doi:10.1002/cctc.201500363Liu, J. (2016). Catalysis by Supported Single Metal Atoms. ACS Catalysis, 7(1), 34-59. doi:10.1021/acscatal.6b01534Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A., & Katz, A. (2017). Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catalysis Science & Technology, 7(19), 4259-4275. doi:10.1039/c7cy00881cLiu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776Wang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65-81. doi:10.1038/s41570-018-0010-1Parkinson, G. S. (2019). Single-Atom Catalysis: How Structure Influences Catalytic Performance. Catalysis Letters, 149(5), 1137-1146. doi:10.1007/s10562-019-02709-7Babucci, M., Sarac Oztuna, F. E., Debefve, L. M., Boubnov, A., Bare, S. R., Gates, B. C., 
 Uzun, A. (2019). Atomically Dispersed Reduced Graphene Aerogel-Supported Iridium Catalyst with an Iridium Loading of 14.8 wt %. ACS Catalysis, 9(11), 9905-9913. doi:10.1021/acscatal.9b02231Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., 
 Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8), 634-641. doi:10.1038/nchem.1095Duan, S., Wang, R., & Liu, J. (2018). Stability investigation of a high number density Pt1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM. Nanotechnology, 29(20), 204002. doi:10.1088/1361-6528/aab1d2Pinto, H., Haapasilta, V., Lokhandwala, M., Öberg, S., & Foster, A. S. (2017). Adsorption and migration of single metal atoms on the calcite (10.4) surface. Journal of Physics: Condensed Matter, 29(13), 135001. doi:10.1088/1361-648x/aa5bd9Parkinson, G. S., Novotny, Z., Argentero, G., Schmid, M., Pavelec, J., Kosak, R., 
 Diebold, U. (2013). Carbon monoxide-induced adatom sintering in a Pd–Fe3O4 model catalyst. Nature Materials, 12(8), 724-728. doi:10.1038/nmat3667Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., & Zhang, T. (2013). Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 46(8), 1740-1748. doi:10.1021/ar300361mCui, X., Li, W., Ryabchuk, P., Junge, K., & Beller, M. (2018). Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nature Catalysis, 1(6), 385-397. doi:10.1038/s41929-018-0090-9Mitchell, S., Vorobyeva, E., & PĂ©rez‐RamĂ­rez, J. (2018). The Multifaceted Reactivity of Single‐Atom Heterogeneous Catalysts. Angewandte Chemie International Edition, 57(47), 15316-15329. doi:10.1002/anie.201806936Mitchell, S., Vorobyeva, E., & PĂ©rez‐RamĂ­rez, J. (2018). Die facettenreiche ReaktivitĂ€t heterogener Einzelatom‐Katalysatoren. Angewandte Chemie, 130(47), 15538-15552. doi:10.1002/ange.201806936Kumar, A., Bhatti, T. M., & Goldman, A. S. (2017). Dehydrogenation of Alkanes and Aliphatic Groups by Pincer-Ligated Metal Complexes. Chemical Reviews, 117(19), 12357-12384. doi:10.1021/acs.chemrev.7b00247Lang, R., Li, T., Matsumura, D., Miao, S., Ren, Y., Cui, Y.-T., 
 Zhang, T. (2016). Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3. Angewandte Chemie International Edition, 55(52), 16054-16058. doi:10.1002/anie.201607885Lang, R., Li, T., Matsumura, D., Miao, S., Ren, Y., Cui, Y.-T., 
 Zhang, T. (2016). Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3. Angewandte Chemie, 128(52), 16288-16292. doi:10.1002/ange.201607885Cui, X., Junge, K., Dai, X., Kreyenschulte, C., Pohl, M.-M., Wohlrab, S., 
 Beller, M. (2017). Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions. ACS Central Science, 3(6), 580-585. doi:10.1021/acscentsci.7b00105Chen, Y., Ji, S., Sun, W., Chen, W., Dong, J., Wen, J., 
 Li, Y. (2018). Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 140(24), 7407-7410. doi:10.1021/jacs.8b03121Malta, G., Kondrat, S. A., Freakley, S. J., Davies, C. J., Lu, L., Dawson, S., 
 Hutchings, G. J. (2017). Identification of single-site gold catalysis in acetylene hydrochlorination. Science, 355(6332), 1399-1403. doi:10.1126/science.aal3439Ye, L., Duan, X., Wu, S., Wu, T.-S., Zhao, Y., Robertson, A. W., 
 Tsang, S. C. E. (2019). Self- regeneration of Au/CeO2 based catalysts with enhanced activity and ultra-stability for acetylene hydrochlorination. Nature Communications, 10(1). doi:10.1038/s41467-019-08827-5Zhang, X., Sun, Z., Wang, B., Tang, Y., Nguyen, L., Li, Y., & Tao, F. F. (2018). C–C Coupling on Single-Atom-Based Heterogeneous Catalyst. Journal of the American Chemical Society, 140(3), 954-962. doi:10.1021/jacs.7b09314Chen, Z., Vorobyeva, E., Mitchell, S., Fako, E., Ortuño, M. A., LĂłpez, N., 
 PĂ©rez-RamĂ­rez, J. (2018). A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotechnology, 13(8), 702-707. doi:10.1038/s41565-018-0167-2Wasilke, J.-C., Obrey, S. J., Baker, R. T., & Bazan, G. C. (2005). Concurrent Tandem Catalysis. Chemical Reviews, 105(3), 1001-1020. doi:10.1021/cr020018nLohr, T. L., & Marks, T. J. (2015). Orthogonal tandem catalysis. Nature Chemistry, 7(6), 477-482. doi:10.1038/nchem.2262Reuben, B., & Wittcoff, H. (1988). The SHOP process: An example of industrial creativity. Journal of Chemical Education, 65(7), 605. doi:10.1021/ed065p605Fogg, D. E., & dos Santos, E. N. (2004). Tandem catalysis: a taxonomy and illustrative review. Coordination Chemistry Reviews, 248(21-24), 2365-2379. doi:10.1016/j.ccr.2004.05.012Poe, S. L., KobaĆĄlija, M., & McQuade, D. T. (2006). Microcapsule Enabled Multicatalyst System. Journal of the American Chemical Society, 128(49), 15586-15587. doi:10.1021/ja066476lLu, J., Dimroth, J., & Weck, M. (2015). Compartmentalization of Incompatible Catalytic Transformations for Tandem Catalysis. Journal of the American Chemical Society, 137(40), 12984-12989. doi:10.1021/jacs.5b07257Abel, M.-L. (2011). Organosilanes: Adhesion Promoters and Primers. Handbook of Adhesion Technology, 237-258. doi:10.1007/978-3-642-01169-6_11Semenov, V. V. (2011). Preparation, properties and applications of oligomeric and polymeric organosilanes. Russian Chemical Reviews, 80(4), 313-339. doi:10.1070/rc2011v080n04abeh004110Obligacion, J. V., & Chirik, P. J. (2018). Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nature Reviews Chemistry, 2(5), 15-34. doi:10.1038/s41570-018-0001-2Jones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., 
 Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800Pereira-HernĂĄndez, X. I., DeLaRiva, A., Muravev, V., Kunwar, D., Xiong, H., Sudduth, B., 
 Datye, A. K. (2019). Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nature Communications, 10(1). doi:10.1038/s41467-019-09308-5Speier, J. L., Zimmerman, R., & Webster, J. (1956). The Addition of Silicon Hydrides to Olefinic Double Bonds. Part I. The Use of Phenylsilane, Diphenylsilane, Phenylmethylsilane, Amylsilane and Tribromosilane. Journal of the American Chemical Society, 78(10), 2278-2281. doi:10.1021/ja01591a068Nakajima, Y., & Shimada, S. (2015). Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Advances, 5(26), 20603-20616. doi:10.1039/c4ra17281gMeister, T. K., Riener, K., Gigler, P., Stohrer, J., Herrmann, W. A., & KĂŒhn, F. E. (2016). Platinum Catalysis Revisited—Unraveling Principles of Catalytic Olefin Hydrosilylation. ACS Catalysis, 6(2), 1274-1284. doi:10.1021/acscatal.5b02624Morgan, K., Goguet, A., & Hardacre, C. (2015). Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catalysis, 5(6), 3430-3445. doi:10.1021/acscatal.5b00535Ono, L. K., Yuan, B., Heinrich, H., & Cuenya, B. R. (2010). Formation and Thermal Stability of Platinum Oxides on Size-Selected Platinum Nanoparticles: Support Effects. The Journal of Physical Chemistry C, 114(50), 22119-22133. doi:10.1021/jp1086703Stein, J., Lewis, L. N., Gao, Y., & Scott, R. A. (1999). In Situ Determination of the Active Catalyst in Hydrosilylation Reactions Using Highly Reactive Pt(0) Catalyst Precursors. Journal of the American Chemical Society, 121(15), 3693-3703. doi:10.1021/ja9825377Sadeghmoghaddam, E., Gu, H., & Shon, Y.-S. (2012). Pd Nanoparticle-Catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-Dependent Regioselectivity. ACS Catalysis, 2(9), 1838-1845. doi:10.1021/cs300270dGaleandro-Diamant, T., Zanota, M.-L., Sayah, R., Veyre, L., Nikitine, C., de Bellefon, C., 
 Thieuleux, C. (2015). Platinum nanoparticles in suspension are as efficient as Karstedt’s complex for alkene hydrosilylation. Chemical Communications, 51(90), 16194-16196. doi:10.1039/c5cc05675fROTH, J. F., ABELL, J. B., FANNIN, L. W., & SCHAEFER, A. R. (1970). Catalytic Dehydrogenation of Higher Normal Paraffins to Linear Olefins. Advances in Chemistry, 193-203. doi:10.1021/ba-1970-0097.ch011Dry, M. E. (1990). The fischer-tropsch process - commercial aspects. Catalysis Today, 6(3), 183-206. doi:10.1016/0920-5861(90)85002-6Bukur, D. B., Lang, X., Akgerman, A., & Feng, Z. (1997). Effect of Process Conditions on Olefin Selectivity during Conventional and Supercritical Fischer−Tropsch Synthesis. Industrial & Engineering Chemistry Research, 36(7), 2580-2587. doi:10.1021/ie960507bPrieto, G., De Mello, M. I. S., ConcepciĂłn, P., Murciano, R., Pergher, S. B. C., & Martı́nez, A. (2015). Cobalt-Catalyzed Fischer–Tropsch Synthesis: Chemical Nature of the Oxide Support as a Performance Descriptor. ACS Catalysis, 5(6), 3323-3335. doi:10.1021/acscatal.5b00057Keim, W. (2013). Oligomerization of Ethylene to α-Olefins: Discovery and Development of the Shell Higher Olefin Process (SHOP). Angewandte Chemie International Edition, 52(48), 12492-12496. doi:10.1002/anie.201305308Keim, W. (2013). Oligomerisierung von Ethen zu α-Olefinen: Erfindung und Entwicklung des Shell-Higher-Olefin-Prozesses (SHOP). Angewandte Chemie, 125(48), 12722-12726. doi:10.1002/ange.201305308Chalk, A. J., & Harrod, J. F. (1965). Homogeneous Catalysis. II. The Mechanism of the Hydrosilation of Olefins Catalyzed by Group VIII Metal Complexes1. Journal of the American Chemical Society, 87(1), 16-21. doi:10.1021/ja01079a004Jia, X., & Huang, Z. (2015). Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation. Nature Chemistry, 8(2), 157-161. doi:10.1038/nchem.2417Dvoƙák, F., Farnesi Camellone, M., Tovt, A., Tran, N.-D., Negreiros, F. R., Vorokhta, M., 
 Fabris, S. (2016). Creating single-atom Pt-ceria catalysts by surface step decoration. Nature Communications, 7(1). doi:10.1038/ncomms10801Kozlov, S. M., Viñes, F., Nilius, N., Shaikhutdinov, S., & Neyman, K. M. (2012). Absolute Surface Step Energies: Accurate Theoretical Methods Applied to Ceria Nanoislands. The Journal of Physical Chemistry Letters, 3(15), 1956-1961. doi:10.1021/jz3006942Wodrich, M. D., Busch, M., & Corminboeuf, C. (2016). Accessing and predicting the kinetic profiles of homogeneous catalysts from volcano plots. Chemical Science, 7(9), 5723-5735. doi:10.1039/c6sc01660jGutiĂ©rrez-Tarriño, S., ConcepciĂłn, P., & Oña-Burgos, P. (2018). Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives. European Journal of Inorganic Chemistry, 2018(45), 4867-4874. doi:10.1002/ejic.20180106

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe
    • 

    corecore